VECTOR Vol.23 N°4

Table of Contents

Ch-ch-changes Stephen Taylorccccooiiiiiiiiiiiiiiiiiiiiiii 1
NEWS
Quick reference diaryccoooiiiiiiiiii 5
Changes at the BAA Paul Grosvenorccooeeeoiiiiiiiiiiiinniiiiinneenl 6
Extraordinary General Meeting of the BAA Anthony Camacho 9
Regulations of the British APL Association Anthony Camacho 10
Annual General Meeting of the BAA Anthony Camacho 16
BAA Management Committee Meeting Anthony Camacho 16
Industry news Sustaining Memberscooovviiiiiiiiiiiiiin, 17
DISCOVER
Fire from heaven Adrian Smithcooeiiiiiiiiiiiiiiiiii 29
First experiences with Unicode in Dyalog 12 Adrian Smith 41
Parallel Each David Liebtagccocooiiiiiiiiiiiiiiiiii, 51
Classes as a tool of thought Simon Marsdencoooovii. 57
An autobiographical essay Kenneth E. [versoncooceviiiinnn. 70
LEARN
SALT I1 Dan Baronetcco.oooeeiiiiiiiiiiiiiieiiiiee e 87
Functional calculation Neville Holmescco.coviiiiiiiiniiiinniin... 96
The ruler’s edge revisited Ray Polivkac.coooiiiiin, 103
If you think J is complex try j Norman Thomsoncc.ccoeeeiiinne. 106
PROFIT
Partitions of numbers R.E. B0SScccccviiiiiiiiiiniiiiniiicn 121
About polynomials Gianluigi QUAriocccceviiiiiiiiiiiiniinin. 132
Subscribing to Vectorcooiii 142

VECTOR Vol.23 N°4

ii

VECTOR Vol.23 N°4

Ch-ch-changes

Stephen Taylor
editor@uvector.org.uk

This is the first issue of Vector to appear without the BCS logo. Following an almost
unanimous vote by our members we have ended our twenty-year affiliation to the
British Computer Society. In his article “Changes at the BAA”, Paul Grosvenor
discusses the reasons for this change, and what it now makes possible.

The cover bears our new logo and we have taken this opportunity to refresh the
design. There are changes inside the covers as well. With generous support from
Dyalog (whose silver-anniversary history appears as a separately-bound supple-
ment to this issue) we have upgraded our production process. Since 1987, Vector
has been produced using Microsoft Word, thanks in very large measure to the skill
of Adrian Smith in handling difficult font-mapping and typographical issues.

The arrival of Unicode, and Adrian’s own work on the APL385 Unicode font, has
allowed us in the last few years to present APL code on the Web far more simply.
That in turn has allowed us to import HTML documents straight into Word, hugely
reducing our typesetting work. This issue of Vector takes the next step: the markup
has been changed from HTML to DocBook, an XML-based system widely used in
technical publishing. This is the first issue to be produced without Word, and
brings our production process into the publishing mainstream.

Even without the character mappings of various APL implementations, typesetting
Vector is demanding. Mathematical typesetting is a specialised skill. Where more
verbose programming languages generally have their source code set as separate
blocks, terse APL and] expressions appear ‘in-line’ all through our articles, reflect-
ing the role Iverson intended for the ‘tool of thought’, but demanding the greatest
care and attention in setting and proofing. (Is that comma part of an expression,
or does it punctuate the English sentence?) Even had BAA been able to afford
them, it is highly unlikely we could have produced Vector with professional type-
setters. BAA owes Adrian Smith an unpayable debt of gratitude for keeping Vector
in production for over two decades until the technology caught up.

Appropriately enough, Adrian describes in this issue his first encounters with
Dyalog’s new support for Unicode.

APL publishing has become more active outside our pages too. This issue reviews
Jeffry Borror’s new textbook g for Mortals. Graeme Robertson has published two
APL textbooks, Dyalog has a new textbook in preparation from Bernard Legrand,

VECTOR Vol.23 N°4

and At Play With | is now being proofed, the first title to appear under the Vector
Books imprint.

Array languages are receiving renewed attention with the expiry of Moore’s Law.
Unable to push clock speeds higher, computer manufacturers push more processors
into their boxes. But sharing work between them is hard, and this has revved in-
terest in functional- and array-programming languages. Microsoft has established
a research centre around the F# group at Cambridge. Web 2.0 networking site
LinkedIn.com now boasts a functional-programming group with over 300 members;
the Iversonians group there has itself grown to nearly 90.

In this issue David Liebtag reports how APL2’s new parallel-each operators tackle
load sharing, and Neville Holmes continues his tutorial series on functional calcu-
lation. R.E. Boss discusses how to partition numbers quickly.

Much in this issue on the “tool of thought’ theme. Simon Marsden thinks his way
through a problem using classes. His moves will surprise OO programmers unfa-
miliar with interpreters, as much as it will APLers unfamiliar with classes. Gianluigi
Quario finds new ways to write and think about polynomials, and Norman
Thomson works through handling complex numbers in J. Celebrated educator
Ray Polivka makes a welcome debut in Vector with this issue’s “In Session” column,
returning to the derived and direct ‘ruler’s edge’ functions in Vector 23:1&2 and
taking them back to traditional forms.

Dan Baronet reports in “SALT II” on extensions to Dyalog’s code-management
tools.

Finally, we are pleased to publish an autobiographical essay by Ken Iverson. This
has been extracted from the manuscript of The Story of APL &], that he and Donald
McIntyre were collaborating on up to his death.

In our next issue we’ll have reports and papers from the Dyalog and APL2000
conferences this autumn: see the conference programmes in “Industry news”.

VECTOR Vol.23 N°4

NEWS

VECTOR Vol.23 N°4

VECTOR Vol.23 N°4

Quick reference diary

Meetings

12-15 Oct Elsinore, Denmark Dyalog 2008 Conference
10-11 Nov Bethesda, MD APL2000 User Conference

Future issues of Vector

Vol.24 Vol.24 Vol.24
N°1 N°2 N°3
Copy date 21 Oct 21 Jan 21 Apr
Distribution December 2008 March 2008 June 2008

Back numbers

Back numbers of Vector are available from:

British APL Association
c/o Gill Smith

Brook House, Gilling East
York YO62 4]]

Price per complete volume (4 issues) including postage:

e £10in UK
e £12 overseas
® £16 by airmail

NB: Vol.1 N°2 is out of stock.

VECTOR Vol.23 N°4

Changes at the BAA

Paul Grosvenor, British APL Association
chairman@uector.org.uk

A little bit of history

Toward the end of 2007 and the start of 2008, the British Computer Society an-
nounced changes to the way in which it manages and runs its Specialist Groups,
which included, of course, the BAA. These changes were wide-ranging and had
various knock-on effects. Perhaps the most obvious and controversial change was
the requirement for all SG members to be members of the BCS.

In the particular case of the BAA, where many of our members are retired from
mainstream work or are based abroad, BCS membership would offer few advant-
ages for them and additional expense; even though the first year’s membership
would be free.

More fundamental however were growing demands from the BCS of the BAA
organisational committee, which prevented us from running our organisation in
the way we wanted on behalf of the APL community. The restrictions placed upon
us were seen to be increasingly obtrusive, right down to how we print Vector and
to whom we may distribute it.

After much heartfelt discussion, we held a ballot of the members on a resolution
to end our affiliation to the BCS. We announced at our EGM on 19 June that this
resolution had been passed. The voting was 184 in favour and 1 against. To get so
many APLers all agreeing with each other is a rare event indeed and only goes to
show the depth of feeling and importance of the issues under debate.

There remains one outstanding issue regarding the BCS: our funds, which remain
behind closed doors whilst we negotiate their return to us. There are all sorts of
legal issues surrounding the ‘ownership’ of the funds which I shall not detail here
other than to say that we consider the funds to be ours and that we will fight vig-
orously to recover them. Until this issue is resolved we aim to run the BAA with
a starting bank balance of zero. With the continuing, and generous, support of our
Sustaining Members we should have working capital very shortly.

Now we are independent and responsible for our own destiny or demise.

VECTOR Vol.23 N°4

So, what happens now?

Well, immediately the decision to de-affiliate was made we had to change our
Regulations accordingly and as a result identified a number of additional areas
which were now somewhat out of date. Richard Nabavi and Anthony Camacho
have volunteered to investigate and report back with suggested updates.

We have decided not to change too much, too quickly. We plan to move forward
with care, keep existing initiatives in place where possible and build confidence
from our membership in our abilities. Your committee remains largely unchanged
from pre-BCS days but with the addition of Chris Hogan who will be auditing our
accounts going forward.

At the time of writing we had nearly completed the process of opening a new bank
account for the BAA but unfortunately, due to the money-laundering laws in the
UK, this takes a long time. Once this account is up and running we can start to
collect fees again and have a financial base from which to work. I am sure Nicholas
Small will be in touch soon!

We continue to produce Vector as before and in fact plan to produce even more
varied copy and output over the future months. Vector 23:4 is due to go to press
by the end of September; just in time for the conference season. Stephen Taylor
continues to work on our production process to make the whole thing faster, more
streamlined and less reliant on individuals. We hope that you will see a more reli-
able delivery over the coming years with content from a variety of new (and old)
sources.

Over the past months we have been changing our web site so as to deliver a more
dynamic content — “as it happens”, so to speak. We would encourage all of our
members to have a look around the site and let us know what is good, or bad, and
maybe provide some useful content for the future. This site is often the first point
of contact for APL entrants and so we are very keen to ensure that the content
provides for all needs. The “Community’ section provides for all sorts of links to
related material, people, associations etc. Please help us add to it and keep it up
to date. Thanks to Ian Clark for all of his efforts in getting the Vector back issues
into the archive.

A proposal has been put forward to try and produce additional booklets from time
to time using much of the scattered material already available. We hope therefore
to bring to you some new literature over the months, bundled in with your Vector,
which will be informative and build into a useful reference library over time. Some
of you may well be asked to provide us with some ‘ingredients’ for our Celebrity
APL Cookbook!

VECTOR Vol.23 N°4

In the coming months we will be looking at things such as the fee structure and
amounts, individual roles and responsibilities plus the recruitment of new blood
into our committee structure. I consider this essential to get that dynamism back
into the group and to start investigating new avenues of involvement.

Prior to our de-affiliation we had plans to hold a 2-day conference in London early
next year. I would still like to see this go ahead, as in my view, a BAA-led conference
is long overdue. Exactly what we can do on this front will depend upon our
working capital etc. but, at the moment, consider 2-3 March 2009 as the possible
date. More information on this will be forthcoming once our funding position with
BCS is resolved.

Various other projects remain in-hand; work on the Vector Archive continues; Kai
Jaeger expands the APL Wiki ever further and we support him where we can. We
remain in contact with other associations particularly SIGAPL who also are rene-
gotiating their relationship with their governing board (ACM SGB).

Finally, we scrapped the blog on our website and now use the comp.lang.apl
newsgroup to post messages and questions out to the APL world: this seemed to
be one of the most appropriate and vendor-independent mechanisms easily
available. Since we have started, this group is now at its most active for 10 years.
If you haven't looked for a while, log on and have a read — or even post a comment.

In summary

Far from a gloomy outlook, I see the coming months as very exciting. The APL
community seems to have woken up in the past year or so and our challenge is to
keep up! We must feed new information and ideas through to the community and
ensure that initiatives do not fall by the wayside.

That challenge is great but then so too is the BAA. (Urgh — I've just come over
feeling rather ill!)

VECTOR Vol.23 N°4

Extraordinary General Meeting of the BAA

Anthony Camacho, British APL Association
secretary@uvector.org.uk

The meeting was held at 5 Southampton St on Thursday 19 June 2008. The chairman
opened the meeting at 1:30.

The secretary reported that he had counted the votes cast by midnight on 16 June
2008 and that the resolution proposed by the committee had been approved by an
overwhelming majority of 184 to 1. The resolution below was therefore passed.

1.

The affiliation of the Association to the British Computer Society as a Specialist
Group is terminated.

. The Regulations of the Association are to be modified as follows:

i. Paragraphs 2, 11a, 11d, 11e and 13 are deleted.

ii. Paragraph 11b is to be amended to read: “The Association shall maintain
a Current Account with a UK Clearing Bank. The Committee shall be
empowered to place funds in investment accounts.”

. The Chairman is to write to the British Computer Society informing them of

this change and thanking them for their administrative assistance in the years
since the Association first became affiliated to the British Computer Society.

. The Treasurer is to recover the Association’s funds from the British Computer

Society and deposit the funds according to Regulation 11b.

The chairman said that the committee would now inform the BCS and make ap-
propriate arrangements.

The chairman closed the meeting at 1:40.

VECTOR Vol.23 N°4

Regulations of the British APL Association

Anthony Camacho, British APL Association
secretary@uvector.org.uk

1. Name
The Group shall be called The British APL Association.

2. Objects

a. To promote the use of APL;
b. To develop awareness and competence in APL;
c. To represent the interests of Association members with other bodies;

d. To contribute to the development of the language and definition of interna-
tional standards.

3. Constitution
The British APL Association shall consist of:

a. President and Vice Presidents;

b. Chairman, Secretary and Treasurer;

c. Other elected officers;

d. Individual fee-paying members;

e. Individual fee-paying student members;
f. Corporate members;
g. Sustaining members;

4. Members in Good Standing

A member in categories 4(d), 4(e), 4(f) or 4(g) is in good standing with the Associ-
ation by virtue of having paid all membership fees due to the Association for the
current year. Any membership which is not renewed within the first four months
after becoming due is deemed to have lapsed.

5. Appointed Officers

a. A President may be appointed at the discretion of the Management Committee.

b. A maximum of four Vice Presidents may be appointed in recognition of service
to the APL community at the discretion of the Management Committee.

10

VECTOR Vol.23 N°4

C.

Appointed Officers may serve for a period of one year with up to two consec-
utive renewals. Non-contiguous periods of office are permitted with no limit.

d. Appointed Officers shall have the right to attend free of admission charge all

General Meetings of the Association and all events staged by the Association.

6. Elected Officers

. The Elected Officers shall be Chairman, Secretary, and Treasurer, who must

be individual fee-paying members in good standing.

. Other officers may be elected to fill posts created by the Management Com-

mittee.

. It is the duty of the Elected Officers to attend meetings of the committee.
. Election: The officers shall be elected by postal ballot — to serve from 1 May

in the year of election until the following 30 April. Individual members will
be sent one ballot paper; corporate and sustaining members will be sent five
to be cast by five users of APL where possible.

. Casual Vacancy: A vacancy occurring during the term of office may be filled

by an appointment by the Management Committee.

The occupant of any post who has held it for three consecutive years is not
eligible for election to that post in the fourth year.

7. Management

a.

The affairs of the Association shall be managed (subject to the control of the
AGM) by a Management Committee comprising:

i. Appointed Officers
ii. Elected Officers

. Co-option: The Management Committee may co-opt members as required,

normally to hold office until the following 30 April.

. The General Committee of the Association shall comprise the Management

Committee together with members of Sub-Committees and Working Parties
which from time to time be set up by the Management Committee.

. Meetings: The Management Committee shall meet at least four times in its

year of office and frequently enough to carry out the business of the Association
properly.

. Notice: At least fourteen days notice of the place, date and time of meetings

shall be given to each member of the relevant committee.

Quorum: The business of the Association may be transacted by not less than
half the members of the Management Committee.

11

VECTOR Vol.23 N°4

-

h.

In the absence of the Chairman, the Management Committee shall elect one
of its members to take the chair for the meeting.

Voting: In determining a question by vote of the majority of members present,
each having one vote, the chairman of the meeting shall have a second or
casting vote.

Standing Committees: The Management Committee is empowered to set up
Standing Committees to deal with matters that require continuity. A member
of the Management Committee shall sit on each Standing Committee.
Sub-Committees and Working Parties: The Management Committee may set
up at any time sub-committees and working parties responsible to the Man-
agement Committee which shall appoint a Chairman and provide appropriate
terms of reference.

8. Annual General Meeting

. Each year the Association shall hold an AGM in May.
. Notice: The Secretary shall send, at least 28 days before, notice of the date,

time and place of the AGM, together with the Agenda, to all members of the
Association. For this purpose a notice printed in the official publication of the
Association shall be considered sufficient.

. All members have the right to attend the AGM for which there shall be no

attendance charge.

. Agenda: The following items shall be included:

i. Minutes of the previous AGM;

ii. Minutes of any EGM held since the previous AGM;
iii. Chairman’s Report;

iv. Management Committee Officers’ Reports;

v. Audited Statement of Accounts;

vi. Proposals for Alterations to the Regulations;

vii. Proposals for Alterations to the Fees;

vii Ratification of Auditors.

. Nominations: A Nominating Committee will draw up a list of Candidates for

each elected post; additional candidates may be nominated by a proposer and
seconder. All candidates, proposers and seconders must be members in good
standing. Closing date for nominations is 1 February.

Voting: Every question at the AGM shall be decided by a majority of the votes
cast. Individual members of the Association each have a single vote. The ac-
credited representative of each corporate and sustaining member has five
votes which may be split as desired. If a vote is tied, then there shall be a re-

12

VECTOR Vol.23 N°4

count; if this fails to resolve the matter the candidate with the least votes is
removed and the vote retaken, this process continuing until there is a decisive
vote — or it cannot be continued, in which case the Chairman has a casting
vote.

9. Extraordinary General Meeting

a.

10.

11.

An Extraordinary General Meeting (EGM) shall be convened on a resolution
of the Management Committee or within five weeks of receipt of the Secretary
of a requisition signed by no less than one quarter of the current membership
in good standing stating the business to be transacted at the meeting.

. An EGM shall transact only such business as is specified in the resolutions or

requisitions concerning it.

Finance

. The Association shall maintain a Current Account with a UK Clearing Bank.

The Committee shall be empowered to place funds in investment accounts.

. The financial year shall start on 1 May.
. All cheques drawn on the Association’s bank accounts must be signed by any

two of Chairman, Secretary, Treasurer and any person selected by the Man-
agement Committee for that purpose.

. The accounts of the Association shall be audited each year by an auditor ap-

pointed by the Committee.

. All income and property of the Association from whatever source derived

shall be applied solely to the promotion of the objects of the Association.

No member of the Association shall receive payment for his services as a
member.

. The Management Committee shall appoint dates in the year to be membership

renewal points.

. Membership fees are due initially on joining the Association and subsequently

at the latest membership renewal point in the following full year and on that
date thereafter for the duration of the membership.

Dissolution

In the event of the winding up or dissolution of the Association any surplus assets
remaining after discharge of liabilities shall automatically vest in the BCS.

13

VECTOR Vol.23 N°4

Annual General Meeting of the BAA

Anthony Camacho, British APL Association
secretary@uvector.org.uk

The meeting was held at 5 Southampton St on Thursday 19 June 2008. The chairman
opened the meeting at 2:00.

1. Minutes of the 2007 AGM (as published in Vector and distributed to those at-
tending) were approved nem. con. — proposed S.J. Taylor sec. A.]. Camacho.

2. The Chairman (Paul Grosvenor) reported that the committee had had to deal
with the changes made by the BCS and had proposed a resolution, that we
should separate from the BCS, which had been (as just announced) overwhelm-
ingly supported by members. Now we have to carry out the work we resolved
to do.

3. The treasurer (Nicholas Small) circulated summary accounts and explained
some of the details. He reported that we have 290 individual members, though
the BCS has failed to charge some of them for current membership. The ac-
counts and membership report were accepted nem. con. — prop. Anthony Ca-
macho, sec. Jane Sullivan.

4. The chairman proposed that the 2007-8 committee should be re-elected for
2008-9 and this was agreed nem. con. — prop. Richard Nabavi sec. Chris Hogan.
The committee for 2008-9 is therefore:

Chairman Paul Grosvenor
Secretary Anthony Camacho
Treasurer Nicholas Small
Vector editor Stephen Taylor
Activities Ray Cannon
Education Alan Mayer
Projects Ian Clark

5. Chris Hogan agreed to be proposed and was appointed auditor.

6. Richard Nabavi said that the regulations would need more changes than had
been made by the resolution. The chairman asked him to make a suggested
draft. Anthony Camacho offered to help.

7. Questions were then invited from the floor and three were asked:

14

VECTOR Vol.23 N°4

o What is happening to the BAA funds held by BCS? Paul responded that the
BAA would be making all efforts to recover any funds from BCS over the
coming days but for the purposes of budgeting and running the association
the committee was assuming a starting point of £0.

o The regulations state that the EGM should be held in May (item 9a). Paul agreed
that this was the normal position however in the light of the EGM requiring
4 weeks’ notice it had been decided to slip proceedings by 1 month to allow
due process.

* Would the BAA be holding a conference as previously planned? Paul responded
that in principle, yes, but this would depend upon the finances of the
group over the coming months. It may be that a somewhat simpler format
may need to be considered but this would be reviewed nearer the time.

8. As, now we are finally separated from the BCS, the association will again be-
come a partnership with the committee as partners, Anthony Camacho said
that there is a company (APL Projects Ltd), that was formed in 1987 and has
never traded, that could be available for the association to use when it wished
to undertake some activity for which a limited liability is required.

The meeting was closed at 14:19.

15

VECTOR Vol.23 N°4

BAA Management Committee Meeting

Anthony Camacho, British APL Association
secretary@uvector.org.uk

Prior to the EGM and AGM a short and informal meeting was held by the committee
to discuss various issues arising from the announcements to be made later.

Specific points raised (in no particular order) were:

¢ Nicholas had investigated various bank options for the BAA and decided that
the best was to open a Barclays Community Account. It was agreed he should
proceed.

¢ Paul Grosvenor, Richard Nabavi and Stephen Taylor would negotiate the return
of funds to BAA from BCS.

* The membership would be informed of the agreed changes by internet and
an insert placed into Vector 23.3 which was due to go out any day now. Paul
Grosvenor and Stephen Taylor would write the insert.

e Issue 23.4 of Vector is expected to be published in September (suitably modified
to exclude BCS logo etc.). We would then issue subscription renewals to our
members covering the membership year 1st May 2008 to 30th April 2009. This
would give Nicholas plenty of time to arrange our bank account and put in
place a mechanism to receive credit card payments.

¢ Our current fee structure would remain unchanged but may be reviewed later
in the year.

* As Vector articles now appear promptly on the Web, before they appear in
print, we would consider printing two, larger, issues per year rather then the
current 4, so reducing costs.

¢ Richard Nabavi and Anthony Camacho agreed to propose new regulations.

e We discussed the possibility of printing an additional publication this year
along the lines of an “APL Hints and Tips”. (It was suggested we prepare a
collection of the At Play With] articles first.) Dynamic functions is a possible
topic; we might invite a number of APLers to provide some short articles on
“hints and tips”.

16

VECTOR Vol.23 N°4

Industry news

Sustaining Members, British APL Association
editor@uvector.org.uk

APL2000

The next User Conference will be 10-11 November 2008 at the Hyatt Regency in
Bethesda, Maryland. Details and registration forms from www.apl2000.com or
contact Sonia Beekman (sonia@apl2000.com) or on +1 (301) 208-7150. At press time
the conference programme is:

What's new in APL+Win John Walker. Highlights of the major new features
and bug fixes in APL+Win since APL+Win 6. The features include improve-
ments to the session manager such as the session property and GetSessions
method, the graphical user interface Owi such as the CloseDoc and OpenDoc
methods for the Printer object, the APL Grid print and print preview, the
system interface such as the Zip class and other non-GUI related facilities such
as the W_Def and W_Reset arguments to Owcall.

APL+Win interface to .Net libraries APL2000 staff. This presentation describes
a feature which can be used with APL+Win to create an interface to Microsoft
.Net using a .Net assembly created by this utility. The .Net reflection namespace
is used to display the methods, properties and events in a programmer-selected
.Net assembly.

Grid computing using APL WebServices asynchronously Joe Blaze. This
presentation will provide a short overview of APL WebServices as a means to
expose APL+Win software to web-connected users and machines. In addition,
an example will be provided which illustrates how APL WebServices can be
used to coordinate a scalable, asynchronous grid of processors to ‘solve’
amenable problems of a certain granularity, such as stochastic models, Monte-
Carlo simulation, discrete-element analysis, etc

C# as the GUI and APL+Win supporting the business rules Ajay Askoolum.
This presentation will cover three subtopics:

e C# using APL+Win as a COM server
¢ A C# Windows Service using APL+Win as a COM server
* Exposing a .Net assembly as COM for use by APL+Win

17

VECTOR Vol.23 N°4

¢ Reverse geocoding with APL Jeremy Main. Using a public database of location
names, examples and techniques for reverse location lookup (reverse geocod-
ing) will be shown. Presentation will include several APL searching techniques,
distance formulas, comparison presentations and database queries. Possible
application areas will be discussed.

¢ Interface APL+Win and .NET (C#) Eric Lescasse. This presentation will
demonstrate the various ways by which one can interface APL+Win and .Net
(C#). This will include:

e Consuming C# DLLs from APL+Win (using NetAccess)

* Writing the application User Interface in C# and calling

APL+Win in the background

¢ Porting your existing APL+Win application to .Net using C# and APL+Win

e Porting your APL+Win application to Internet as a Client-Server .Net (C#)
ClickOnce application using APL+Win on the Server

Writing ASP.Net (C#) web sites using APL+Win in the background and
Ajax

* Does APL make your Excel life easier? Kevin Weaver. While Excel is reportedly
the most widely used “language” for calculation-oriented work, there are many
problems that have complicated solutions. APL can lend a hand in quickly
working around these sticky issues. However, can APL always make your life
easier? Sometimes Excel is the way to go... hard to believe?

¢ Improved efficiency of execution of APL primitives APL2000 staff. Executing
an expression such as a+b-c in right-to-left order incurs costs due to storing
and fetching intermediate results. By restructuring execution order we can
reduce fetch-and-store overhead and increase execution efficiency. This
presentation describes the APL+Win interpreter enhancements that have im-
plemented this approach.

¢ VisualAPL: ready for Visual Studio 2008 Jairo Lopez. This presentation will
demo new development tools included in Visual Studio 2008 and how you
can take advantage of these tools with Visual APL.

¢ APL application demonstrations An opportunity for conference attendees to
demo their APL applications for other conference attendees. Learn about how
the benefits of APL are being leveraged to create applications across a wide
range of industries.

18

VECTOR Vol.23 N°4

¢ Overview of APL2000 product pricing Sonia Beekman. An overview of products
and services available through APL2000 including a description of the APL+Win
Subscription Program and VisualAPL pricing.

¢ Overview of the APLDN Forum and Open Forum with the APL2000 team
This session will include a review of the procedure for communicating with
APL technical support. The APL2000 Team will be available to answer questions
and listen to comments and suggestions from conference attendees.

Dyalog Ltd
Dyalog Version 12.0.3 has been released:

¢ 32-bit Classic for Windows and AIX
e 32-bit and 64-bit Unicode for Windows and Linux

The main new features are secure socket communications for Conga, OF COPY, and
two new workspaces.

APLIN imports mainframe APL2 workspaces exported via the)OUT command

APL2PCIN imports PC APL2 or APL+Win workspaces exported via the)ouT
command

Manuals for Version 12 are now available from Lulu.com, either printed to order,
or as freely downloadable PDFs.

2008 conference programme

The Dyalog 2008 conference will be held at LO-skolen in Elsinore in October. Some
highlights from the conference programme:

* Demo of an ASP.NET application with a Dyalog engine Chris “Ziggi” Paul,
The Childcare Company. The LASER application is an online training tool for
teaching NVQ levels 2, 3 and 4 to nursery staff. The system as an ASPNET
front end with Macromedia Flash plug-ins but is controlled and managed by
a Dyalog APL.Net program.

¢ Airline Revenue Management Maurice Jordan. Airlines believe good Revenue
Management enhances revenue by 5% or more. In an industry that struggles
to return profits of even this magnitude, it has spawned a small army of con-
sultants and its own mythology. The presentation will show a simple APL
approach to “classical” revenue management. The underlying model for this
classical formulation relies on the traditional complexity of airline fares, where

19

VECTOR Vol.23 N°4

very few people can navigate the range of fares on offer. Internet selling blows
a hole in this model. The presentation will show how dynamic programming
(sorry, nothing to do with d-fns) indicates that a simple modification to the
input data allows the original algorithm to be used in this new marketplace.
There are parallels in Financial Services and many other industries where there
is a fixed resource to be allocated to products offering different levels of return
(and risk).

* Genetic Algorithms Romilly Cocking. Romilly has been interested in biology-
based Artificial Intelligence since the 1970s. He’s recently started to follow up
on his early Al research. After great frustration using Python and Java, he’s
now using APL again.

¢ Heterogeneous development with maximum re-use of APL assets Lars Stampe
Villadsen & Martin Petri, SimCorp. The existing SimCorp Dimension APL
codebase is huge so it is important that as much as possible can be re-used
while using new features provided by .NET/C#. This presentation will make
a live demo on how development in APL and C# can be done in parallel by
adding features to existing core functionality while maintaining the integrity
of the system as a whole.

¢ OO for the elderly Dick Bowman. This presentation will explore Dyalog’s object-
oriented features through a back door, following a path taken by one elderly
APL bigot — it may interest others who have a similar background, or new-
comers wanting to make fullest use of APL’s functionality.

¢ Gridifying FinE using the Techila Grid Claus Madsen, FinE. FinE is a compre-
hensive set of advanced financial functions covering all aspects of risk manage-
ment, valuation and analysis. FinE is a developer’s toolkit; the core is shipped
as a DLL. The purpose of this presentation is to show a practical and real-life
embedding of the Techila Grid Technology into a financial commercial product.

¢ PKZIP your files using APL and .NET Gianluigi Quario, APL Italiana. ICSharp-
Code.SharpZipLib.Dll is a .NET compression library that supports Zip files
using PKZIP 2.0 style encryption, with GNU long filename extensions. It is
written entirely in C# for the .NET platform. It is implemented as an assembly,
and can thus easily be incorporated into other projects (in any .NET language).
Two Dyalog APL functions are presented that create and use objects that are
instances of .NET Classes derived from this library and other .NET base librar-
ies. These functions allow the compression and deflation of Zip files.

* ADOC Kai Jaeger, APLTeam Ltd. With the introduction of OO in Dyalog Version
11, implementation details of a class remain hidden. The user of a class needs

20

VECTOR Vol.23 N°4

to know about and deal with only the public interface of a class. ADOC is a
self-contained class designed to extract and report information about the
public interface. ADOC is able to report public methods, fields and properties
of any class, by request with detailed syntax information. But ADOC can do
more than that: following a small set of simple rules one can put fully-fledged
documentation into a class. ADOC is able to extract these pieces of information
and create either an HTML report or an XML file from that.

¢ Herding cats for fun and profit Joakim Hirsman, Profdoc Care. Profdoc is a
leading provider of healthcare information technology. Profdoc Care makes
Profdoc HIS — a medical record system, and has grown from two to 13 APL
developers in just a couple of years. Joakim was there for the ride and will talk
about what had to change as the numbers of programmers grew, and how
development at Profdoc Care works today. Joakim will address the following
issues: why the idea that it's impossible to recruit APLers is nonsense; what
changed as we got bigger; how to handle a ten year old code base weighing
in at more than 300 000 lines, and remain nimble; the importance of tools, and
the ones used at Profdoc.

¢ Performance improvements in Dyalog Roger Hui, [software, Inc. In the next
version of Dyalog, some common boolean functions will be improved by factors
ranging from 2 to 1600. We work through one particular example.

¢ Serving lunch with Dyalog Tommy Johannessen, Jersie Data ApS. The application
is used by 25,000 school children and their parents for ordering and payment
of school lunches. The lunches are produced in 25 kitchens located all over
Denmark. Each kitchen has its own set-up and menu, and the application caters
for the design, creation and running of individual kitchen websites. The
presentation will focus on how this success story started and demo the various
aspects of the application. The technical aspects will focus on how we created
the . aspx files, the file structure, backup procedures, communication between
the servers and the call structure.

¢ The Array Constraint Engine Gert L. Moller, Array Technology. Array Techno-
logy provides technology for solving complex constraint problems in real-time
on a very small memory footprint. The technology is used in a range of business
applications, e.g. for product configuration with many business rules or con-
straints. The key to the performance of the technology is the use of nested arrays
(array-based logic) for handling logical constraints with a multitude of com-
binations. Dyalog 8.2 was used for prototyping the first version of the techno-
logy, but Gert will present how the next generation of the technology will be-
nefit from the power of the latest Dyalog releases.

21

VECTOR Vol.23 N°4

¢ Snooping with APL Charles H. Brenner, Ph.D., Consulting in Forensic Mathematics.
Charles is a world-recognised authority in Forensic Mathematics — covering
complex areas such as DNA identification, biostatistics, and population genetics.
His DNA e VIEW™ APL-based software solution is the acknowledged leader
and is the standard worldwide for DNA identification. The software has been
used in countless cases amongst others the World Trade Center victim-identi-
fication work, Tsunami victim identification in Thailand, mass identification
projects including desaparacito children from El Salvador, and war victims in
Bosnia.

¢ COPA-MS - A look under the hood Michael Baas, DLS-Planung.de. Comanu-
facturing Management System (COPA-MS) is an application based on the
Hologram BI-System from Dyalog’s Australian distributor Hologram Pty Ltd.
Last year, this project was mentioned in Michael Baas” & John Miller’s talk on
networking as the first fruit of the collaboration between Hologram and Dy-
namic Logistics Systems GmbH.

¢ OOStats - Performing statistical calculations using Dyalog Alan Sykes,
Acadvent Ltd. The advent of the object-oriented features in recent Dyalog Inter-
preters provides a new and exciting framework within which to construct
software to analyse data. The talk will demonstrate statistical objects that allow
an APL user to perform statistical calculations on realistic data sets that may
well contain missing values. All statistical functionality is made available either
directly from user commands from the session, or, for more speedy data ex-
ploration sessions where a variety of alternative analyses might be envisaged,
by using a menu-driven GUI version.

¢ Pocket APL Ray Cannon. Notes on developing a system that runs under Dyalog
PocketAPL, with two example applications (GPS and Su-Doku), and some
utilities making [ONA calls to the underlying operating system.

The conference will be bracketed by training days, plus a couple of workshops on
the Tuesday:

® Sharpening Your APL Knife Kai Jaeger

¢ Source Code Management using SALT and SubVersion Dan Baronet
* Migrating to Unicode Morten Kromberg

e Fast-track your GUI Design Adrian Smith

® Using the Microsoft .Net Framework John Daintree

Introduction to Object-Oriented Programming Daniel Baronet
Web Creole Stephen Taylor
Conga & SSL Morten Kromberg

22

VECTOR Vol.23 N°4

e RainPro Adrian Smith

Hologram

Dyalog has appointed Hologram Pty Ltd as a new distributor for Australia and
New Zealand.

Hologram Pty Ltd is an Australian Business Intelligence company founded in 2004
to develop and deliver future-proofed Business Performance Management solutions.
Hologram’s founders have an extensive track record as developers of highly suc-
cessful treasury risk-management and financial-reporting software packages.

Hologram’s attention to detail, meticulous programming skills and ability to solve
the most complex mathematical problems are invisible to end users, who benefit
from ease of use, point-and-click drill down, and instant access to real-time mod-
elling and reporting from enterprise systems.

The company has a strong focus on manufacturing and financial institutions, with
customers including leading beverage companies, credit unions, merchant banks
and leasing companies.

In connection with the appointment, Managing Director Gitte Christensen says,
“I am absolutely delighted that Dyalog is partnering with Hologram. The company’s
extensive experience in array language development and applications in the finance,
banking and treasury industries makes it a natural and easy fit with Dyalog.”

Hologram’s business focus includes high-performance, real-time transaction-
monitoring and data-information systems. The company’s principals have an es-
tablished track record of working with banks, exchanges and credit unions in de-
velopment and consultancy in areas such as treasury systems, anti money launder-
ing, risk management, compliance reporting, portfolio management and trading
systems. They have worked with institutions around the world including the Bank
of South Australia and Société Générale, as well as the stock exchanges of Singapore,
Indonesia, Istanbul and Oslo.

Kx Systems

Charles Skelton to take over as CTO
Financial industry veteran Charles Skelton will take up the position of Chief
Technology Officer on 1 November, replacing Niall Dalton.

Prior to joining Kx, Charles Skelton was the owner of and principal consultant at
Skelton Consulting GmbH, a product development and software consulting com-
pany specialising in financial-markets technology. Skelton has been working closely

23

VECTOR Vol.23 N°4

with Kx for a number of years; his company’s focus was on advanced market data
capture and analytics using Kx’s kdb+. Skelton has expertise in writing feed
handlers, as well as in-depth experience in setting up very large, high-performance,
infrastructure market-data systems for tier-one banks. Skelton’s responsibilities
will include working with Kx’s development team on product development, en-
hancement and support, focusing on new features; he has a proactive style and
intends to be in regular and close contact with Kx’s client base.

Dalton will relinquish his current position of CTO at the end of October, but will
remain with Kx in a consultancy capacity. This new role will allow Dalton greater
flexibility to pursue some of his other technology and personal interests.

Says Janet Lustgarten, CEO of Kx: “I am delighted that Charles is joining us. We
have been working with him for many years so he has an intimate knowledge of
kdb+ and q, and already knows many of our clients. Having been a client of Kx,
Charles has been on the ‘other side of the fence” and has a great deal of insight into
what our clients need from us. It is great to have Charles as part of our team, and
I'm very much looking forward to working with him even more closely than before.
I would also like to thank Niall for all of his fantastic work at Kx. Niall has always
made it clear that he had other interests outside of Kx that he wished to pursue at
some stage and I am pleased for him that he is now taking the time to do so. Im-
portantly, his leadership in creating a community environment within Kx has and
will continue to be of tremendous benefit to our clients.”

Skelton spent ten years in the telecoms industry as a consultant developing real-
time software for large multinationals before moving into technology for financial
institutions. During his many years in this market Skelton has assisted numerous
institutions such as JP Morgan, HypoVereinsbank and Deutsche Bank with their
deployment of kdb+. He has provided consultancy to firms based in the US, Ger-
many, the UK and Spain.

“I was fortunate to have worked with Kx on kdb+ applications for a number of
years and have been an active member of the Kx community, often presenting at
the annual Kx conferences. I am very excited with this opportunity to be more in-
volved with Kx and to use my expertise for the benefit of all Kx clients,” Skelton
says.

Kx growth continues with new partner in Australia

Kx Systems has signed a partnership agreement with Hologram Business Intelli-
gence, the Australian-based supplier of business performance management solu-
tions.

24

VECTOR Vol.23 N°4

The relationship between the two companies goes back a long way and means that
they already have an in-depth understanding of each other’s products and busi-
nesses. The deal will see Hologram taking on the sales, support and consultancy
of Kx’s Kdb+ database and its q language in the Asia-Pacific region. Kx products
may also be incorporated into Hologram’s offerings in the future.

Hologram’s extensive experience in array-language development and applications
in the finance, banking and treasury industries makes it a natural and easy fit with
Kx. Hologram’s business focus includes high-performance, real-time transaction-
monitoring and data-information systems. The company’s principals have an es-
tablished track record of working with banks, exchanges and credit unions in de-
velopment and consultancy in areas such as treasury systems, anti money launder-
ing, risk management, compliance reporting, portfolio management and trading
systems. They have worked with institutions around the world including the Bank
of South Australia and Société Générale, as well as the stock exchanges of Singapore,
Indonesia, Istanbul and Oslo.

Janet Lustgarten, CEO of Kx Systems, comments, “We are very much looking for-
ward to working with Hologram and extending our product reach to include
Australia and New Zealand. Their thorough understanding of our language and
database means that they will be able to help financial institutions in their region
make full use of the benefits provided by Kx products. I'm excited about the op-
portunities offered by the partnership and of extending the Kx product family to
the region.”

Says Guy Pitman, founder and director of Hologram, “We see great potential for
Kdb+ and q, particularly in the areas of real-time data analysis and high-end
database engines for data-intensive applications in finance, fraud, banking and
other high-volume transaction systems. With two offices in Australia and eyes
firmly set on New Zealand and Asia we are exceptionally well positioned to build
momentum and growth around Kx’s products.” Pitman adds, “I believe that high-
end transaction processing is currently less sophisticated than it could be in Aus-
tralia and New Zealand. Working with Kx will allow us to offer an exceptional
service to institutions operating in this field.”

Enhanced multi-core Kdb+ includes DTrace and more speed

Kx Systems has announced a new version of Kdb+. With the progress in hardware
development and rising data volumes it is essential that software is able to not
merely keep up with progress, but make the absolute best use of hardware improve-
ments. This is why every new version of Kdb+ is described as being even faster
than the previous version — because it is.

25

VECTOR Vol.23 N°4

From the outset Kdb+ was specifically designed and optimised for multi-core
capability, and can handle all machines available on the market. The soon-to-be-
released v.2.5 benefits from even faster multi-threading as well as a number of
other significant enhancements including DTrace support, optimised intelligent
memory allocation, and a number of new interfaces. Now available to customers
for final testing and evaluation, v.2.5 will be noticeably faster for queries, especially
on large databases.

Support for DTrace, a powerful infrastructure for analysing the allocation and
usage of resources on large servers running Solaris, is now available in Kdb+. Some
of Kx’s largest clients, including many tier-one banks, now see support for DTrace
as non-negotiable in their core infrastructure products and critical services such
as Kdb+.

Kx recognises that institutions are facing growing pressures on their resources. A
number of enhancements in v.2.5 have been made to help financial institutions
address some of those issues. DTrace allows very detailed (low-level) monitoring
which does not modify code and helps to track down bottlenecks. More efficient
threading means that large partitioned databases will be considerably faster. In
addition existing interfaces to Java, C#, C, C++ and Excel have been enhanced,
while interfaces to R and F# have been added.

“Intel is focused on the massive compute workloads across the trading lifecycle —
from market data, through analytics and risk to trade routing,” said Nigel Wood-
ward, Intel Global Financial Services Director. “Throughput and low-latency at
every stage are critical, which is why Intel works closely with Kx so that Kx’s
software structure and Intel’s parallel processor infrastructure combine to provide
a competitive advantage to our mutual clients.”

Says Simon Garland, chief strategist at Kx, “Our customers expect Kx to be the
fastest. To achieve this we constantly work on optimisation and ensure that Kdb+
is able to make use of the latest developments in technology. We are also very
conscious of the need to be good citizens when using resources: where several
years ago a vendor might have expected to have exclusive use of a machine that
isno longer the case. The new version of Kdb+ has been further optimised to allow
our clients to get the most out of their new hardware.”

26

VVVVVV

DISCOVER

VECTOR Vol.23 N°4

VECTOR Vol.23 N°4

Fire from heaven
q for Mortals, Jeffry Borror, Continuux, New York, 2008, 478pp

Adrian Smith
adrian@apl385.com

To learn a new language, you need an environment to fool around in, and a good
textbook. The Kx people provide the former at kx.com [1] where you can grab a
time-limited copy of kdb+ for personal use, and Jeffry Borror has provided the
second. In the good old days, we had a mainframe to fool with and Gilman and
Rose to read — maybe those days are here again? This review will document my
attempt to find out.

You can judge as we go if prior knowledge of APL and a smattering of SQL (lightly
dusted with Paul Mansour’s flipdb engine) is a help or a hindrance. My feeling is
that it will help with the array-thinking part and hinder with the database query
language. I will probably trip over the q keywords in a big way — I already tried
to use ss as a scratch table name and there are bound to be others in the pipeline.
Fortunately, Arthur has not yet used qq to mean anything important!

Getting started

Justas helloworld.cis the hardest C program you will ever write, 2+2 is generally
the hardest expression in any of the APL family. Once this works, you have cracked
the installation, got your laptop working again, and generally calmed down. In
this respect, the free kdb+ is much better than most, but it does have a couple of
minor annoyances:

¢ Please will someone decide whether this thing is called q or kdb+. For the
newbie it is not particularly clear that personal kdb+ is what you need to run
the q examples.

® The install suggests unzipping under c:\q without the option — I tried
d:\tools\q and of course it died on me. In fact you can set QHOME to be any-
where you like, but the readme ought to tell you!

Either way, you will probably want a tiddly batch file like:

29

VECTOR Vol.23 N°4

@echo of f
Rem Kick off q from anywhere with optional script
set QHOME=d:\Tools\q

if ""=="%1" goto clear
d:\tools\g\w32\qg.exe %1.q
goto exit

:clear
d:\tools\g\w32\qg.exe

texit

So you can hang about wherever you put your toy scripts and just type q fluff
to kick off the q engine with your script already loaded. Here we go...

D:\>q
KDB+ 2.4 2008.03.31 Copyright (C) 1993-2008 Kx Systems
w32/ 1()core 502MB Adrian blue 192.168.2.103 TIMEOUT 2009.04.01

q)2+2
N
g)\\
D:\>
Gas, are we cooking with... let’s try something a little more challenging;:
D:\data\g>qg sp
KDB+ 2.4 2008.03.31 Copyright (C) 1993-2008 Kx Systems
w32/ 1()core 502MB Adrian blue 192.168.2.103 TIMEOUT 2009.04.01
gq)select from sp where qty>200
s p qty

I think that concludes the first phase — now to get moving on the review proper.

Overview and language basics

One of the hardest choices an APL author has to make is the ordering of the mater-
ial. Jeffry is aiming this at programmers (which probably includes anyone who

30

VECTOR Vol.23 N°4

has read any kind of science subject at university these days) so he starts with a
lot of things his readers will already know.

Functions and atoms

This sets the tone for the rest of the book — Jeffry is kind but firm and makes no
bones about the need to understand functions in the mathematical sense. There are
a couple of typos here — the missing space in the code example (bottom of p.8) is
a bad one. Yes it is trivial, but it undermines the reader’s faith in the code having
been pasted from a running system. I am sure it will be fixed in the next printing.

I'like the constant distinction between the g gods who write perfect code every time
(and have no need of whitespace or comments) and mere mortals who should use
meaningful names and split complex operations over multiple lines. I have even
taken to writing // for comments, partly to save finger reprogramming, and partly
to make TextPad’s syntax colouring work properly! I also like the little sample
program Jeffry shows us right at the beginning — as he says “We promise that by
the time you reach the end of this tutorial, this program will be easy, and you'll
feel right as rain.”

Atoms are the basics of any language, so it makes sense to introduce them early.
Jeffry does his best to put ‘verbose language’ programmers at ease by starting with
a clear table of equivalences from what they already know. I think I would label
the 4th column “.Net’ rather than ‘C#’ though — C# coders would always say boo1 x;
rather than System.Boolean x; but of course int in C# can mean Int32 or Int64
depending on the platform, so he is right to quote the more pedantic style of name.
All the types are listed with simple examples, and this feels like a few pages which
will get well-thumbed on the odd occasion you actually need byte data and can't
recall the suffix. I am still a little unclear why a symbol isn’t a legitimate implement-
ation of a string, as my C# brain is happy with the idea that strings are immutable.
I suppose they do have Length and the String class does support an indexer, but
that’s about as far as it goes. The table of infinities and the section on null values is
informative and helpful. Database gurus go hairless arguing about nulls, so it is
good to see q taking a rather pragmatic approach which will work fine in all
sensible situations.

Lists

APLers pay attention — this takes Trenchard More’s array theories and hits them
well onto the next court but one. These be Lists and Jeffry is very consistent in
calling them Lists just to keep us awake. That said, the only surprise is that atoms
have a count of 1 and that we can skip the brackets in indexing expressions (index-
ing is just a function, after all). The more verbose notation for lists is used consist-
ently so we have 11:(1;2;3) where 11:1 2 3 will generally work in the same

31

VECTOR Vol.23 N°4

way. This makes sense as soon as you hit a nested list likem1: (1 752 9;8 9) where
our APL habits would be (1 7)(2 9)(8 9) and would lead us astray. Indexing is
very nicely brought in here, with the classic ‘matrix’ syntax:

g)mi[1;1 0 1 0 1]
929209

being approached via the idea of indexing at depth withm1[1][1 0 1 0 1] which
gives exactly the same result. By the end of Chapter 3 I think most readers should
have grasped the basics, and will probably have a well-used q console with lots
of ‘I wonder what this does” expressions in it. They should take a well-earned break
to let it sink in.

Primitives and functions

The primitives are no great surprise to an APL guy, but it is worth paying careful
attention to the sections on nulls and infinities as well as the extensions to dates
and times. Jeffry takes the ‘no precedence’ rule on the chin nice and early, and
gives plenty of good examples of the sort of expressions that can puzzle anyone
brought up on the C execution order. He also flags up a key difference from APL-
derived languages (including k) in that there are no overloads on valence (so no
monadic -) but there are overloads on type in functions such as ?, for example:

q)3?5

322

Q)1 2 3?23 2
21

q)?712

'?

User-defined functions follow on nicely, particularly as Jeffry already showed us
that we can type +[2;3] or even (2+)3 in the previous chapter. He again starts
with the most verbose form, and gradually eliminates the redundant parts as the
examples progress.

q)sqr:{[x] x*x}
gq)sqr 3
9

q)sqr:{xxx}
gq)sqr 4

16

q) {x*x} 12
14y

I think I would like him to make it clearer that I can’t have a user-defined dyad,
and the rules for what is returned are explained very oddly on p.100 - I think that

32

VECTOR Vol.23 N°4

a lone : reads as return and that otherwise the result of the function is the result
of the last expression executed. I would also like to see a big fat warning about
this one:

q)sqr:{r:x*x;}
q)sqr 3
q)

If you have spent any time in the C family (which includes scripting tools like
PHP) you get a bit of a semi-colon reflex in your fingers, which often results in an
empty statement as the last one in your function. I am not sure about the claim
that ‘functions are nouns’ in 4.1.6 — for example:

g)plus:+
q)plus[3;:4]

7
q)incr:plus[1;]
q)incr 12

13

q)0 plus/8 9

17

Surely the primitive + and the user-defined function p1us have the same syntactic
status in the language? If it walks like a verb and quacks like a verb, I say it’s a
verb. Shame you can’t use it with amend though. Maybe it’s only a verb when it
feels like it!

The section on function projection has no such quibbles, and I found the section on
adverbs simple and clear. The final section on index, apply, dot feels a bit hard —if it
was in the TeX manual it would have 3 “dangerous bend’ signs. Probably essential
reading for the serious q systems developer but I'm afraid your reviewer started
turning over pages in search of something less strenous.

Casts and enumerations

Something in me wonders if this shouldn’t come a little earlier, probably after the
chapter on lists. Casting is something that programmers are very used to, and there
is nothing very strange about the way q handles it. Enumerations are just factored
lists, and although the process will take some getting used to, there is nothing very
startling here either.

The serious stuff — dictionaries and tables

This is where the power of q cranks up a notch. Anyone with an APL or] back-
ground has probably been saying “so what?” up to this point, although we can
hope that C++ and VB kids may have got excited by now. The next two sections

33

VECTOR Vol.23 N°4

are the reason q has been taking the world of timeseries database by storm, as they
extend the raw language into the domain of database programming, but without
the limitations imposed by years of SQL thinking.

Dictionaries — a statement of the bleedin’ obvious?

Open any Javascript or PHP book at the section on arrays and you will find some-
thing like this:

You can assign an index when using the array() function as follows:
$1ist = array (1=>"apples",2=>"bananas",3=>"oranges");.Theindex
value you specify does not have to be a number, you could use words as
well. This technique of indexing is very practical for making more
meaningful lists.

That was from PHP for the World Wide Web, Visual Quickstart Guide, 2001 but any-
thing will do. The point is that APL (and J) purport to be array languages, and
neither of them support something that most modern scripting tools take as a
given. In q we find that we can type:

g)fruit: (1 2 3! apples‘bananas‘oranges)
q)fruit 2

“bananas

q)fruit 2 11 3
“bananas apples apples oranges

We can even add new elements (again like PHP) by indexing with a non-matching
key:

q)fruit[23]: pears
q)fruit

1 | apples

2 | bananas

3 | oranges

23| pears

Jeffry takes dictionaries at a steady pace, and I am fairly sure I came out of this
section with a clear feel for what they are and how I could use them. The section
builds nicely via column dictionaries where the content has more than one value
(these examples are my maunderings in the q session, by the way. The fact that I
got all of them right at the first attempt is a tribute to both q and Jeffry):

34

VECTOR Vol.23 N°4

g)emp:(“id name! (1001 1002; Adrian‘Richard))
q)emp

id | 1001 1002

name| Adrian Richard

q)emp[“name]

“Adrian‘Richard

g)emp[“name;0]

“Adrian

.. and as if by magic, we arrive at fables and a whole new world lies before us:

qlet:flip emp
g)select id from et
id

1001

1002

g)select from et where id=1001
id name

1001 Adrian

I think I would like a little more advice from a systems-design angle on when to
use a dictionary and when to use a table in constructing a real life application. There
are so many helpful tools in q to make working with tables simple and painless
that maybe Jeffry has told us rather more about dictionaries than we really need
to know? I guess we will have to await his next book to find out!

Tables like you never seen ‘em before

At this point you can swap in your SQL brain and take on a few more surprises.
What is most appealing is the way that anything that acts on a table returns a table,
50 expressions can build on each other:

g)select name from select id,name from et
name

Adrian
Richard

This would make Chris Date [2] very happy indeed. Having been provoked by Paul
Mansour into reading most of the C.J. Date books on advanced database design,
I suspect q complies with virtually all his criteria for a true relational database,
which no traditional SQL-based system does. The other big bonus is that you can
do arithmetic directly on the columns. I know standard SQL has some pretty cool
Alter table stuff but you can only do the things the SQL designers thought of at

35

VECTOR Vol.23 N°4

the time. In q you can do anything Ken Iverson thought of, which adds the full
gamut of array power to table syntax:

glet.xx: (+\)et.id
qlet
id name XX

1001 Adrian 1001
1002 Richard 2003

gq)add2:{x+2}
g)et.xx: add2 et.id
qlet

id name XX

1001 Adrian 1003
1002 Richard 1004

So simple to create a scratch column using a bit of k to accumulate the values, or
to apply our own (incredibly complex) data-processing expression encapsulated
in a function. I begin to see why Richard came back from Cantor Fitzgerald with
a big grin on his face — algorithmic work against databases does begin to look very
simple when you can write code in this way.

Primary keys and keyed tables

Time to concentrate a little — we arrive at section 7.4 and a cup of strong coffee is
called for. Up to this point Jeffry has led us by the hand through green pastures,
from now on in the path winds uphill, and you might find yourself coming back
here several times as you begin to build serious applications. The syntax for creating
and indexing a keyed table is clear enough:

g)et:([id:1001 1002] name: Adrian‘Richard;pay:1234 12345)
qlet
id | name pay

1001| Adrian 1234
1002| Richard 12345

q)et 1001
name| ‘Adrian
pay | 1234

which brings us (via multiple keys and other stuff) to section 7.5 where we hit
foreign keys and virtual columns. I found this fairly comfortable reading, but I have
been immersed in database design for longer than I care to remember [3] and was
responsible for lots of APL utilities for handling just these concepts in my Rowntree
years. I think that this section could really use some diagrams — even for the simplest

36

VECTOR Vol.23 N°4

toy database, I find myself reaching for the back of the nearest envelope and
drawing boxes on it! Essentially the foreign keys define the lines on the diagram,
and enforce ‘referential integrity” meaning that you can’t have an employee
working in a department that doesn'’t exist. In q we find that we are revisiting the
enumeration which is the construct that implements the ‘refers-to’ or “is composed
of” database semantics:

q)dp:([id:23 34] descr:("Op Research";"General Dogsbody"))

q)dp

id| descr

o] e

23| "Op Research"

34| "General Dogsbody"

g)et:([id:1001 1002] name: Adrian‘Richard; dept: dp$34 23;
.. pay:1234 12345)

qlet

id | name dept pay

S

1001| Adrian 34 1234

1002| Richard 23 12345

So far we have something very like the toy database in my experiments with Sys-
tem.DataSet [4] but in q you can take things one step further by using the dot
notation to look down the chain of relationships without having to write lots of
obscure join syntax in the SQL:

qlet
id | name dept pay

1001| Adrian 34 1234
1002| Richard 23 12345

g)select name,dept.descr,pay from et
name descr pay

Adrian "General Dogsbody" 1234
Richard "Op Research" 12345

One of the ‘tough challenges’ you are set in the Oracle training programme is “Find
the employees who earn more than their manager”. With the addition of an appro-
priate column to our department table, this sort of inter-table cross-referencing
becomes quite trivial:

37

VECTOR Vol.23 N°4

q)dp:dp, ' ([] mgr: et$1001 1001)
g)select id,name from et where pay>=dept.mgr.pay
id name

1002 Richard

Of course there is a lot of advanced stuff on tables that I can skip over here — refer
to it when you need it — but the basics are simply explained, and my experience is
that by tabbing over to a q session and following along (with examples of your
own) you will “get the drift’ very quickly. Next up is 80 pages telling us a lot more
about g-sql which I think I am going to enjoy. Time to make a little script out of
those emp-dept examples so I can keep fooling with it after my free q has timed out.

Working with queries in g-sql

This is very plain sailing, up to the point where you hit Grouping and Aggregation
which deserves close attention. In SQL these are tightly bound up, whereas g-sql
gives you the option to preserve the content of the groups in the resulting table.
Paul Mansour copied this in flipdb and used his Minnowbrook session to show
us lots of nice examples of “hard” problems that just fall out if you have some set
functions to hand. A trivial example could be:

g)select pay by dept from emp
dept| pay

23 | ,23451
3% | 12345 32141 51324

Note how q gives us a heavy hint that the singleton is a 1-element list, nof a scalar
here. There may be a way Dyalog could discriminate between these with the session
syntax colouring (hint, hint) these days, as the visual similarity often leads newbies
astray. Of course you can also throw in your own code here:

g)select {(sum x) % count x}pay by dept from emp
dept| pay

23 | 23451
34 | 31936.67

This one just reproduces the built-in avg keyword, but there are plenty of other
things you could do here, like quartiles, which q-sql doesn’t support directly. Entire
queries can be ‘canned” with the usual function syntax. (Jeff calls these parameterized
queries but they just look like functions to me.) For example:

38

VECTOR Vol.23 N°4

g)ql:{select name,pay from emp where id in x}
q)qt 1003 1004

name pay
Gill 32141
Tim 51324

Of course you would normally name the argument(s) here (as Jeff does in the ex-
amples) to make things clearer. Views are implemented using the underlying alias
syntax (which I'm sure I recall seeing somewhere in earlier chapters):

g)vi::select Name:name,Department:dept from emp

q)vi

Name Department
Adrian 23

Richard 34

Gill 34

Tim 34

Finally, we hit the functional forms of both select and exec (which returns the under-
lying data rather than a table, incidentally) which are what g-sql parses your
statements down to before it runs them. Being able to call these forms directly can
be essential if the user can build the query dynamically in some fancy front-end.
It saves a huge amount of hassle creating the query string (with appropriate string
escapes) that we APLers have had to face for years when talking to DB2 or Oracle.
It all looks pretty hairy in the examples, but I'm sure that with a little practice you
can write these expressions as comfortably as you can write the select templates.
Let’s tab over to the q session and have a try...

q)?[emp;();0b; Id Name!(id; ‘name)]
Id Name

1001 Adrian

1002 Richard

1003 Gill

1004 Tim

q)?[emp;(enlist (in; id;1001 1002));(); ‘name]
*Adrian‘Richard

There we are, that wasn’t so hard, was it now? I am not clear how it knew that the
first expression was a select and the second one an exec, but I'm sure some q minor
deity will explain it to me if I ever really need to know. Time to skip over 13 pages
of “things to do with a trading system” and move on!

39

VECTOR Vol.23 N°4

Loops, files, namespaces and other matters

Yes, you can write boring procedural stuff in q but at least you don't get told how
until right at the back of the book. Error-trapping and debugging support (there
isn’t any) rate a couple of pages, as do scripts and startup parameters. Finally (page
301) we get to read and write files, parse .csv input, and chatter with other q pro-
cesses over the network. This is clearly how trading systems are written in the real
world (lots of little tasks watching feeds and nattering to each other) and I don't
think I am competent to say how well this section of the book works as an intro-
duction. I had less trouble with the section on contexts, although it appears from
some of the warnings that these are not quite all they appear, and you may want
to keep your code only one level deep!

Finally we get the usual summary of system commands and variables, and a couple
of appendices list all the functions and the rather minimal set of error messages.
The index looks pretty thorough, but I have yet to give it a decent test.

Summary

This book is hard to fault. It has taken me on a very well-planned exploration of
the strange land of q and I feel that I could already find my way around quite a
lot of it unaided. I also know where to look to remind myself of the more obscure
parts of the language that will never stick in the brain until I need to use them for
real. Anyone with an interest in the APL language family should probably get a
copy, if only to keep them alert to possible future extensions in the APL of their
choice! I shall be agitating for dictionaries at future Dyalog conferences, and I might
revisit my experiments with the .Net DataSet class to see how much of the g-sql
syntax it is possible to fake. Maybe a few exercises would be a good addition, al-
though it is easy enough to make up your own challenges as you go along. If there
is another book on the way, I will be first in the (as it were) queue to get my hands
on it.

References
[1] http://kx.com/developers/license2.php

[2] Database in Depth, C.J. Date, 2005, O’'Reilly

[3] “Structuring Data with APL”, Adrian Smith, in Proceedings of APL Business Technology
83, p175

[4] “Using the .Net DataSet with Dyalog 12”, Adrian Smith, Vector, 23, N°3, 2008 p89

40

http://kx.com/developers/license2.php

VECTOR Vol.23 N°4

First experiences with Unicode in Dyalog 12

Adrian Smith
adrian@apl385.com

Abstract

This is a first summary of the experience I have had in moving
the bulk of my daily schedule across to Dyalog 12 (Unicode edi-
tion). The little traps this process set you in no way invalidate
the decision to move, but they can really spoil your day if you
don’t take good care of them. I will take things mostly in order
of importance, starting with possible application crashes and
moving on to minor presentational annoyances which can be
fixed over a longer time.

Things to test in the interpreter

In spite of a long beta period, it was impossible to catch all the ‘funnies’ that the
interpreter came up with. There may well be some gremlins left, for example I
very recently discovered (when updating the source for one of my help files) that
when I selected some text and hit Ctrl+B it was correctly wrapped with tags,
but when I did the same with Ctrl+I nothing appeared to happen. Hmmm - then
when [just tried to type the tag manually into the edit field, the first character I
typed magically produced the ‘i’ for me.

Along the same lines, I was teaching a new Dyalog user the basics of CPro, and
we got to the point where I needed to type a typical indexing expression such as
inxamyvec into the dialogue designer. That was when I found that AltGr+C and
AItGr+V were firmly wired to Copy/Paste and completely ignored my keyboard
definition!

This sort of thing is almost impossible to test for, and I'm sure there will be other
similar little annoyances. The moral of this story is to believe what you see (even
if you only see it once) and let someone know about it. Dan (Baronet) is the man
who can repro pretty well anything if you give him a good few clues where to
look.

41

VECTOR Vol.23 N°4

Things that may break your application

Things they tell you about

There are two places code has to change: any ONA calls will need some revision,
and any calls to ODR to check for character data will definitely not work any more.

Most ONA calls can be fixed automatically with the new star syntax, for example:

V ret«GetCurrentDirectory;func;buffer_size
[1] A Cover for the windows GetCurrentDirectory function
[2] A Returns the current directory name
[3] buffer_size<«10000

[4] "func'ONA'U4 kernel132.d11.C32|GetCurrentDirectoryx U4 >0T'
[5] ret<func buffer_size buffer_size
[6] :If O#oret A Function OK
[7] ret<«2oret
[8] :Else
[9] ret«"'’
[10] tEndIf
v

This will call the correct DLL function (GetCurrentDirectoryA for Dyalog 12, or
GetCurrentDirectoryW for 12-unicode) and so you can share these functions
between interpreter versions. The only place I got snagged was with:

v {RC}«HANDLE PutString NV;SUBKEY;VALUE;RegSetValueEx

[1] A Stores a text value in a Registry SUBKEY

[2] A HANDLE is the handle for an existing Registry Key

[3] A Function by JS based on SE.WSDoc.GetRegKeyValue

[4] (SUBKEY VALUE)<NV

[5] ONA'I ADVAPI32.d11.C32|RegSetValueEx* U <OT I I <OT I4'

[6] RC+RegSetValueEx HANDLE SUBKEY 0 1 VALUE(1+2xp,VALUE)
v

This is the Unicode version — spot the 2 in the last line! I spent quite a while won-
dering what was eating my registry settings (e.g. the last saved file in the Rain
viewer) as every time I read the settings and re-saved them, the length halved!

Checking for numeric data-type used to be done like this:

1=0=110p2 3 4
1

... with something very similar for character. Maybe old ways are best:

42

VECTOR Vol.23 N°4

Odr 'Fat cat'
80

Odr 'Let’s try XYx also'
160

I'had various bits of code looking for 82 here, and of course things tended to crash
some way down the track, as the test ‘works” but returns the wrong answer. I
suggest:

'=110pe'lLet’s try YIx also'
1

This should keep working for ever! It also gives you a good way to test if you are
in a Unicode interpreter:

unc«80={dr ' '

Things you find out the hard way

The only real nasty I have hit so far is with native files — the problem here is that
you may have a long-running logfile (saved out as plain text) to which you occa-
sionally append messages.

‘c:\temp\unci.txt'[ONCREATE ~1
('Hello',0av[% 3]) Onappend "1
('Wor1d',Oav[% 3]) Onappend "1
Onuntie ~1

This may have started life several years ago in a previous version of APL, and to
start with all seems fine when you move your application:

"c:\temp\unci.txt'Ontie "1

('Wow, here we are again',[ucs 13 10) Onappend ~1

('How about x2',Oucs 13 10) Onappend "1

('How about }Yx? then?',Oucs 13 10) [Onappend "1
DOMAIN ERROR

('How about Yx? then?',JUCS 13 10)ONAPPEND ~1

A

This can strike at any time, if you allow the user to edit the log message, and the
user has the ability to type some symbol that falls outside the base 256 characters.
Even if you clear the file down, you still have the problem unless you always
specify the translation:

43

VECTOR Vol.23 N°4

0 Onresize "1
('Wow, here we are again',Jucs 13 10) [Onappend ~1 160
('How about Yx? then?',JUCS 13 10)[NAPPEND ~1 160

... and you have to be really careful not to mix translations in the same file:

0 Onresize "1

('Wow, here we are again',[ucs 13 10) Onappend ~1
('How about Yx? then?',0UCS 13 10)0NAPPEND ~1 160
Onuntie ~1

This appears to have ‘worked’ but if you open the file in Notepad, it looks like
this:

[uncl.txt - Notepad

ow, here we are again

How abouwut iyt thentTsas

Analysing such a file at some point in the future will be a nightmare. So what to
do? I have a couple of ‘old faithful” utilities for writing and reading text files, so
these were the obvious place to start:

44

VECTOR Vol.23 N°4

[1]
[2]
[31]
(4]
[s]
(6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

vV {r}«fi Putcrv txt;fh;cr;1f;msk;pos;[OTRAP
A Put a [OTCNL vector to file <fi>
A Returns 1 if OK; errors if failed.
OI0«1 o r«0 ¢ (1f cr)«JAV[3 4]

A Try for existing file (includes 'prn' etc.)
OTRAP«(22 'E' '-»New')(19 'E' '[OSIGNAL [OEN') ¢ fh«fi ONTIE O

A We cannot tell if this is a printer,
. so if the resize fails just carry on!
Resize:[JTRAP«22 'E' '->Append' o 0 [ONRESIZE fh ¢ -Append

New:[0TRAP«22 'E' '[JSIGNAL [EN' o fh<«fi [INCREATE O

Append:[TRAP«22 'E' '[SIGNAL OEN'

A Pair CR/LF from [TCNL
msk«txt=cr ¢ pos«msk/ipmsk
txt«<(l+msk)/txt
txt[1+pos+0,+\714 (ppos)pl]«1f

:If 160<[IDR txt A Make it UTF8 - and mark it with ef bb bf
txt<[JUCS 239 187 191, 'UTF-8'[JUCS txt
:End

txt ONAPPEND fh ¢ [NUNTIE fh ¢ re«1
v

This writes UTEF-8 files rather than full 2-byte Unicode files which has the advantage
that most text-editors can handle them, and the file size is generally much smaller.
To read either this or any other common format, we have to examine the header
bytes and decode appropriately:

45

VECTOR Vol.23 N°4

vV txt<«Getcrv fi;fh;ptn;0IO;0OTRAP
[1] A Read entire text file as vector
[2] txt«'' o OIO«1
[3] OTRAP«22 'E' '[OSIGNAL [EN'
[4] fhefi ONTIE O
[5] txt«unpick ONREAD fh 83([ONSIZE fh)
[6] ONUNTIE fh

v

vV txt«unpick bytes
[1] A See what we read from file
. and decode depending on the leading byte(s)
[2] A Make sure it is unsigned,
. and drop the UTF-8 marker bytes if present
[3] bytes++256xbytes<0

[4] :If 239 187 191=3tbytes A UTF-8 marker

[5] bytes$=<«3

[6] txt«'UTF-8'0UCS bytes

[7] :Elself 255 254=2tbytes A Unicode (normal byte order)
[8] bytest=«2

[9] txt<«[UCS 256.18¢((0.5xpbytes),2)pbytes

[10] :Elself 254 255=2tbytes A Unicode (big end up)
[11] bytesi=«2

[12] txt<«QUCS 256.8((0.5xpbytes),2)pbytes
[13] :Else A Don't try UTF-8 as we may have chars >127 in here
[14] txt«[UCS bytes
[15] :End
v

Obviously, if you want a logfile to persist across a Dyalog-12 upgrade, you should
re-create it using something similar, or just check for 160 in the message-type and
‘do something’ to make sure you don’t simply trash the file. I think a good solution
would be to check for the 160 case, convert the text to UTF-8 as above, check if the
first 3 bytes of the file had the UTF-8 marker and regenerate the entire file if not.
Otherwise the only safe option is to substitute a ‘standard” marker character (‘?’
is normal) for anything above OuCS 256 which will at least keep things running
while you think about it.

Mappings that stop working

In the ‘non-catastrophic” section, we may have been exploiting the DIN mapping
from OAV to the font position for several of the APL characters. When Chris Lee
first developed this Windows font layout, he tried to choose ‘good’ associations,
for example the APL comment symbol was mapped to the © character. Dyalog
copied the mapping fairly faithfully, and we have all got to know it over the years.
For example, I regularly use:

46

VECTOR Vol.23 N°4

e delta and del for the “typographic’ single quotes. grade up and grade down are
the “speechmarks” also.

e execute is — endash and format gives you a ® bullet.

¢ reverse and transpose (rather surprisingly) give superscripts?® which is nice for
equations.

* jot is good for the degree symbol, as in °C in chart captions

I am sure there are others — it took me best part of a day to find and fix all of these
in the examples in RainPro. You also need to be aware that some of these fixes are
a one-way door to Unicode. If you attempt to)LOAD a workspace with any text
outside the normal range, it will simply say TRANSLATION ERROR and refuse
at the first fence. Identifying the cause of the problem can be a bit tricky, so here
is another little helper I wrote to get me moving;:

47

VECTOR

Vol.23 N°4

[1]

[2]
[3]
(4]

[5]

(6]

[7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

v
A

el

v

list«Scanku ns;nl;fn;cr;ok;dodgy;snslist;vnsvar;badchars
Report any dodgy functions - chars not in [JAV are dangerous
. as these won't copy into Classic 12

Rain12 has a test called Unicode which should report here
Takes a namespace as argument - scans current NS if empty
Returns 2-column matrix with namespace.function name

and distinct uncopyable chars
By ACDS Dec 2007

:If Oepns
ns«<''0CS""’
:End

nl<(nse'0NL")72
list«0 2p""'
nslist«(ens,'."), (nse'ONL"')79.1
badchars<«' ‘<’ «“”-—"' A Load in classic, but map incorrectly!
:For vn :In nl
var<genssvn
ok«a/(vare[JAV)a~varebadchars
:If ~ok
dodgy<u(var~0AV),varnbadchars
lTists«(ns,'."',vn)dodgy
:End
:End

nl«<(nse'0ONL"')"3
:For fn :In nl
cr«,(nse'0CR")fn
ok«a/(creJAV)a~crebadchars
:If ~ok
dodgy<«u(cr~0AV),crnbadchars
lists«(ns,'."',fn)dodgy
:End
:End

:For ns :In nslist A Go walkies
lists;«Scanku ns
:End

One other thing that caught me here — I had a global variable in the workspace to
check for “ascii’ characters which included the » (ASCII caret) character. When I
moved the workspace across, this became an APL » logical and which stopped this
particular function working in a rather hard-to-detect way.

48

VECTOR Vol.23 N°4

A side-effect of losing the mappings, was that I suddenly found that it was really
hard to type these very useful characters. For chart captions and the like, you often
want “proper” quotes and dashes, as well as expressions like 3x*+2x to label regres-
sion lines. The pragmatic solution was to grab a few more keystrokes and set myself
up with a little typographic pad on Ctrl+[] and nearby keys:

2

... with a similar collection on the shifted keys. Most of these were a straight copy
from Aldus Pagemaker, and they cover nearly everything you need in day-to-day
typing. As you can see from the first character in this paragraph, they also come
in quite handy when typing HTML text into Notepad! No degree symbol yet though
... poor old ellipsis might be for the chop, although that ® looks a bit vulnerable
too!

3

Either way, being able to build your own keyboard map and use it everywhere in
Windows is really great.

Removing workarounds

Now we hit the downhill part of the ski-run — getting rid of all the nasty stuff we
had to do to get around the 256-char limit. A typical example I had was writing
SVG (a very picky XML format) files to represent my charts. Any characters above
ASCII-128 must be encoded as &#nnnn;, and several common characters in the 145
range (like the quotes) required the pukka Unicode values. I won't bore you with
the messy stuff I had before — all I need now is to use the native character translator
which automatically gives me all the right numbers:

49

VECTOR Vol.23 N°4

A Hex any remaining hi-bit characters (reliable translation now)
vec+,vec ¢ asc+128>[JUCS vec ¢ hi+«(~asc)/ipvec
:If O<phi
aix«JUCS vec[hil
hex+, (((paix),2)p'&#"'), ('ZI4'OFMT aix),'s"’
vec«(1+6x~asc)/vec
hi«hi++\7140, (phi)p6
vec[,hie.+0 1 2 3 4 5 6]«hex
:End

...and of course I had to beef up my C# translator to handle this:

cc.chk 'x«[Jucs 65 67 3348
X « Oucs 65 67 3348
MARK NOUN ASGN VERB NOUN
x = AE_ucs(new int[] {65,67,3348}); // Using ...

static string AE_ucs(int[] iv) // Int array translate
{
char[] charvec = new char[iv.Length];
for(int i=0si<iv.Length;i++)
charvec[il=(char)iv[il;
return new String(charvec);

}

This spins off a suitable helper function the first time it sees a particular call (I just
supported the 4 obvious variants with scalars and vectors either way round) and
then calls it in-line.

Wrap-up
There is clearly some pain involved, but I think the gain beats it hands down. I do

like throwing away code! Fewer lines always means fewer bug-opportunities, and
translate tables are a great place for bugs to hang out.

50

VECTOR Vol.23 N°4

Parallel Each

David Liebtag, IBM Corporation
liebtag@us.ibm.com

The APL Working Group of GUIDE SHARE EUROPE in Germany and
APL-Germany e.V. held meetings in Hanover, Germany on 12 and 13
June 2008. David Liebtag made several presentations at those meetings
about IBM Workstation APL2 Service Level 12. This and an article in the
next issue summarise his presentations about APL2’s new support for
parallel processing and structured storage. Ed.

There has been a lot of discussion recently about how to make it easy for program-
mers to exploit multiple processors. This topic is of great interest to computer sci-
entists, language developers, application developers and end-users. The problem
is that most languages are designed to provide instructions to computers on how
to perform a sequence of calculations in series. They do not provide a convenient
way to specify how an algorithm should be partitioned and distributed onto sep-
arate processors.

For a few years people have been suggesting that because APL already works with
whole arrays rather than individual data items, perhaps APL has an opportunity
to lead the way in this field. Perhaps APL's semantics already reveal the parallel
nature of many algorithms. If that is so, perhaps APL language processors could
detect the parallel nature of application components and automatically distribute
them to multiple processors.

This article includes an overview of the hurdles to be overcome in the exploitation
of multiple processors. It also demonstrates two new operators in Workstation
APL2 which allow developers easily to distribute sections of applications onto
multiple processors, to network connected machines and achieve significant per-
formance improvements.

What is performance?

When discussing performance, it is a good idea to understand what we mean.
However, performance can be hard to define.

For example, does performance simply mean how many calculations are performed?
If so, then what is a calculation? Do calculations always use input data and produce
results? What about an application’s internal calculations, such as incrementing
array indexes and determining where and how to access data?

51

VECTOR Vol.23 N°4

Simply copying data to and from memory can significantly impact performance.
In addition, some algorithms require more storage than others and can be con-
strained by the amount of available storage. Providing more storage using virtual
memory and reorganizing algorithms to work within constraints can also signific-
antly impact performance.

Furthermore, performance is affected by how data is accessed. Data is read and
written from disk drives, networks, and real-time measurement devices. The speed
of all these devices can impact performance.

You may be thinking, Wait a minute. It’s obvious. Performance means how fast an ap-
plication runs. But what does it even mean for an application to run? Consider that
sometimes you may require results with a high degree of accuracy and precision.
Other times you may require results that provide only a rough estimate of the an-
swer. These two ways to run an application may require very different amounts
of time to run, or amounts of performance. So even beyond the general specification
of the results, the specification of the required precision and accuracy of the results
can affect performance.

Finally, all these contributions may be insignificant to overall application perform-
ance, when using sample data. However, when using scaled-up production data,
they may have a profound effect on performance.

How does hardware affect performance?

For years, computer manufacturers” specifications have included clock speed and
memory size. More sophisticated users may also understand specifications for
chip architectures and instruction sets, and machine cache sizes and bus widths.
Clearly, these hardware features affect performance and we have all used some
or all of them to inform our decisions when buying computers. If we wanted our
applications to run faster, we bought faster machines with more memory.

More recently, machines have become available with multiple cores. You can even
buy multiple machines and connect them in a grid or a cloud. How will this affect
performance?

It depends on the application. Although some specialised applications are beginning
to appear that exploit multiple processors, most applications process a single set
of sequential instructions. In general, no matter how many processors you have
available, these applications will use only one processor and will not run any faster.
Modifying these applications to use multiple processors or multiple machines, can
be a very, very difficult job.

52

VECTOR Vol.23 N°4

What affects distributed computing performance?

In order to distribute an application onto multiple processors, you, or a language
processor, must identify which parts of an application can be distributed, slice the
data into sections, copy them to the processors, run the code on each of the pro-
cessors, and gather the results back together in the main application’s storage.

Each of these decisions must be done efficiently. The time it takes to determine
whether an operation can be distributed, and to copy the data and results between
main and multiple processors, can easily overwhelm the performance gains
achieved by using multiple processors. In addition, simply managing multiple
processors takes time. It is important to minimize the number of times that pro-
cessors are started and data is sliced, distributed, and gathered.

What affects interpreter performance?

Several features of APL interpreters and applications affect performance.
First, consider scalar operations such as this:
~BIN/LABEL

This type of code is very common. It is widely used to control flow of operations
within applications. In fact, it is so common that most applications spend the vast
majority of their time executing scalar operations. Indeed, since most applications
spend most of their time running scalar operations, even significant improvements
in array operations can have little affect in overall application performance.

Next, consider array operations such as this:
L<AxB

You may think that these expressions are terrific candidates for automatic distri-
bution to multiple processors. The APL interpreter could slice up the arrays and
distribute the primitive to multiple processors. However, consider this example,
that uses multiple array primitives:

Z<AxBxC

If the interpreter distributed each primitive array operation to multiple processors,
it would have to slice up the array, distribute it, and gather the results together
for each primitive. This could require a lot of overhead. These remarks seem to
imply that the pundits were wrong: APL code does not appear to lend itself to
distribution on multiple processors. How can we prove them right? Clearly, we
need a way to avoid distributing operations over and over again. We need a way

53

VECTOR Vol.23 N°4

to identify when to distribute operations at times when it will give us the most
bang for the buck.

Parallel Each

The APL2 primitive operator each " applies a function to multiple arrays. The ap-
plication developer uses each to indicate when operations can be performed inde-
pendently. IBM has extended this facility with two external operators:

PEACHP parallel each using processors
PEACHT parallel each using threads

Like the each operator, the parallel-each operators apply the function to each element
of the argument arrays. Unlike each, the elements are processed asynchronously.

PEACHP processes each element in a separate process, which can be on the same or
other machines. PEACHT processes each element in a separate thread running on
the same machine.

Both operators use multiple processes or threads to process the data. The number
of processors or threads used is controlled by the number of elements in the arrays
and the number of machines and processors that are available.

Syntax

result « [larg] (function PEACHP (options [processors])) rarg
result « [larg] (function PEACHT options) rarg

where

options Vector of character vectors containing APL2 invocation options

processors Integer vector containing identifiers of processors running
AP 200, the Calls to APL2 processor.

function Character vector containing a function name

largand rarg each arguments

The parallel-each operators start multiple slave APL2 interpreters, each with a
separate workspace. The invocation options are used when starting these interpret-
ers. The list of processors is used to locate the machines to use.

54

VECTOR Vol.23 N°4

The function named in the operand is copied from the caller’s namescope into the
slave interpreters. For this reason, the named function is usually an association
with a function in a namespace.

The elements of the arrays are copied into the separate slave interpreters’ work-
spaces. Because the function is applied on the array elements in separate work-
spaces, side-effects are not supported. The function can not access the caller’s
workspace.

Sample

The following example compares using the * primitive operator and PEACHT to call
the FFT function from the MATHFNS namespace to calculate Fast Fourier Transforms
on a machine with two processors.

DATA«c[2]720 65536p1000 A Generate some data
START+[JAI A Record the time
"MATHFNS' 11 ONA 'FFT' A Associate FFT
: pFFT DATA A Apply FFT on each element
0 OAI-START A How much time did it take?

0 6209 6443 218

START<[JAI A Record the time
4 11 [ONA 'PEACHT' A Associate PEACHT
1
p('FFT' PEACHT '')DATA A Apply FFT with PEACHT
20
OAI-START A How much time did it take?

0 47 3541 203

The second and third elements of 0AI are the compute and connect times. Notice
that by simply changing the code to use PEACHT rather than the ™ primitive operator,
the connect time was reduced by 45 percent. The compute time was also reduced
to nearly zero, but this is only because CPU time used by the asynchronous inter-
preters is not accumulated in the calling interpreter’s account information.

Usage guidelines

The parallel-each operators currently copy the argument data from the application’s
workspace to the slave interpreters’” workspaces. The results are created in the
slave interpreters” workspaces and then copied to the application’s workspace.
The time required to copy the arguments and results can overwhelm the benefits
of using multiple processors.

55

VECTOR Vol.23 N°4

The parallel-each operators are appropriate for a subset of possible uses of the
primitive each operator. They can give significant improvements for applications
which do not require extremely large arguments, perform computationally intensive
calculations, and do not return extremely large results.

Summary

People have been suggesting for a number of years that APL may be able to auto-
matically exploit new machines with multiple processors. With Workstation APL2
service level 12, the IBM APL Products and Services group has proved they were
correct. With trivial changes to their programs, APL2 developers can now run their
applications on multiple processors and gain performance improvements that are
directly proportional to the number of cores available to the applications.

Further information about APL2 and Service Level 12 is available at ht-
tp://www.ibm.com/software/awdtools/apl. Detailed information about APL2, the
parallel each operators, and Service Level 12’s other new facilities can be found in
the APL2 User’s Guide through the Library link.

56

http://www.ibm.com/software/awdtools/apl
http://www.ibm.com/software/awdtools/apl

VECTOR Vol.23 N°4

Classes as a tool of thought

Or: acquiring a new father after you're born

Simon Marsden, MicroAPL Ltd
microapl@microapl.co.uk

This article was originally presented as a talk at the BAA AGM in June
2008. Ed.

APL has always been a great language for trying things out, changing and experi-
menting until you're happy with an application. That’s why it is often referred to
as a ‘tool of thought'.

My purpose in this talk is to demonstrate how the design of APLX encourages the
user to work this way even when writing object-oriented code. In other words, to
show how you can design and modify the class hierarchy as you go along, even
when you have instances of the classes you are changing.

To do this, let’s consider a concrete example, one small enough to explore here but
large enough to demonstrate some interesting features of interactive OOP devel-
opment. Imagine that we work for a company called BigCorp and have been given
the job of organising a 5-a-side football tournament for its employees.

Creating our first class
To start off with, we need to get a list of employees from the company’s personnel
database. We can do this very easily in APLX using 0sQL.

SQL 'connect' 'aplxodbc' 'DSN=BigCorpDB;PWD=xx;UID=root;"
0o

-~ O -

0

0

0sQL 'do' 'use bigcorp'

0000
fields«'FIRSTNAME,LASTNAME,SEX,EMAIL,EMPLOYEENUMBER ,DEPARTMENT"
(rc errmsg employeeData)«1 [OSQL 'do' 'select', ..

fields,' from employeedata’

We decide on an object-oriented solution to our 5-a-side problem, and that our
first class should represent an Employee. This will have a number of properties
like firstName, 1astName, etc., and a constructor to initialise them when an object
is created.

To save space, let’s omit the step of using the APLX class editor to create the class.
Here is the listing of the finished class. The first part of the OCR listing shows the

57

VECTOR Vol.23 N°4

properties, followed by the constructor. (In APLX, the constructor always has the
same name as the class.)

OCR 'Employee'
Employee {
firstName
lastName
sex
email
employeeNumber
department

VEmployee arg
(firstName lastName sex email employeeNumber department)<«arg
v

}

We now have a new workspace entry called Employee, which is a class reference
which we can use to create new instances of the class. Here we create a vector with
an object representing each employee:

)CLASSES
Employee

Employee
{Employee}

employees<«[JNEW “c[2]Employee,employeeData
pemployees

4
3temployees

[Employee] [Employee] [Employee]

Notice that the default display of the first three list elements is not very helpful -
it just tells us that we have three objects of type Employee. We can examine an in-
dividual object (or many) using OSTATE:

employees[1].0STATE 0

firstName Bert
lastName Brown
sex M
email Bert.Brown@bigcorp.com
employeeNumber 24
department C

However, it would be nice to have a quick way of telling Employee objects apart,
and we can do this by changing the default Display Format of an object using the
system method [IDF:

58

VECTOR Vol.23 N°4

employees.[ODF '[',"employees.lastName, ']’
3temployees
[Brown] [Ptolemy] [Oakum]

Let’s play football

The next thing to do is to tell everyone about the 5-a-side competition and invite
them to play. We can do this fairly easily by sending everyone in the company an
e-mail:

SM«'0" ONEW 'SendMail'
SM.host+'smtp.bigcorp.com'
SM.user«'bigcorp'
SM.password+'sesame'

SM.Open
0
SM. from+'simon@bigcorp.com'
SM.to«"1ieemployees.email,”™","
SM.subject«'Five-a-side Tournament'
SM.body+'Would you like to play five-a-side football?'
SM.SendMessage
0
SM.Close
0

Let’s imagine that we have had replies to our e-mail and that 25 people are inter-
ested in playing. We'll choose 25 random players for the sake of the example:

wantingToPlay«employees[251 (pemployees)?pemployees]

Now we need to allocate them into teams of five players. We'll use a very simple
new class Team which has no constructor and no methods yet, and just has proper-
ties called name and players.

OCR 'Team'
Team {
name
players

}

We can then create an object to represent each team:

59

VECTOR Vol.23 N°4

numTeams<| (pwantingToPlay)+5
teams<«[INEW 'numTeamspTeam
teams.players«,c[2](numTeams,5)pwantingToPlay
teams[1].players

[Brown] [Ptolemy] [Oakum] [Fry] [Wittering]

Saving objects

Since the 5-a-side tournament is going to last for several weeks, we need to save
the details of the teams somehow.

Imagine for a moment that you were writing this application in another object-
oriented language like C# or Java, or even another interpreted object-oriented
language like Ruby. In this case, you would need to write the team details to some
kind of external file, either a plain text file or something more elaborate. You would
also need to write code to read back the details from the file and recreate the team
objects.

In APLX, things are much simpler. APL objects continue to exist if you) SAVE the
workspace and reload it at a later date. Although this seems natural to an APL
programmet, it’s only possible because APL uses the concept of a workspace. It’s
interesting both because you have to write less code, and because it allows you to
experiment freely with how classes should be structured...

Re-factoring classes

Let’s go back a step and imagine that we only had 24 people who want to play
football. Unfortunately, we don’t now have enough players to make five complete
teams, so some people will be left out:

wantingToPlay«24ttwantingToPlay
numTeams<«| (pwantingToPlay)+5
teams<[INEW “numTeamspTeam
teams.players«,c[2](numTeams,5)pwantingToPlay
wantingToPlay~eteams.players

[Smith] [Jones] [Khan] [Pasty]

However, they ‘have this mate who plays a little football.” He’s not a company
employee, but can he play anyway?

The new player doesn’t have an employee number or a department, so it looks
like we made a mistake with our initial design of the Employee class. We need to
move most of its properties into a new class Person and then make Employee in-
herit from it.

60

VECTOR Vol.23 N°4

This is where the interactive nature of APLX starts to get interesting, because we
can accomplish this without needing to re-do everything from scratch. We can
modify the class structure but carry on using all our existing objects! This is very
unusual in the world of object-oriented programming languages.

To create the new Person class, we could use the APLX class editor to create the
class and then add the constructor and all the properties we need, one at a time.
For a small class this would not take too long but there is a quicker way to do it,
because the system functions [JCR and 0F X have been extended to work with classes:

Get a text representation of Employee:
text<[JCR 'Employee’

Edit this text to rename the class as Person and delete the two unwanted properties
employeeNumber and department:

text
Person {
firstName
lastName
sex
email

VPerson arg
(firstName lastName sex email)<arg
v
}

Fix the new class

OFX text
Person

Having created the new Person class, we want to make Employee into a child class
which inherits from it by using the system function OREPARENT:

61

VECTOR Vol.23 N°4

)CLASSES

Employee Person

Employee.[JPARENT

[NULL OBJECT]

Employee [OREPARENT Person
Employee.[JPARENT

{Person}

Finally, we change the class definition of Employee to delete the properties which
we’ve moved into Person, and change the constructor as follows:

VEmployee arg

A

A Call the constructor of our parent class
Person Wtarg

A

A Initialise extra fields

(employeeNumber department)<ltiarg

v

(Notice how a constructor can be called just like an ordinary method. Here we call
the base class constructor, Person.)

All the objects we’ve already created continue to exist:

3twantingToPlay

[Brown] [Ptolemy] [Oakum]

Now we’ve changed our class hierarchy we are ready to bring in the extra player
from outside the company to make up the fifth team:

5

newplayer<[JNEW Person 'Ronaldo' 'Moreira'’ 'M'
newplayer.[ODF '[Ronaldinho]’

newteam<[JNEW Team
newteam.players«newplayer,wantingToPlay~eteams.players
teams«teams,newteam

pteams

Notice that the new team is of mixed composition:

62

VECTOR Vol.23 N°4

newteam.players.[JCLASSREF

{Person} {Employee} {Employee} {Employee} {Employee}
+/Employee=newteam.players.[JCLASSREF

"

Any questions?

You may have some questions at this point. First of all, what happens to an existing
object if you delete its class? The answer is that the object still exists but you can
no longer do much with it:

)SAVE football
2008-06-02 14.10.32
teams[1]
[Team]
teams[1].players
[Brown] [Ptolemy] [Oakum] [Fry] [Wittering]
JERASE Team
teams[1]
[DELETED CLASS]
teams[1].players
VALUE ERROR
teams[1].players
A

How about if, instead of deleting the class Team we just delete the p1ayers property?
Because the property no longer exists, APLX immediately deletes it from any object
instances and reclaims the memory, whilst leaving the objects otherwise untouched.

J)LOAD football
SAVED 2008-06-02 14.10.32

JERASE Team.players

teams[1].players
VALUE ERROR

teams[1].players

A

However, before doing so, APLX will check to see whether the parent class contains
a property of the same name. If so, the object’s property value is still accessible
and is not deleted. (This is why it was important to re-parent our Employee class
before deleting its unwanted properties, so that we didn’t change any existing
Employee objects.)

How about trying to create circularities in the class inheritance hierarchy?

63

VECTOR Vol.23 N°4

Employee [OREPARENT Person

Person [DREPARENT Employee
DOMAIN ERROR

Person [JREPARENT Employee

A

Creating a football league

It’s now time to assign names to the teams. Again we’ll use the [DF trick to make
it easier to identify different Team objects:

teams.name«'Sheffield Tuesday' 'Water Cooler Wanderers'
'The P45s' '5-0-0 Formation' 'Brazil Nuts'
teams.[ODF '[', teams.name,” ']’
1tteams
[Sheffield Tuesday]

The last class we need to create is a Match class. This will have three properties —
the two teams who will play, the score (initially 0,0), and a Boolean played indic-
ating whether the match has taken place yet. The class also has a constructor, and
a method Winner which returns the winning team. Here is the listing of the com-
pleted class:

64

VECTOR Vol.23 N°4

Ocr 'Match’
Match {
played
score
teams

VMatch arg
A
A Store object references for the two teams who will play the match
teams<«arg
A
A Match not played yet
played<«0
score«0 0
v

VR<Winner
A
A Returns winning team as 1-element vector,
A or empty vector if match is a draw or not yet played
A
R«played/(x-/score)tteams
v
}

Having created the Match class, we can create a vector of all the matches, assuming
that each team plays every other team once:

numTeams<«pteams
x+x#v\x+(2pnumTeams)p(numTeams+1)t1
X

01111

00111

00011

000O01

00000
matches<«[INEW 'Match, (,x)/,teamseo.,teams
pmatches

10

matches[1].teams
[Sheffield Tuesday] [Water Cooler Wanderers]

Changing the class of an object

What would happen if one of the employees leaves the company but wants to
continue playing? We can use the RECLASS system function to change the class of
an object instance:

65

VECTOR Vol.23 N°4

Pick someone to leave and check a few things:

leaver«wantingToPlay[?pwantingToPlay]
leaver
[Jones]
leaver.[JCLASSREF
{Employee}
leaver.employeeNumber
5

Change the class, and note how some properties are no longer accessible:

Person [JRECLASS leaver
leaver
[Jones]
leaver.[JCLASSREF
{Person}
leaver.employeeNumber
VALUE ERROR

leaver.employeeNumber
A

The normal use of ORECLASS is to change the class of an object to another related
class, as in the example above. However, there is nothing stopping you changing
to a completely unrelated class if you wish.

Send in the clones

Now suppose that someone is injured and has to drop out of the tournament
completely, so that their team needs to bring in a new player.

It’s easy enough to modify the appropriate Team object, but if we do so we'll no
longer have any record that the injured player took part in the earlier matches. It
would be quite nice to keep a record of who actually played in each match.

To do this, we can use the system method [CLONE to make a copy of each team
object at the time that a match is played. After adding a new Match property called
whoPlayed, we can do:

matches[1].played«1
matches[1].score<«3 2
matches[1].whoPlayed«matches[1].teams.[JCLONE 1

The OCLONE method has produced one duplicate copy of each of the two teams.
The clone objects are independent from their original parents; changing the teams
will not affect the copies.

66

VECTOR Vol.23 N°4

Producing a league table

Next, we want to be able to produce a League Table which shows the teams’ posi-
tions as the 5-a-side tournament progresses. To do this, we choose to modify the
definition of our Team class to add the following methods:

MatchesPlayed Return a vector with one element for each
match the team has played.

MatchesWon, MatchesDrawn, Return a vector with one element for each

MatcheslLost match the team has won, drawn or lost.

GoalsFor, GoalsAgainst Return the number of goals scored and con-
ceded.

Here, for example, is the first new method. Note how the niladic system function
OTHIS is used within the class method to find out whether our team matches any
of the teams playing:

VR<MatchesPlayed

A Returns a list of all the matches the team has played in

]

A Get a list of all the matches that have been played so far
+(0=pR«(matches.played)/matches)/0

]

A Did we play as either team in each match?
R<(v/"OTHIS=R.teams)/R

v

And here is the global function which will produce the league table:

67

VECTOR Vol.23 N°4

VR«League;points;goalDifference
[1] A Return league table of current positions
[2] n
[3] nA First calculate points and Goal Difference
[4] A (3 points for a win, 1 for a draw)
[5] points«(3xep teams.MatchesWon)+(1xep“teams.MatchesDrawn)
[6] goalDifference«teams.GoalsFor-teams.GoalsAgainst
[7] =n
[8] A Now create the league table
[9] R«teams.name
[10] R<«R,(ep”teams.MatchesPlayed,teams.MatchesWon,
teams.MatchesDrawn,teams.MatcheslLost)
[11] R<«R,teams.GoalsFor,teams.GoalsAgainst,goalDifference,points
[12] R«§®(9,pteams)pR
[13] n
[14] A Sort it. For teams with the same number of points,
[15] A sort on least matches played, then on Goal Difference, then
Goals Scored
[16] R«R[¥®>[2](points)(-ep teams.MatchesPlayed)(goalDifference)
(teams.GoalsFor);]
[17] n
[18] A Add the column headings
[191 R«(("")('PYd")(" W')(' D')(" L")(" GF')(' GA')('GD")
('Pts')),[1IR
v

Let’s imagine that the results are in, and the final positions are these:

matches.played<«1l
matches.score«(3 2)(0 0)(7 1)(2 2)(0 0)(1 5)(8 0)(1 1)(0 1)(0 0)

League
P1d W D L GF GA GD Pts
Sheffield Tuesday L 2 2 0 12 5 7 8
5-0-0 Formation L3 1 2 1 7 9 72 5
Brazil Nuts L 1 2 1 3 10 77 5
Water Cooler Wanderers L 1 1 2 11 8 3 L
The PL45s 4 0 3 1 1 2 71 3

One more thing...

Finally, we need to publish the results so that the teams can see how they did. We
can easily export the League Table to HTML format for inclusion in a web page:

68

VECTOR Vol.23 N°4

League [EXPORT 'C:\Users\Simon\Documents\LeagueTable.html' 'html'

Here is the HTML file opened in a web browser. Although you cannot tell from
the screenshot, APLX has produced a properly formatted HTML table, not just a
simple text representation.

& Exported data - Mogzilla Firefox E=tEeh
| Eile Edit Niew History Bookmarks Tools Heip

file:///Ce/Users/Simen/Desktop/Leaguehtm| 5 - G|' >o0gie >~
i} L] p/Leag |

Pld W DL GF GA GD Pts

| Sheffield Tuesdav 4 X2012 &5 T B
| 5-0-0 Formation 4121 7 92§
| Brazil Nuts 4121 310 -7 5
: Water Cooler Wanderers 4 11211 8 3 4

The P45s 4031 1 2 -1 3
i Done

In conclusion

A recent article about objects in the C# programming language included the sen-
tence: “Unfortunately, though, objects are like snowmen; they live happily for a
brief period of time before disappearing into the spring sunshine.” In APLX, this
is by no means the case. APL objects are persistent; they can be saved in a workspace
and even survive and adapt as you modify and extend your classes.

69

VECTOR Vol.23 N°4

An autobiographical essay

Kenneth E. Iverson

Ken and Donald McIntyre worked on what was to be The Story of APL &
J in 2004 through a series of e-mail messages, with the last e-mail from
Ken coming in the morning of Saturday, 2004-10-16. Now Donald
McIntyre’s health prevents him continuing work on The Story of APL & J.
The following autobiographical sketch has been extracted from the manu-
script, which Vector hopes eventually to publish in its entirety. Donald
McIntyre emphasises that the text of the sketch is in Ken’s own words.
Vector is grateful for Roger Hui’s help with preparing it and for adding
the endnotes. Ed.

Preamble

My friend Dr Donald McIntyre has a penchant for well-documented historical
treatments of topics that interest him. His more important works concern his chosen
discipline of geology; notably his discovery and discussion of the lost drawings
of James Hutton, and his commemorative works on the occasion of Hutton’s bicen-
tennial.

Because of his fruitful use of my APL programming language, and its derivative
language J, Donald has asked me many questions concerning their development.
I finally suggested (or perhaps agreed to) the writing of a few thoughts on these
and related matters.

Because of my other interests in developing and applying J, I have deferred work
on these essays, but now realise that the further application of] has already fallen
into younger and better hands, such as those of Professor Clifford Reiter in his
Fractals, Visualization, and] [1].

Likewise, the further development and implementation of | are now in better
hands, such as those of Roger Hui, my son Eric and nephew Kirk, and, last but not
least, Chris Burke.

Because of my negligence in the keeping of records, I am relieved to realise that I
can now in good conscience ignore the provision of carefully-documented refer-
ences, leaving such matters to McIntyre’s expertise. I will also exercise the freedom
to explore ideas as they arise, and not restrict myself to fulfilling Donald’s expressed
desires.

70

VECTOR Vol.23 N°4

I will begin with a series of topics chosen more or less at random, and will defer
the matter of an overall organisation.

Schooling

I started school on 1 April 1926, eight months before my sixth birthday, was pro-
moted to Grade 2 at the end of the school year in June, and was promoted to Grade
4 at the end of the next year.

As I understand it, my father chose the inauspicious day and date as a joke on the
elderly and superstitious schoolmaster (Mr McLeod), who reciprocated with his
own joke by promoting me to Grade two after just three months. I was, of course,
far from ready, but since he was about to retire, I was left as a problem for the new
and much younger Mr Norman Bowles.

To my surprise, Mr Bowles put me in neither Grade 1 nor 2, but kept me separate.
Irecall my eager anticipation of being placed in Grade 2 when (after about a month)
I reached their reading lesson. I was disappointed to find that nothing changed,
but was rewarded by promotion to Grade 4 at the end of the year, and was ready
to leave the school to enter Grade 9 at age 12.

All this was possible in a one-room school (with one teacher and some 30 students).
Younger students could overhear the work of their elders, who might also be asked
to help them. I also had much help from my older sister Aleda, who herself went
on to become a teacher.

The timing was fortunate, because progress soon overtook the rural province, the
one-room schools disappeared, and local children were bussed some fifteen miles
in snowy Alberta winters.

For Grade 91had to go to the nearest village about 14 miles away, and stayed with
family friends on a farm only 5 miles from the school. As a 12-year-old I was a
social misfit in high school, but completed the year with a good start on Grade-10
subjects.

Although I enjoyed school, I chose to quit at the end of the year to work at home
on the farm. In those years of the Great Depression my choice was perhaps a relief
to my family. But my reasons were simple: as far as I knew, the only purpose of
further schooling was to become a schoolteacher, and that I decidedly did not
want. I knew absolutely nothing about universities and the preparation they
provided for careers quite unknown to me.

I finally learned about universities from my Air Force mates, many of whom
planned to return to university, thanks to government support for servicemen. In

71

VECTOR Vol.23 N°4

fact, one of my buddies threatened to return and beat my brains out if I did not
grasp the opportunity.

When I quit school, my younger brother Byron was sent to school in the city of
Edmonton, staying with an aunt and uncle. I asked him to borrow science books
for me from the city library, and he chose some on radio — sparking my interest.

In 1938 at the age of 17 I enrolled in a correspondence course with De Forest’s
Training of Chicago, at a cost of $205. Fortunately, my elder brother Elmer chose
to do likewise — it was very helpful to have someone to work with.

We desperately wanted radio parts to work with, and persuaded Dad to buy a
radio that would run on a re-chargeable automobile battery rather than on expens-
ive 135-volt dry cell batteries — and, more importantly, to let us have the old radio.

We then began to dissect it, carefully making a circuit diagram as we went. I find
it interesting to recall our difficulties in identifying parts (such as “condensers” or
“capacitors”), having studied them in the abstract, but never having seen one on
the hoof.

The correspondence course culminated in two weeks practical training in Chicago,
a thrilling time for us, made more so by our uncle Ingmar with whom we stayed
—he loved Chicago, and made sure that we saw all we could of it (including giant
presses at The Chicago Tribune) in the time available.

Looking for further reading after completing that course, I soon realised that the
really interesting books on radio and electricity used calculus. On a visit to Edmon-
ton, Ilooked for a book on the subject, and came away with a used copy of Calculus
by Herman W. March and Henry C. Wolff [2].

The long cold Alberta winters sometimes made outdoor farm work impossible,
and granted me the leisure to study M&W. My most vivid memory is of the joy in
discovering how the beautiful circular functions were finally united in a single
family under the exponential.

I think it worth contrasting this joy with the reaction of my youngest brother
(Clayton Ray - no less competent than I) to his encounter with the same material
in a university course. I was disturbed that he didn’t share my joy in it, but dis-
missed it as “just more formulas”.

I was drafted into the army in 1942 and joined the air force in 1943. The Canadian
Legion offered correspondence courses to men in military service, and I took eight
of them, nearly enough to complete my high school. Three things I remember —
the amazing patience of my tutors, the fact that I never met another serviceman

72

VECTOR Vol.23 N°4

who took courses, and the useful discipline of studying a text with no immediate
recourse to a teacher.

Years later I was pleased to find that my own work in APL was exploited by a Mr
Clementi who, some 40 years ago, chose to use it in a correspondence course in
Australia because of its brevity. This brevity made it feasible to enter a student’s
written submission, run it (perhaps with modifications to make it work, or otherwise
improve it), and mail the typed result from the computer terminal.

After my discharge in 1946, I enrolled at Queen’s University in Kingston (Math
and Physics in the Arts Faculty). My experience as an undergraduate at Queen’s
University in Kingston was unusual in that about half the class consisted of return-
ing veterans: the faculty was overjoyed to find students so serious about their
work, and the non-veterans were resentful of the “unfair competition”.

I rather resented the requirement to take two courses quite outside of my main
interest; one in English and one in Philosophy. I found both most rewarding, and
am left with a firm belief in forcing students to look at some areas that they are
confident are of no interest to them.

Physics labs required a lot of time, and taught me two things. The first was that
they were designed only to confirm things we “already knew” from theory, and
were not “experiments” in the sense of discovering anything. This was a lesson I
made use of in later work (at IBM) in designing “computer experiments”.

The second was the importance of recording results in pencil, so that they could
be fudged to show reasonable results in the required lab reports. A close friend
among the younger students learned this the hard way (in a lab designed to
measure the difference in the heat capacity of air at constant volume and at constant
pressure).

Because of “bad” results he had to repeat the experiment. His new bad results in-
furiated the professor in charge, who came in on a Saturday to watch the whole
process. The upshot was that he re-analysed the experiment, concluding that sec-
ondary effects (such as draughts from an open window) would mask the intended
effect —in spite of which, students had been reporting “good” results for a full five
years.

I also learned something of the difference between detailed meticulous teaching,
and good teaching. In physics, Professor Cave was meticulous in copying from
his notebook only the main steps in a proof, making brief comments on the algebra
or calculus needed to connect them, but leaving students to fill in details for
themselves. This we did, to great advantage.

73

VECTOR Vol.23 N°4

In math, Professor Jeffrey (head of the department) achieved much the same,
though inadvertently. Beginning a lecture with an obviously well-planned ap-
proach, Professor Jeffrey (head of the Mathematics Department) might soon pace
the stage and say “I'll bet we could do it this way”. The lecture often ended in
some confusion, and our subsequent work to unsnarl it taught us a good deal. I
remember the class as the first time I actually saw a mathematician at work.

Jeffrey urged me to go on to graduate school — an idea I accepted because the vet-
eran’s benefit would pay, and because I had no idea what else to do. But, when I
proposed to stay on with the newly formed graduate program at Queen’s, he ob-
jected, saying that in my four years I had absorbed their point of view, and should
move on.

Acknowledging his point, I declined the advice to move because I was already 30
years old, and had the responsibility of a wife and two children. Jeffrey restored
my perspective by remarking that 30 was his age at beginning graduate school,
that he and his wife had no children and still did not, but did have two cats.

In the event, on my graduation in 1950 I went to the math department at Harvard,
amove [have never regretted. Although I got respectable grades, I found the math
department a very cold place, perhaps in recognition of my limited potential for
math. Anyway, I got my Masters degree in one year, and then switched to the
Department of Engineering and Applied Physics, after being attracted by a course
that I took with Professor Howard Aiken — called “Switching Theory” I think.

Although press reports of the new “giant brains” were beginning to appear, I had
no idea of the computer work going on at Harvard under Aiken. Although he
worked in a different division, I chose to attend his course, and was quickly cap-
tivated. It was the first time as a student that I was given the impression that there
might be new work to be done.

Although we sometimes had as many as six students to a desk, Aiken squeezed
his graduate students into his Laboratory. To us it made an enormous difference
to finally be “on the inside”, with significant access to faculty, and with good op-
portunities to serve as Teaching Fellows in courses.

Aiken quickly arranged a thesis topic for me by introducing me to economics
Professor Leontief, whose graduating student had used Aiken’s computer in his
work in Input-Output Analysis. I was expected to extend the work to handle
“Capital Goods”; mathematically an extension to systems of differential equations.

I believe that Aiken did a great deal to encourage clear writing by his students,
and with relatively little effort on his part. He (deliberately, I expect) developed a

74

VECTOR Vol.23 N°4

reputation for fierce reading of drafts of theses, with the result that we all asked
our fellow students to criticise our work before approaching Aiken.

When he read my first draft, I found him both helpful and gentle, often asking if
I was sure that this was just the right word, when he knew full well that it was
not.

Teaching I

When I received my degree in 1954, Aiken got me appointed to the faculty as an
Instructor to help man his new Masters program in Automatic Data Processing.
Except for a 6-month “mini-sabbatical” to work for McKinsey, I continued until
1960.

At the time that I graduated in 1954, Aiken was advising that universities should
get out of the business of designing and building computers, and should turn their
attention to the applications of computers. He argued that companies such as IBM
and Remington Rand already recognised a business opportunity, and were in a
better position than universities to address such problems as quality control.

Against strong opposition from the Harvard administration, Aiken managed to
introduce a Masters program in Automatic Data Processing in 1955; in effect, the
first computer science program. I was one of four of his graduating students that
Aiken was able to get appointed to the position of Instructor to man his program.
A thorough account of these years is included in Howard Aiken: Portrait of a Computer
Pioneer [3], by the Harvard historian I. Bernard Cohen.

Although Aiken had mapped out a broad program that included economics,
business applications, switching theory, operations research, numerical analysis,
and computer programming, it was largely left to us green graduate students to
flesh out the courses.

I was appalled to find that the mathematical notation on which I had been raised
failed to fill the needs of the courses I was assigned, and I began work on extensions
to notation that might serve. In particular, I adopted the matrix algebra used in
my thesis work, the systematic use of matrices and higher-dimensional arrays
(almost) learned in a course in Tensor Analysis rashly taken in my third year at
Queen’s, and (eventually) the notion of Operators in the sense introduced by
Heaviside in his treatment of Maxwell’s equations.

Harvard had a benign rule of five years to tenure or out, benign because it preven-
ted fierce Bostonophiles from clinging forever in the hope of eventual tenure. It
was particularly benign in those postwar days of the establishment of commercial
research centres, where anyone from the science faculty of a respectable university

75

VECTOR Vol.23 N°4

could expect to double his salary — as I did when I joined the Research Division of
IBM.

Schools of education prepare teachers for elementary schools with a great emphasis
on the techniques of teaching. At college level, on the contrary, no preparation for
teaching is (or at least was) provided, and graduates, full of their subjects, were
unleashed on students. I was fortunate in having as a Teaching Fellow a graduate
student who had been born at a podium — Fred Brooks. Moreover, Fred and I were
sufficiently close friends that he could, and did, tell me bluntly of my bad teaching
techniques in post-mortems held after each lecture. For example, he once said
“That was a very interesting point you made about such-and-such - too bad you
made it to the blackboard, and could not be heard past the first row.”

First test of notation

The first real encouragement of my work in notation came when I took a six-month
mini-sabbatical after two years of teaching in Aiken’s program, to work for the
still-thriving consulting firm McKinsey & Co. This was in the fall of my third year
on the faculty.

This occurred because M&Co. had undertaken work that required the use of a
computer. Having no computer knowledge themselves, M&Co. turned to the
source of all knowledge (Harvard, and eventually Aiken), and Aiken recommended
me.

When I arrived in San Francisco, Ted Strong (of M&Co.) explained that his client,
Hawaiian Sugar (in a dispute over shipping rates with Matson Lines), had embarked
on a thorough analysis of their options — including, for example, the choice of loc-
ating refineries in Hawaii or in the US. This required a computer, and Ted had
secured the services of Bob Oakford and Dan Fisher of Stanford University, to
program the (then rather new) IBM 650.

Ted held weekly meetings with Oakford to communicate his remarkably-detailed
knowledge of sugar and shipping. These meetings seemed to go well, but he was
unable to get anything understandable about the progress of the programming. I
asked Ted to do the same for me, but recorded the steps and decisions in the
notation I had been developing for teaching, notation that was eventually imple-
mented as APL.

The encouraging thing was that we were able to converse in accurate detail, Ted
knowing nothing of computers, and I knowing nothing of sugar and shipping.
Moreover, Oakford and Fisher were able to understand these same programs, just
as I was able to understand their 650 programs. In a few months the 650 programs

76

VECTOR Vol.23 N°4

were nearly complete, and we four eagerly anticipated their use — whereupon the
project was abruptly terminated.

This was a great disappointment, even though the reason was victory — all this
computer stuff had intimidated Matson to agree to a re-negotiation of rates.

IBM Research Center

I left Harvard with offers from IBM Research and Bell Laboratories. Fred Brooks
(who had joined IBM somewhat earlier) advised me to choose IBM because com-
puters were their primary concern. I did not join IBM until 1960, at which time I
was just finishing up my A Programming Language [4], which included a chapter
(called Microprogramming) on the formal description of the IBM 7090 machine.
After I joined the IBM Research Division, Fred advised that I stick to whatever I
really wanted to do, because management was so starved for ideas that anything
not clearly crazy would find support. In particular, I was allowed to finish and
publish A Programming Language [4], as well as Automatic Data Processing [5] with
Fred Brooks as co-author.

I soon met Adin Falkoff, and we worked jointly on the notation for some twenty
years. It was Adin who suggested [6] the name APL (from the title of my 1962
book). In the 1962 book, I had used APL to describe an IBM computer, and Adin
and I (with Ed Sussenguth) used it to produce a formal description [7] of the IBM
System/360 computers then under design.

An important consequence of this work (published by John Lawrence in the IBM
Systems Journal) was that it attracted important contributors to APL, notably Larry
Breed (a Stanford student, who joined us at IBM and chose to undertake the crucial
work of implementing it as a programming language), and Donald McIntyre, head
of Geology at Pomona College (who had acquired a 360 Model 40 for Pomona,
and used the formal description to become more expert than the IBM Systems
Engineer assigned to Pomona).

Teaching II

I believed that APL could be used in teaching, and Adin said that to test the point
we must take a text used in the State school system, and try to teach the material
in it. He further proposed that we invite active high school teachers.

We hired six for the summer, with the plan that two (nuns from a local school,
who could provide a classroom in which we supplied a computer [typewriter]
terminal) would do the teaching, while the other four (with a two-week head start)
would write material.

77

VECTOR Vol.23 N°4

To our surprise, the two teachers worked at the blackboard in their accustomed
manner, except that they used a mixture of APL and conventional notation. Only
when they and the class had worked out a program for some matter in the text
would they call on some (eager) volunteer to use the terminal. The printed result
was then examined; if it did not give the expected result, they returned to the
blackboard to refine it.

There were also surprises in the writing. Although the great utility of matrices was
recognised (as in a 3-by-2 to represent a triangle), there was a great reluctance to
use them because the concept was considered to be too difficult.

Linda Alvord said to introduce the matrix as an outer product — an idea that the
rest of us thought outrageous, until Linda pointed out that the kids already knew
the idea from familiar addition and multiplication tables.

Finally, it was this interest in teaching that led us to recruit Paul Berry, after seeing
his “Pretending to Have (or to Be) a Computer as a Strategy in Teaching” [14]
when it appeared in Harvard Educational Review.

Rigidity of viewpoint
It was a revelation to see that the outer product (adopted from Tensor Analysis)

could appear so simple from a different point of view. However, this was a lesson
that had to be learned again and again. A few examples:

¢ We became so wedded to the power of operators that we made complex and
awkward attempts [8] to use them to achieve the effects of f+g and f*g as used
in calculus texts. One such proposal [9] was made by me and Arthur Whitney
at an APL conference — probably in Heidelberg.

¢ On the return flight from the 1988 APL conference in Australia, Gene McDon-
nell and I worked out what came to be called fork and hook [10] — realising that
the forms f+g and f *g were not used in APL, and could be introduced without
conflict.

* But again it took some time to adopt the more general, and more accessible,
notion of a train, and to suppress discussion of forks. It is more accessible be-
cause this sense of train occurs in English dictionaries: “An orderly succession
of related events or thoughts; a sequence”.

¢ Similar rigidity appeared in our use of the terms vector, matrix, and higher-di-
mensional array instead of the accurate and familiar list, table, and report [11].
The last provides a completely general term, which may be qualified by rank-
1, rank-2, etc., and even by rank-0 for a scalar.

78

VECTOR Vol.23 N°4

¢ The notion of the dual of a function [12] (or system) is clearly important, because
it is invoked in many areas of mathematics. It was not until I realised that the
dual of a function f was more properly expressed as “the dual of f with respect
to a second function g” that I saw the possibility of using a conjunction &. in
the present formulation: f&.gis (g inverse) of f of g. This has found wide
application, and the conjunction is called under — from analogies such as “sur-
gery under anaesthetic”. The general idea is that many (if not most) procedures
(not only in mathematics) must be performed after some preparation g and
finally the effects of g must be undone.

IBM Scientific Center

As manager of IBM'’s Scientific Centers, Joe Mount invited us to open a centre de-
voted to APL. We chose Philadelphia, and moved the entire group, remaining for
about seven years.

These were very fruitful years, beginning with the organisation of the first APL
conference in Binghamton, NY in mid-1969 (dubbed “The March on Armonk" by
Garth Foster of Syracuse University, because of the perceived neglect of APL by
IBM headquarters). This conference attracted a number of new people, including
Donald McIntyre — who had been “sent” by IBM because of Pomona’s Model 40
and his expert knowledge of it through studying the APL description of the 360
computers. In spite of a busy schedule, Donald spent a short time with the APL
group the same summer.

Teaching III

My daughter Janet attended Swarthmore High School, and recommended Rudy
Amann (head of the math department) as an excellent teacher. I therefore ap-
proached him with a proposal that we put an APL terminal in his school as a tool
for teaching mathematics, suggesting that he first spend the summer with the APL
group to assess the matter.

Rudy responded that he could spend only two weeks, which he did. I gave him
an office with a terminal (and the calculus text in APL [13] that I had written after
our earlier experiment with high school teachers), and invited him to come to me
or anyone in the group with questions. Since he never stirred from his office, I
despaired, but at the end of the two weeks he announced that he wished to go
ahead with the project.

Rudy was pleased with the results, and told me of canvassing those of his students
who went on to college, finding that they were pleased with the preparation he
had given them. One thing he had done was to use some of the final two “review”

79

VECTOR Vol.23 N°4

weeks to show them the translation from things like +/ to the sigma notation they
would encounter in college.

Rudy continued through a second year, but the inevitable occurred —he was pro-
moted to principal, and had been unable to interest any other teacher in the math
department in continuing.

About this time we hired Paul Berry. Paul had degrees in psychology (including
a PhD), adding to the rather wide diversity in the early APL crew:

¢ Chemistry: Adin Falkoff

Math and Physics: me

English: Gene McDonnell, Graham Driscoll

e Computer Science: Larry Breed, Roger Moore, Phil Abrams

Mechanical Engineering: Richard Lathwell
¢ Secretary: Colleen Conroy (learned APL and promoted to Programmer)

Other: Ziad Ghandour who, on a trip to his native Lebanon, contributed the
Arabic in one of the documents, saying that APL should have originated in
Mecca.

LI.P. Sharp Associates

LP. Sharp Associates of Toronto was a pioneer user of APL, establishing it as the
base of a time-sharing service widely used in Canada, U.S., and Europe. This came
aboutbecause Larry Breed had proposed that we hire Roger Moore as a consultant
to aid in his implementation of APL. Roger was his classmate at Stanford, and a
senior member of I.P. Sharp — he was impressed enough by APL to propose that
his firm adopt it.

Having effectively lost control of APL to the Palo Alto Scientific Center (under
Horace Flatt), Ileft IBM and joined Sharp. It was exhilarating to work for a company
seriously devoted to APL. Moreover, the seven years to my next retirement (at 67)
saw many enhancements to the APL system, largely under the direction of my son
Eric.

His group was largely made up of young men who had come to Canada from U.S.
to escape service in Vietnam. Their beards and otherwise scruffy appearance led
a visiting businessman to say “This place is a zoo.” Rather than resent the implied
insult, the group proudly adopted the name, and were known thereafter as “The

”

Z00”.

80

VECTOR Vol.23 N°4

My work that proved most important to the later development of] was the public-
ation of my “A Dictionary of APL” [15]. In particular, it proposed a parsing scheme
that depended on the “first four elements only” of an execution stack.

Parsing was controlled by a brief four-column table of cases — the first row that
agreed with the first four elements of the execution stack determined what action
was to be taken.

Roger Hui later told me that during a six-month period off work he had had the
leisure to study this paper carefully, and it was this study [16] that led to our col-
laboration on J after my retirement from Sharp.

Second retirement
In my “A Personal View of APL” [17] I said:

... the initial motive for developing APL was to provide a tool for writing
and teaching. Although APL has been exploited mostly in commercial
programming, I continue to believe that its most important use remains
to be exploited: as a simple, precise, executable notation for the teaching
of a wide range of subjects.

When I retired from paid employment, I turned my attention back to this matter,
and soon concluded that the essential tool required was a dialect of APL that:

¢ is available as “shareware”, and is inexpensive enough to be acquired by stu-
dents as well as by schools

¢ Can be printed on standard printers
* Runs on a wide variety of computers
¢ Provides the simplicity and generality of the latest thinking in APL

The result has been J, first reported in the APLI0 Proceedings [18].

In Incunabulum [19], an appendix to his An Implementation of] [20], Roger Hui de-
scribes the inception of work on J as follows:

One summer weekend in 1989, Arthur Whitney visited Ken Iverson at
Kiln farm and produced - on one page and in one afternoon — an inter-
preter fragment on the AT&T 3B1 computer. I studied this interpreter for
about a week for its organisation and programming style; and on Sunday,
August 27, 1989, at about four o’clock in the afternoon, wrote the first line
of code that became the implementation described in this book.

Roger’s acknowledgement in this book was the most extravagant I have ever re-
ceived: Ex ungue leonem.

81

VECTOR Vol.23 N°4

Details of the development of] can be seen in every release by clicking on the Help
menu, and then on Release Highlights. For example, from the J 4.01 Release:

¢ Use =: for global definitions in scripts. Run - Window and Run - File use
load and definitions made with =. are local to 1oad and disappear when it
finishes.

* The] file suffix has changed from . j? to .ij? (. js to .1 js) to avoid javascript
conflicts.

® Use system\extras\migrate\ext.ijs if you have lots of files.

* system directory contains the other distributed directories (main\stdlib.js
isnow system\main\stdlib.ijs).

Chris Burke and my son Eric soon became interested in J, and, among many other
things, designed and implemented a user interface (GUI) to the Windows operating
system. The aspect of their work that I most appreciate is the Labs and Lab Author-
ing system — which is, unfortunately, not yet widely used.

Teaching IV

Since] is now free, and uses only ASCII characters, the requirements set forth in
my “A Personal View of APL” have been fully met. Moreover, a few have used it
seriously at college level (notably, Clifford A. Reiter of Lafayette College [23]), but
interest in such work spreads slowly.

But my attempts at interesting schools at lower levels have had no result - if it is
not in the approved curriculum, it doesn’t exist. However, have gained important
teaching experience by using J in a workshop called “Exploring Math”, presented
to classes of retired folk drawn from a wide variety of non-mathematical back-
grounds, including teachers at all levels, lawyers, medical doctors, and psychiatrists.

This workshop suffered from the fact that few had easy access to a computer, a
situation that has now changed radically for the better. More importantly, it suffered
from the fact that I drastically over-estimated the speed at which they could over-
come their fear of mathematics and assimilate ideas foreign to their experience.
As a result, the class soon dropped to three, but it reached the point where the
work was largely directed by their interests and resulting questions — which we
explored at length using J.

For this workshop, I wrote Math for the Layman [21], basing it on the idea of math-
ematics as alanguage, as expressed in Lancelot Hogben’s still-popular Mathematics
for the Millions [22]:

82

VECTOR Vol.23 N°4

The view which we shall explore is that mathematics is the language of
size, shape and order and that is an essential part of the equipment of an
intelligent citizen to understand this language. If the rules of Mathematics
are the rules of grammar, there is no stupidity involved when we fail to
see that a mathematical truth is obvious. The rules of ordinary grammar
are not obvious. They have to be learned. They are not eternal truths.
They are conveniences without whose aid truths about the sorts of things
in the world cannot be communicated from one person to another.

References
[1] Fractals, Visualization, and], Cliff Reiter, 3rd edn, 2007, ISBN 978-1-4303-1980-1,
Lulu.com http://www.lulu.com/content/635966

[2] Calculus, HW. March & H.C. Wolff, McGraw-Hill, 1917

[3]1 Howard Aiken: Portrait of a Computer Pioneer, 1. Bernard Cohen, MIT Press, 2000, ISBN
0262531798

[4] A Programming Language, Kenneth E. Iverson, Wiley, 1962
[5] Automatic Data Processing, Fred Brooks & Kenneth E. Iverson, Wiley, 1963

[6] A Source Book in APL, http://www.jsoft-
ware.com/jwiki/Doc/A_Source_Book_in_APL#origins_of_APL

[7] “A Formal Description of SYSTEM/360”, A.D. Falkoff, K.E. Iverson & E.H. Sussenguth,
IBM Systems Journal, 3, N°3, 1964 http://www.research.ibm.com/journ-
al/sj/032/falkoff.pdf

[8] Remembering Ken Iverson, Roger Hui, 2004, http://keiapl.org/rhui/remember.htm#fork0

[9] “Practical uses of a model of APL”, Kenneth E. Iverson & Arthur T. Whitney, ACM
SIGAPL Quote-Quad, 13, N°1, September 1982, ISSN 0163-6006, ht-
tp://portal.acm.org/citation.cfm?xml:id=390006.802236

[10] “Phrasal forms”, Eugene E. McDonnell & Kenneth E. Iverson, in Conference Proceedings
on APL as a Tool of Thought, 1989, ISBN 0-89791-327-2, http://portal.acm.org/cita-
tion.cfm?xml:id=75172

[11] Nouns, in The | Dictionary, http://www.jsoftware.com/help/dictionary/dicta.htm
[12] Ken Iverson Quotations and Anecdotes, Roger Hui, http://keiapl.org/anec/#under0

[13] Elementary Functions: An algorithmic treatment, Kenneth E. Iverson, 1966, Science
Research Associates, http://www.jsoftware.com/jwiki/Doc/Elementary_Func-
tions_An_Algorithmic_Treatment#Preface

[14] “Pretending to Have (or to Be) a Computer as a Strategy in Teaching”, Paul Berry,
in Harvard Educational Review, 34, 1964, pp.383-401

83

http://www.lulu.com/content/635966
http://www.jsoftware.com/jwiki/Doc/A_Source_Book_in_APL#origins_of_APL
http://www.jsoftware.com/jwiki/Doc/A_Source_Book_in_APL#origins_of_APL
http://www.research.ibm.com/journal/sj/032/falkoff.pdf
http://www.research.ibm.com/journal/sj/032/falkoff.pdf
http://keiapl.org/rhui/remember.htm#fork0
http://portal.acm.org/citation.cfm?xml:id=390006.802236
http://portal.acm.org/citation.cfm?xml:id=390006.802236
http://portal.acm.org/citation.cfm?xml:id=75172
http://portal.acm.org/citation.cfm?xml:id=75172
http://www.jsoftware.com/help/dictionary/dicta.htm
http://keiapl.org/anec/#under0
http://www.jsoftware.com/jwiki/Doc/Elementary_Functions_An_Algorithmic_Treatment#Preface
http://www.jsoftware.com/jwiki/Doc/Elementary_Functions_An_Algorithmic_Treatment#Preface

VECTOR Vol.23 N°4

[15] “A Dictionary of APL”, Kenneth E. Iverson, in ACM SIGAPL Quote-Quad, 18, N°1,
September 1987, ISSN 0163-6006, http://portal.acm.org/cita-
tion.cfm?xml:id=36983.36984

[16] Roger Hui, op. cit., keiapl.org http://keiapl.org/rhui/remember.htm#parser

[17] “A personal view of APL”, Kenneth E. Iverson, IBM Systems Journal, 30, N°4, 1991
http://www.research.ibm.com/journal/sj/304/ibmsj3004O.pdf

[18] “APL\?”, Roger K.W. Hui, Kenneth E. Iverson, Eugene E. McDonnell & Arthur T.
Whitney, in Conference Proceedings on APL 90: for the future, 1990, pp.192-200, ISBN
0-89791-371-X, http://portal.acm.org/citation.cfm?doxml:id=97808.97845

[19] Incunabulum, Roger Hui, 1992, http://www.jsoftware.com/jwiki/Essays/Incunabulum

[20] An Implementation of |, Roger Hui, 1992, http://www.jsoftware.com/jwiki/Doc/An_Im-
plementation_of_]

[21] Math for the Layman, Kenneth E. Iverson, http://www.jsoft-
ware.com/books/pdf/mftl.zip

[22] Mathematics for the Million, Lancelot Hogben, W.W. Norton, 1993

[23] Reiter, op. cit.

84

http://portal.acm.org/citation.cfm?xml:id=36983.36984
http://portal.acm.org/citation.cfm?xml:id=36983.36984
http://keiapl.org/rhui/remember.htm#parser
http://www.research.ibm.com/journal/sj/304/ibmsj3004O.pdf
http://portal.acm.org/citation.cfm?doxml:id=97808.97845
http://www.jsoftware.com/jwiki/Essays/Incunabulum
http://www.jsoftware.com/jwiki/Doc/An_Implementation_of_J
http://www.jsoftware.com/jwiki/Doc/An_Implementation_of_J
http://www.jsoftware.com/books/pdf/mftl.zip
http://www.jsoftware.com/books/pdf/mftl.zip

VVVVVV

LEARN

VECTOR Vol.23 N°4

VECTOR Vol.23 N°4

SALT II

Dan Baronet, Dyalog Ltd
danb@dyalog.com

Introduction

SALT stands for Simple APL Library Toolkit, a code-management tool for APL. It
first appeared in V11 as a prototype. Since then it has undergone many changes
and is now fully supported by Dyalog. It allows you to store code in flat Unicode
text files, often called scripts, outside the workspace. There are many ways to keep
code out of the workspace but text files have advantages over traditional APL
ways. they let you:

¢ Exchange, send or archive the scripts without using the interpreter
¢ Compare scripts easily

¢ Divide and work on different sections of code in parallel

¢ Use an external code-management systems

In environments where the ability to manage code externally is important this is
a considerable advantage over storing code in workspaces.

Basics

Besides storing and retrieving, SALT allows you to list and view folders of scripts.
It can save multiple versions and manage them locally. It can compare them. And
it comes with its own set of utilities.

If you share code it is important to be able to manage it, one way or another. You
want to be able to:

¢ Store multiple versions and retrieve any of them
* Compare them
* Do housekeeping

Dyalog offers all this with SALT and more. You don’t have to use SALT’s ability
to store multiple versions but it might well be all you need. If a third-party version-
control system is used, SALT’s versioning should not be used as it would probably
interfere rather than help.

SALT can store functions and sourced namespaces [1] onto file. Non-sourced
namespaces can be stored but they need to be converted into sourced form first

87

VECTOR Vol.23 N°4

[2]. At present, there are restrictions and root variables, for example, cannot be
stored.

All the SALT code resides in OSE and is enabled by default in V12.

Simple examples

1. Function Foo is defined and we want to keep a scripted copy of it. To do so
we enter

[SE.SALT.Save 'Foo \projectZ\fns\Foo'

and file \projectZ\fns\Foo.dyalog will now contain a copy of the function
in text form.

2. Sourced namespace Ut i s contains functions and variables used everywhere.
They constitute a set of utilities that must remain together. We want to store
the namespace in file U1 .dyalog:

OSE.SALT.Save 'Utils \projectZ\utils\U1'

Note that in this case we made the filename differ from the namespace’s name.

3. Sourced namespace GUIutils is another set of utilities relying on the above
Utils namespace. To save it and start using version numbers we add the
version switch:

OSE.SALT.Save 'GUIutils \projectZ\utils\U2 -version'

The next time we want to get those two namespaces (and their contents) all we
need to do is

OSE.SALT.Load '\projectZ\utils\Ux'

There may be more sets of utilities starting with the letter U. If we don’t want them
all we must load the ones we want one by one. If there are dependencies we can
tell SALT by using the SALT tag av:require. For example, if the above GUI
namespace requires the Ut i1s namespace to be present we should insert the line

Av:require \projectZ\utils\U1

preferably at the top of the source. If we know that Uti1s is always in the same
folder as GUI we can use instead

88

VECTOR Vol.23 N°4

Av:require =\U1

with the = meaning same folder as myself. We then only need to load U2, even if both
files are moved together to a different location.

Automatic update
Because SALT intercepts editor events, it can save changes on file right after editing
an object, optionally prompting you for confirmation.

In other words, every time you edit a salted object, SALT will come up and ask
you if you wish to save the changes back to file, making a new version if necessary.

Making life easier, the settings

Instead of always specifying the path of the objects to save or load you can tell
SALT to look in specific places when a relative path (one that does not start with
\) is given. To do so you use

[OSE.SALT.Settings 'workdir 1locationl;loc2;..;1ocN'

SALT will save objects in 1ocation1 if a relative path is given or look in each location
until the file is found when a load is requested. Each full path must be separated
from the next one by a semi-colon.

If you do not wish SALT to confirm with you when saving the changes every time
you modify an object you should do

[SE.SALT.Settings 'edprompt 0'

This will skip the prompting and the changes will be made to file automatically.

Everyday examples
Let’s have a look at a typical use.
Mike has been gathering functions for years. They're all over the place, in various

workspaces, sometimes in duplicates, sometimes in triplicates. He wants to clean
this up and start using a system to manage his code. SALT gives him two choices:

1. He can store all his functions, each one in a single script file, grouped by topic
in folders of his choice.

2. He can start reorganising each workspace in namespaces and store each
namespace in a separate file.

Whichever he chooses, he can snap his workspace straight into files like this:

89

VECTOR Vol.23 N°4

[OSE.SALT.Snap '\my\APL\folder'

Each function and namespace will be saved in a file with the same name followed
by the .dyalog extension.

If he wants to start keeping track of versions he must add the -version switch as
well. Let’s see both cases:

Method 1: store each function in a separate file
Let’s assume the workspace looks like this:

)FNS
main ublock ucut uopen GUI_close GUI_open

To store each function in separate files in the same folder we simply do
OSE.SALT.Snap '\projectX\scripts\APL'
We can then use a ‘Disk Explorer’ type program to organise files in folders.

If we decide to reorganise the functions and, say, put the GUI functions together,
the utilities (those functions whose names begin with u) together and the rest in
the top folder, we can do

[OSE.SALT.Snap '\projectX\scripts\APL\GUI -stem=GUI'
[SE.SALT.Snap '\projectX\scripts\APL\utils -stem=u'

We now save the remaining functions in \projectX\scripts\APL.
[OSE.SALT.Snap '\projectX\scripts\APL'
SALT keeps track of what has been saved and won't save a new copy again.

Method 2: regroup some functions into namespaces first

Same thing. This time we organise the functions into namespaces first. We must
create the namespaces and move functions into them. We can

a. create the namespaces:
'GUI' 'utils' Ons™ e’

and then use Workspace Explorer to reorganise (move) the functions or

b. do it manually, e.g.

'utils' [ONS 1ist « 'u' ONL 3 4 o [EX list

90

VECTOR Vol.23 N°4

We need to make sure the functions do not appear in two places (hence the OEX).
Then we do all functions and namespaces at once:

[OSE.SALT.Snap '\projectX\scripts\APL'

Note that everything (functions and namespaces) are saved in the same location.
If you wish to separate them you could do

A functions in folder 'base'

[OSE.SALT.Snap '\projectX\scripts\APL\base -class=3 4'
A namespaces in folder 'groups'

[SE.SALT.Snap '\projectX\scripts\APL\groups -class=9'

When an object has been salted, modifications can be stored to file automatically
after making changes via the editor. If you subsequently erase an object or redefine
it the tagged information is lost and no automatic update can occur.

Important note

Only sourced functions and namespaces can be tagged. Non-sourced functions (e.g.
derived functions) and namespaces cannot be tagged and although some of them
can be saved (SALT generates source for them subject to constraints such as no
GUI object in them), they cannot be edited and must be resaved manually or
skipped. If you wish to convert a non-sourced namespace into a sourced one you
should use the SALT utilities [3] provided. Saving it will then allow SALT to pick
up subsequent changes automatically.

Saving new code

Once your code is in SALT your changes will be picked up automatically if you
wish. If you disable SALT or if you decline to save changes when prompted (per-
haps you want to test before filing the changes) you will end up with code that is
not in SALT yet. You can) SAVE the workspace and resume later as all the tagged
information is kept unless you deliberately remove it.

With SALT enabled you can pick up all the new code by using Snap again or you
can use Save for an individual item.

Using your code

We’ve seen how to move code outside the workspace into text files. Now is the
time to use that code. The function to bring the code in is Load. You give it a file-
name and it defines the code in the workspace, ready for use. Let’s go back to
Mike’s code.

91

VECTOR Vol.23 N°4

To bring everything back in we do

[OSE.SALT.Load '\projectX\scripts\x'

If namespaces were saved there they will now also appear as namespaces in the
root of the workspace.

If other needed namespaces were saved elsewhere they have to be brought in,
separately:

[(SE.SALT.Load '\projectX\scripts\APL\GUI\x'
[OSE.SALT.Load '\projectX\scripts\APL\utils\x'

All these objects are tagged by SALT, and editing any of them will get the modific-
ations saved back to file, if you wish. If you do not want the objects to be so tagged
use the switch nolink, e.g.:

[OSE.SALT.Load '\projectX\scripts\x -nolink'
You might typically do that in a production environment.

You might also prefer to keep some functions together, saved in a single file (a
namespace), but to have them in the workspace (in the root by default) and not in
a namespace. You use the disperse switch for that:

[SE.SALT.Load '\projectX\scripts* -disperse'’
You can even choose which objects to disperse:
[OSE.SALT.Load '\projectX\scripts*x -disperse=fni,fn2,opx,varX'

This method has the advantage of being able to define variables. A serious disad-
vantage, though, is that this version of SALT cannot keep track of where the objects
came from: changes are not picked up and filed automatically.

Tackling variables

SALT cannot tag variables and save them individually on file.

There are two ways around this:

1. Initialise the variables in a function and call the function before doing anything

else:
[OSE.SALT.Load 'initfn' ¢ 0OVR 'initfn'
vV initfn
[1] GlobalSetting«'PROD'
v

92

VECTOR Vol.23 N°4

2. Put the variables in a namespace and disperse its contents. If globalVars was
saved thus:

:Namespace globalVars
GlobalSetting«'PROD'
:EndNamespace

then
[JSE.SALT.Load 'globalVars -disperse'’

would define GlobalSetting in the workspace root.

Version control

One of the main reasons for using version control is to be able to go back in time
and retrieve previous versions.

Let’s say you had code working fine at version 3 and you made a series of changes
that have brought you to version 5 and you now realise there is a problem or a
difference in behaviour. If you want to check and run that previous code you can
retrieve it simply by doing

[SE.SALT.Load 'mainCode -version=3'
If you'd rather only see what the difference is you can use Compare:
[OSE.SALT.Compare 'mainCode -version=3 5'

SALT will use its own code to do the comparison but you prefer to use your favour-
ite file-comparison program located, say, [4] in [ProgramFiles]\X then tell SALT
[5]:

[(SE.SALT.Compare'mainCode -v=3 5 -use=[ProgramFiles]\X\cm.exe'

SALT’s way of tracking versions is very simple and each file can have its own
version number. SALT has no locking mechanism and does not allow you to ‘lock
out’ files but it will warn you if it detects that a file has been revised when you try
to save back a modified object. If you see such a warning and you don’t know why,
then you should investigate.

For serious version control in a large system you should use a more robust system
like SubVersion or CVS. In that case you should not be using SALT’s versions at
all.

93

VECTOR Vol.23 N°4

If you decide to use versions you should keep in mind that SALT creates a new
file each time a modification is made to an object. After a while you might end up
with a large number of files, many of which you are uninterested in keeping. For
example, let’s say you started working on namespace NmspX at version 15. After
having modified it sixty times you are now at version 75. If you are happy with
the result and confident that versions 16 to 74 are useless you can use Explorer to
get rid of the files NmspX.16.dyalog to NmspX.74.dyalog. There will be a gap
between 15 and 75 but that might not matter.

If you would like to collapse those sixty versions into one, bringing the good version
75 to a version just above the current good version 15 (i.e. 16) you can get SALT
to do it like this:

[OSE.SALT.RemoveVersions 'mainCode -version=>15 -collapse'’

SALT will confirm with you the deletion of (here) 60 versions, delete 59 of them
and rename the last one to version 16. The collapse switch is used to keep the last
version. Without it the last 60 versions would be deleted (which may also be what
you want to do).

Epilogue
You might not need SALT or any version control system at all. If all you have is a

small system that runs well in 1 or 2 workspaces and needs little or no maintenance
then SALT would not be very useful to you.

If you already have your own management system that takes care of all the main-
tenance problems and you don't need to use text files then, again, SALT would
not improve your life much.

But if you don't have such a system, and your code requires a fair amount of
maintenance, then SALT can help. It is already there and it is free.

As you have seen, SALT supports many ways to organise your code. It is good at
saving and retrieving code, keeping track of versions and managing them. Coupled
with a professional external version-control system it could solve many problems.

SALT comes with V12 but will be available online before 2009.

Check it out.

Notes

1. Sourced namespaces are those for which the OSRC function returns a canonical
representation similar to what ONR returns for functions.

94

VECTOR Vol.23 N°4

2. There are SALT utilities to do this.

3. You will find those utilitiesin 1ib/NStoScript. The main function is Convert.
It takes a namespace as argument and turns it into a sourced namespace.

4. [ProgramFiles] is where Windows keeps all programs. SALT will replace it
by whatever value is appropriate.

5. SALT uses a consistent syntax for each function: a single string argument that
describes the command arguments and the switches that start by a dash. Each
switch can be shortened to a non-conflicting length. Here there are no other
switches starting with v so -v is sufficient to denote -version.

95

VECTOR Vol.23 N°4

Functional calculation

1: Numerical ingredients

Neville Holmes, University of Tasmania
Neville.Holmes@utas.edu.au

Introducion

This article is the second in a series (numbered origin-zero Ed.) expounding the
joys of functional calculation. Functional calculation does with operations applied
to functions and numbers what numerical calculation does with functions applied
to numbers. The functional notation used as the vehicle in this series is provided
by a freely available calculation tool called J. This article reviews the numerical
calculation capabilities of] which are the basis for its functional calculation capab-
ilities, and which must be understood before the functional calculation capabilities
proper can be understood. The capabilities described in this article will be illustrated
and explained in detail in the next article.

Calculation

Calculation is generally reckoned to be the systematic manipulation of numeric
values. Our schools, and our pocket calculators, are burdened with the idea that
there are four kinds of arithmetic, called addition, subtraction, multiplication and
division. The teaching of these traditional four arithmetic functions has not been
blessed with success recently, and one of the reasons why it has not might be be-
cause there are in fact many arithmetic functions — some simpler than the traditional
four, some more complex.

There are also many kinds of numbers, but this is another richness ignored by
schools and pocket calculators.

This article reviews both the arithmetic functions provided by the functional cal-
culating language J (as introduced in the first article in this series), and the numbers
which are recognised by J. Using these functions, and their numbers, is not in itself
functional calculation, but is part of the basis for it.

Numbers

Calculation changes numbers by systematic alteration or by combination. The ap-
parent result of a calculation depends on up to three aspects of the numbers in-
volved:

¢ what any starting numbers were keyed in as,

96

VECTOR Vol.23 N°4

¢ what any numbers were stored as within the calculator, and
* what the result was displayed as.

Of course, it also depends on the functions applied to the numbers.

Number representation

Ideally, a calculator will store all the numbers it has to deal with as well as is pos-
sible. Just how they are stored depends on the underlying electronics, which typ-
ically used a binary representation that is unsuitable for direct use by humans.
Anyone using a calculator should be as unaffected as possible by the method used
to store numbers, and any decisions about the kind of representation to be used
should be determined by the value to be stored, not by the user.

Although | interpreters shield their users from details of how numbers are stored,
they nevertheless have to take numbers in from the keyboard and put them out
to the display screen. The only practical way of doing this is using the unfortunate
standard ASCII character set, unfortunate because of its poverty, lacking as it does
even the x and + symbols! The following table sums up the provisions of the]
notation for expressing individual numbers.

0 1 .. 8 9|decimal digits |7 364 529081
fraction point |{0.7 3.64 52908.1 must be digit to left of point

_ negative sign |_7 _364 _52908.1 underbar, not hyphen

e scale point 7e0 _3.6ekl 5290e81 scaling basis is ten

r ratio point 1r7 3.6rk4 5290r_81

j cartesian point(1j7 3.6j4% 5e90j_81 real j imaginary

ad degree point |1ad7 3.6ad4 5e90ad_81|magnitude ad/ar angle
ar radian point [1ar7 3.6ark 5e90ar_81 |aradian is about 57°

p pi point 1p2 () 2r3p_1 (2/3m)

X euler point 1x2 (¢%) 2r3x_1 (2/3¢)

b base point 2b1111 (15) 16bff (255)

_ infinity _ (1r0) __ (_1roO) these two notations
_ indeterminacy | _. (_-_) are of special numbers

Furthermore, if an integer has an x suffix then it is stored exactly and exact arith-

metic is used in conjunction with it if possible.

97

VECTOR Vol.23 N°4

All the most commonly needed numbers can be succinctly expressed, as shown
by the examples of the table, but several points need to be explained and emphas-
ised.

® The elements in the list are applied in the sequence given. For example, the
scale point is effective before the ratio point. So keying 1e2r3in gives 33.3333,
while 1r2e3 gives 0.0005. Also, keying 1.2e3 in by itself will give a display
of 1200 but keying 1e2.3 in will display an error message ill formed number
because the e sees 2. 3 as its suffixing component but that component must be
an integer.

* The elements not separated in the table by a horizontal rule are strict alternat-
ives. So keying 1j1pt inyields 1j3. 14159, but keying 1x1p1 in yields ill formed
number.

¢ The symbol for the negative sign is not the same as the symbol for subtraction.
Negativeness is a property, subtraction is a function, and always the twain
should be distinct. An overbar is often used for the negative sign, but the ASCII
character set lacks an overbar so the underbar must be used.

* The elements following the negative sign in the table are letters of the alphabet.
They are, when immediately preceded and followed by numbers of lower
form, arithmetic signs and not function symbols. They are, as is the fraction
point, infixes, and in this the negative sign is an exception, being a prefix.

® Apart from the above, the letter x is used as a suffix to integers to signal that
exact arithmetic is to be used on them if possible. This capability is very useful
but was added late to the notation and is not yet fully and cleanly worked out.

¢ The last two lines of the table show some special uses of the underscore symbol,
and the symbols given there are individual values, not elements.

¢ Only the elementary symbols given in the table may be used to compose an
individual number. Parentheses and blanks are not allowed within individual
numbers, though they may be used to separate individual numbers.

Any number may be keyed in in a variety of ways, but a number will, unless the
user specifies a particular format, always be shown on the screen in the same way,
however it may have been keyed in or calculated.

Some examples

For the most part, simple numbers like 123 4.5 6e7 and 8.9e10 will give unsur-
prising results, at least for people with the experience that tells them that the e

98

VECTOR Vol.23 N°4

signifies that the number to its left is to be scaled by the power of ten specified by
the number to its right. Indeed, these particular numbers will display exactly as
they are keyed in.

Some simple numbers, like 1e2 and 3et, will display in a simpler form, in this case
as 100 and 30000 — not as 30, 000! Should you key 30,000 in, you will get 30 0
back. Keying 1,234 in to yield 1 234 seems less strange, but even that is not what
it might seem to be, because keying 1+1,234 gives 2 235. The explanation for this
is that the comma is a function symbol in J, here standing for a function usually
called catenate, so 1,234 specifies that the 1 is to be catenated with the 234 to give
the two numbers 1 and 234. So 2+30,000 will give 32 2, but notice (this will be
explained later) that 30,000+2 will give 30 2.

Numeric functions

The numeric functions known as scalar functions are applied to one or two numbers
and produce a single number as a result. The primitive functions are those functions
which have a simple symbol for a name. Some of the scalar functions provided by
] as primitive functions are given in the following table.

+| conjugate add +. GCD |+:| double nor

-| negate subtract |- not -t halve

x| signum times |x. LCM |*:| square nand

% | reciprocal divide %: |square root root

| |magnitude residue

" exp power |*.| log. logarithm

= equal |= (local is) |= (global is)

< less than |<.| floor lesser |[<:|decrement notmore

> more than|>. | ceiling greater |>:| increment notless
~: not equal

| factorial choices

? roll o.|pitimes circular |p:| prime

[| (same) (left)

J| (same) (right) |" (do) ":| (format) (format)

The functions are given by name, a name which is meant to suggest what the
function does. If there is any doubt about this, experiment with the interpreter can

99

VECTOR Vol.23 N°4

be used to dispel the doubt. Again, some explanation is necessary to clarify the
table.

¢ The dot(.)and colon (:) are used as character set extenders, and, when suffixed
to a plain function symbol, effectively provide a new function symbol, though
the symbols that differ only in their suffix are usually related in some way.

¢ A primitive function symbol may stand for two different functions, which is
why there are two columns of names after the function symbol in the table.
The name on the left is for a monadic function, that is, for a function which
only has one argument, a right argument. The name on the right is for a dyadic
function, that is, for a function which has two arguments, one on its left and
one on its right.

* Some functions are restricted in the results they can produce. In particular,
dyadic= < > ~: <: and >: can only produce a 0 or a 1, though these results
are ordinary numbers in the sense that there is no restriction on their use in
further calculations.

* Some functions are restricted in the arguments they will take. For example,
monadic ? and p: take in only non-negative integers.

® The symbols =. and =: do not stand for functions at all. They are called copulas
and are used for naming results. The name to the left of the copula is given to
the value on the right, whatever that might happen to be. These symbols are
sometimes called gefs or becomes, and the global version should normally be
used.

¢ Otherwise, the functions whose names are given in parentheses are not scalar
functions, but are useful in connection with them. The functions that the
brackets [and] stand for are very useful, though their result is always one of
their arguments. The format function converts its right argument into a character
string, optionally under control of its left argument, while the do function can
convert the character string back to a number, though often not the same
number.

¢ The circular functions have left arguments restricted to the values shown in
the table below, and, where relevant, their right arguments are taken as radians.
Actually, these functions include hyperbolic and pythagorean functions, as
shown in the following table. Note that, in the following table, the left argument
constant is separated from its function symbol by a blank, which is necessary
to avoid the error message caused by an attempt to interpret the o. as part of
a constant, the round character in the o. symbol being a lower case o. This is

100

VECTOR Vol.23 N°4

not the case with the other function symbols introduced so far, except p:, be-
cause they use nonalphabetic characters.

0 o. sqrt(l—xz)
1 o. | sine |2 o. | cosine |3 o. | tangent |4 o. sqrt(1+x2)
5 0. | sinh |6 o. cosh 7 o. tanh 8 o. sqrt(_l-xZ)

1 o.|arcsine|_2 o.|arccosine|_3 o. |arctangent|_k4 o. sqrt(_1+x2)

5 o.|arcsinh|_6 o.| arccosh |_7 o.| arctanh |_8 o. sqrt(_l-xZ)

The hierarchy of functions

Clearly,] provides many primitive functions, as well as the ability to give a name
to any, by the expression sqrt=:%: for instance. Dealing with these cleanly leads
to a break with tradition that provokes a strong rejection from arithmetic tradition-
alists.

The primitive functions are traditionally considered to be arranged in a hierarchy
of strength and direction, and the higher primitive functions are represented by
notational peculiarities which imply a hierarchy. For J, the richness of primitive
functions and the uniformity of expression forced by the ASCII character set and
the linearity of its use, make a hierarchy practically impossible. Thus, 5+% | x stands
for five plus the reciprocal of the magnitude of x, while a+7xb stands for a plus the
product of seven and b.

The absence of a hierarchy of functions leads to expressions having meanings
which, though completely reasonable, are upsettingly untraditional. For example,
ax7+b stands for a times the sum of seven and b, while a-7-b stands for a minus the
subtraction of b from seven. If the traditional meanings are required for the arguments
in that sequence, then parentheses must be used in], as (a-7)-b and (a*7)+b. The
gain is simplicity, the price is a break with tradition.

Summary

This article is like a list of ingredients that can be used for numerical calculation
using the notation provided by J. At their simplest, these ingredients can be put
together in the manner learned in elementary school, because the simplest of the
expressions learned in elementary school, expressions like 1+2 and 7.2-5.75, can
be keyed in to the interpreter to give the result expected in elementary school.

However, the need to expand the number of elementary functions available, coupled
to the restrictions of the ASCII character set, mean that some calculations and their
results will not be quite like the results expected from elementary school. Never-

101

VECTOR Vol.23 N°4

theless the changes are consistent and systematic, and their adoption allows ele-
mentary calculation to be extended in elementary ways, ways which allow simple
use of an interpreter to evaluate expressions.

The next article in this series will explain and illustrate how numerical calculation
is done with the J interpreter, as a preliminary to further treatment of functional
calculation.

Footnote: This essay was written a decade ago to introduce] to classes of honours
students as explained in the introductory essay “Tacit] and I”. No attempt has
been made to upgrade the text to incorporate subsequent changes to J, but I believe
that the original design of] was exceptionally robust and will not have causes errors
to crop up in the description above.

102

VECTOR Vol.23 N°4

The ruler’s edge revisited

In Session

Ray Polivka
polivkar@acm.org

“What a great inquisitive programming problem to give to a APL programming
class!” was the thought that entered my mind when I read Stephen Taylor’s article
“The ruler’s edge” that appeared on pages 118-120 in the January 2008 issue of
Vector. I have recently taken a fancy to the term inquisitive programming as opposed
to software development programming. The term was coined by Brian Hayes in his
excellent paper entitled “Calculemus” in the American Scientist Vol.96 N°5,
September-October 2008. One could also say that inquisitive programming is another
term for personal problem solving. So be it. But this is the initial path that students
should take when either just learning to program or learning a new programming
language. Stephen’s problem is a fine example to offer along this path.

Since I am a person who learns by doing, I decided to create my own solution. I
wrote it in conventional defined-function form in APL2, since I am not very agile
with the dynamic-function notation. Furthermore, I will be able to use it with any
of the APL vendor’s APL systems. Here are my two slightly different solutions.

[0] Z«<D RULERA L;I;N;T;IO;PW
[1] aL: Length of the ruler
[2] ~aD: Distance between ticks
[3] AZ: a ruler of length L with ticks every D places
[4] ~n modelled after S Taylor's problem in Vector
[5] OPW«L+0I0<«1
[6] Z«Lp((D-1),1)/'"A"
[7] I«(Z="'A")/1L
[8] N«¥s,['']I
[9] T<«((tpN),L)p" '
[10] T<«[;I]«N
[11] z«T,[1]2
vV 2008-09-18 19.03.04 (GMT-4)

Or with a different ending;:

103

VECTOR Vol.23 N°4

[0] Z«D RULERB L;I;N;T;IO;PW

[9] E«Lp((D-1)p0),1
[10] T<EN[2]IN
[11] Z«T,[1]Z
vV 2008-09-18 19.03.19 (GMT-4)

Actually, I modified Stephen’s problem slightly. Rather than having the number
straddle the tick mark, the numbers appear vertically about the tick mark. This
allows one to display a number every position in the ruler if one so chose. Thus,

3 RULERA 17
1 1
3 6 9 2 5

A A A A

There are several ways in which this problem might be used in an APL program-
ming class. In a more advanced class one could just state the problem and see what
comes back. However, when the given solution illustrates some perhaps unusual
approach or less-used aspects of APL, then presenting the solution directly may
be better for an in-class discussion. Or one could present a solution with just
comment symbols following all or selected lines of the function. The student now
is asked to fill in a set of comments. This way the student can determine what the
function does at specific lines while determining how the function achieves its
purpose. Then too, the student can use the available debugging tools to ferret out
the behaviour of the function. For the Dyalog APL programmers, another exercise
might be to translate the defined function into its dynamic function form too.

As an additional exercise, the student could be asked to modify the function so
that the ruler prints vertically using | and +. Thus

3 RULERC 7

This certainly can be a fun learning exercise, Stephen, as well as a morning honing
exercise. Now where is my cup of tea?

104

VECTOR Vol.23 N°4

WELCOME

Founded in 1980 to provide specialist Programming and Consulting
skills to the LT. and general computer using industry. From the outset

Optima & high quality ice to industry and
itz baze by Each year we
extend our skills base and aim to offer our customers the latest that
current technology can offer...more. |
THE ARRAY LANGUAGE
EVENT OF THE YEAR
.APL .NETWORKING 12 - 15 0CT 2008

Optima Systems is very active in the design,
Over a very wide set of problem domains i ion and mai of
(ice, science, engineering, networks. We have many years of experience
design, robotics, data visualization, actuarial with all types of hardware and software
science, traditional DP, etc.) APL is an products uzed in modern office and
extremely powerful, expressive and concise networking environments. ... more. APL USER CONFERENCE

programming language, typically =t in an
interactive environment._more:

TEL: 01293 562 700
FAX: 01293 562 699
MaP: CLICK HERE

T SUSSEX, RH10 1TT

105

VECTOR Vol.23 N°4

If you think J is complex try j
J-ottings 50

Norman Thomson

Abstract

This article is about the facilities available in] for handling
complex numbers, something which is greatly helped by a few
simple diagrams.

1. The two complex number constructors

Although complex numbers are readily input using numeric constants, e.g.
12.5j_7.9, in meaningful applications the components are more likely to be ex-
pressions from which complex numbers are constructed.] has two tools for con-
structing complex numbers, namely j. and r. These correspond to their two
possible representations, namely as 2-lists of Cartesian (that is x-y) coordinates,
and as 2-lists of polar coordinates (that is {length, angle}). The way in which j.
and r. work is illustrated by

(2 j.1),(2 r.1) NB. the two complex no. constructors
2j1 1.0806j1.68294

The second of these results shows that 2 times the coordinates of the end point of
a radius of the unit circle at an angle of 1 radian are approximately (1.08, 1.68). For
primary input in the form of 2-lists use insert:

(j./72 1),(r./2 1)
231 1.0806j1.68294

Informally, j. compresses x-y coordinates into complex numbers, and r. converts
polar representation to complex number form. Monadic j. is dyadic j. with a
default left argument of 0, while monadic r. is dyadic r. with a default left argu-
ment of 1. It is not a coincidence that these defaults are the identity elements of
addition and multiplication. r. k where k is real returns the Cartesian coordinates
of the point on the unit circle whose polar coordinates are (1,k), for example

r.1 NB. coords of radius at 1 radian
0.540302j0.841471

r.k is represented by ¢ in maths and thus by #j.kin], an operation also available
through the circle verb as _12 o.k. The fact that r. and ~j. are synonyms links
the two complex number constructors. More generally the circle functions with

106

VECTOR Vol.23 N°4

arguments in the ranges {9...12} and {_9..._12} are directly relevant to complex
number construction, and they too have synonyms which will emerge as the dis-
cussion continues. The equivalence of r. and *j. will come to the fore later in
section 6 when discussing complex powers.

2. The complex number deconstructors

The construction process is reversed (that is complex numbers are converted back
to 2-lists) by +. for Cartesian coordinates and *. for polar coordinates:

+.2j1 1.0806j1.682941 NB. +. reverses j./
2 1
1.0806 1.68294
*x.2j1 1.0806j1.682941 NB. *. reverses r./
2.23607 0.463648
2 1

The circle verb provides the opportunity to obtain the components of +. and *.
one by one:

9 11 o0.2j1 NB. 9 o. is x. , 11 o. is y
21

10 12 o0.2j1 NB. 10 o. is length, 12 o. is angle
2.23607 0.463648

The following is a ‘rule of thumb’ table which summarises the meanings of the
circle verbs and incorporates the above ideas :

no n o
_9 identity
_10 conjugate

construct deconstruct
_11 j. +. 9, 11
_12 r.(*j.) *., 10, 12

3. Monadic operations with complex numbers

] provides alternative routes for several common complex numbers operations. In
the diagrams below, a complex number z is represented by the arrowed line, and
other points represent the results of the fundamental monadic arithmetic operations
of addition, subtraction, multiplication and division, separately and in combination
with j. as well as those of the circle functions which are synonyms.

107

VECTOR Vol.23 N°4

S

Z lengthis|z=10o0.z

9 o_zl

1loz
jz

+.z

The symbol + is used here to denote either of the verbs +@-@j . or -@+@j. since they
are equivalent. The points z tz -z +z represent a rectangle formed by reflections
in the x and y axes with vertices visited anti-clockwise, while the points j.z +j.z
-j.z +j.z represent a rectangle formed by reflections in the diagonal axes with
vertices visited clockwise. In addition to the three circle function synonyms shown
for circle functions, _12 o. is a synonym for r. as noted earlier.

The symmetries of rectangles can be represented by groups of verbs of order 4 in
which I is the identity verb :

108

VECTOR Vol.23 N°4

Rotations (I - 3. -j.} j. -j. areanticlockwise/clockwise rotations of /4
Reflections {I - + %} + # are reflections in main axes,
{I - +@j. +@-j.} +@j. +@-j. arereflections in diagonal axes

From these as starting points the full order-8 group table for the symmetries of the
square can easily be obtained.

4. Basic dyadic operations

The basic operations + - * % behave as expected, and rules such as the following
are obeyed:

|5j2%3j4 NB. modulus of a product is
26.9258

(15§2)*(13j4) NB. .. the product of moduli
26.9258

12 o. 5j2x%3ju4 NB. the angle of a product
1.3078

+/12 o. 5j2 3j4 NB. .. is the sum of the angles
1.3078

Also

+/5§2%3j4
7526

is equivalent numerically to

-2 3 = 7
5 4 26

and
3 -4 5 = 7
4 3 2 26

showing that multiplication of complex numbers is equivalent to the inner product
+/ .* for matrices of the form

a -b
b a

109

VECTOR Vol.23 N°4

When multiplication takes the angle outside the range [-7;, 7] *. and 12 o. auto-
matically make a wraparound to bring the angle back into range, for example

wrap=.3 :0

t=.(0.2)ly.

if.t>0.1 do.t=.t-0.2 end.
)

+/12 0._5j2 _3j4 NB. sum of angles exceeds pi
4.97538
12 o0._5j2*_3j4
_1.3078
wrap 4.97538 NB. 4.975.. + 1.307.. = 2pi
_1.3078

Complex numbers raised to real powers are the subject of de Moivre’s theorem.
This depends on the fundamental relation

e®=cos 0 +isin O
which in] expresses the fact that the verbs ~@j. and j./@(2 18&o.) are equivalent.
De Moivre’s theorem says that

(reie)n=rn in9=rn{

e cos nB +1i sin nB}

s0 to raise complex z to the power n its modulus should be raised to the power n
and its angle multiplied by n. To see this in action raise 2j1 to the powers 1, 2 and
8 in first Cartesian and then polar form:

+.2j17 2 8
2 1 NB. modulus = sqrt(5)
3 4 NB. modulus = 5
_527 _336 NB. modulus = 625 = 574
x,2j17 2 8
2.23607 0.463648 NB. (length,angle) for 2j1
5 0.927295 NB. (length,angle) for 2j1 ~2
625 _2.574 NB. (length,angle) for 2j1 8

The angle in the last line above can be confirmed by

wrap 8x0.463648
_2.574

It may be tempting to use the circle function _3 o. arctan to obtain angles, but this
only works in simple cases because the range of arctan is [-1t/2, 7t/2]. The range for
complex numbers is double this because arctan makes no distinction at all between
(-x)/y and x/(-y), whereas the difference between second and fourth quadrants is
significant in dealing with complex numbers.

110

VECTOR Vol.23 N°4

5. The enhanced arithmetic operations

The second diagram illustrates the actions of the] verbs which are obtained from
the basic arithmetic operations by adding “colon’ to make a di-gram:

*:z (squared length, double angle)
+:z (double length)

—:z (1/2 length)

%:z (sq. rootlength, 1/2 angle)

Only one of these four forms —namely %: — extends to the dyadic case, for example
4%:z means (4th root of length, V4 angle).

In the case of di-grams formed by adding full-stop 1-.z is the same as with real
numbers and %. and % are exactly equivalent. If either . or +. are applied to real
scalar numbers the results are 2-lists made by joining zeros. This can be used as a
method of stitching 0Os as in

+.3 4
30
L0
With real numbers dyadic *. and +. are LCM and GCD respectively, but these
should not be used with complex arguments in the expectation of obtaining the
separate GCDs and LCMs of their components. For example

(5j6 +. 10j3),(5j6 *. 10j3)
0j1 75j_32
6. Complex powers and logarithms

To understand complex powers, start with the synonym relationship between r.
and *j. (or _12 o.), which at first sight should lead to j. and ~.r. also being
synonyms. This is indeed true in some cases:

111

VECTOR Vol.23 N°4

(3.231),(~.r.2j1)
_1j2 _1j2

but not always:

(j.12j10),(*~.r.12j10)
_10j12 _10j_0.566371

This is because, unlike in real arithmetic, the logarithm of a complex number is
not a single-valued function. In Cartesian coordinates, x and y values stretch out
indefinitely in both directions, but in polar coordinates angles wrap around in
cycles of 2m in the manner defined by the verb wrap above. In mathematical nota-
tion,

In(z) = In(re™®) = In(r) +i(6 + 2kmn)

where k is an integer. As a matter of arbitrary (but natural!) choice,] returns the
unique angle which lies in the range [-mt, 7t]. The same wrapping process applies
when real numbers are raised to complex powers :

* 27445 k.6
16 3.11916 NB. unwrapped
16 _3.09471 NB. wrapped

More specifically, if k is real and z=x+iy then k” is illustrated by

kZ

x,2A2j1 3j2
4 0.693147 NB. k to power x, y times In(k)
8 1.38629 NB. with angle doubled

The cases ‘complex raised to real’ (de Moivre’s theorem) and ‘real raised to complex’
have now been covered, leaving only the case ‘complex raised to complex” to be
dealt with. An interesting starting point is the number i' which at first sight should
be about as complex as it gets:

112

VECTOR Vol.23 N°4

0j170j1 NB. i to the power i
0.20788

Not so! To explain this result, consider first In(i)=ixIn(i). Using the formula
In (re™%) = In(r) +i(6 + 2kn)

and choosing k=0 (as] does) to make the logarithm single-valued, gives
Ini=0+im/2

which, when multipled by i, gives -7t/2.

it must therefore be e ™ 2, which has the value 0.20788 to 5 decimal places. This se-
quence of calculations is confirmed by

(7.0j1), (*.0j1%0j1), (*-0.0.5)
0j1.5708 _1.5708 0.20788

Here is the i’ calculation spelt out in a single line:

Tn=.(*.e{. , }.)ex, NB. log length, angle
(7"exj./@1n)0j1 NB. i to the power i
0.20788

The verb 1n fulfils the familiar ‘reduce multiplication to addition” property of
logarithms of real numbers, that is log(ab) = log a + log b, for example:

Tn 1j2%3ju NB. 1n ab
2.41416 2.03k44Y
+/1n 132 3j4 NB. lna+ Inb

2.41416 2.03444

For powers where both w and z are fully complex (that is, have non-zero imaginary
parts) the following sequence of equivalences

wZ= (eln w)z _ (ez)ln w_ ezln w
leads to, for example

2j17133 NB. 2j1 to the power 1j3
_0.5371773j0.145082

AMj3xj./1n 2j1 NB. e to the power In w
_0.5371773j0.145082

It is not easy, perhaps impossible, to visualise the relationship of wz to w and z
diagrammatically, that is the link of _0.5371773j0.145082 with 2j1 and 1j3 is a
numerical rather than a graphical one. The same is true for other functions which

113

VECTOR Vol.23 N°4

can accept complex arguments, for examples trig ratios and their inverses. Also
the logarithms concerned must be to the base e. e is one of the five most fundament-
al numbers in the universe, namely 0, 1, e, 7t and i, which are connected by the
equation 1+e™=0. It is reasonable to suppose that advanced intelligent communic-
ators from outer space (if such there be) would certainly try to convey this set of
numbers to us as an immediate lingua franca. This equation can be expressed in]
in the following three equivalent ways:

(1+%0.j.1), (1+_12 o0.0.1), (1+r.o.1)
000

The equation 1+emi=0 can be rewritten In(-1)=mi, which, since In(-r)=In(r)+In(-1),
means that the natural logarithms of negative real numbers are obtained by ap-
pending jm to the logarithm of the corresponding positive number. For example:

A.5.2 5.2 NB. (In r), (In -r)
1.64866 1.64866j3.14159

7. Extension to quaternions

Given a matrix of the form

a -b
b a

where a and b are real numbers, e.g.
M=.2 2$2 _3 3 2
and an inner product of M with a 2-list such as

M4/ ox 2 _1
7 4

the same information could be obtained by multiplying two complex scalars:

233%2j_1
7jk

Similarly finding the determinant of M is equivalent to a couple of operations on a
complex scalar:

114

VECTOR Vol.23 N°4

(det=.-/ .*)M NB. determinant of M
13

x:10 0.2j3 NB. sum of squares of 2 and 3
13

Thus complex numbers can be used as a means of reducing the rank level of some
operations. An ‘obvious’ question is then: if complex data can reduce rank-2 oper-
ations to rank 1, can it correspondingly reduce rank-3 operations to rank 2?

This speculation is not unique to J, in fact the question was answered in the mid-
19th century by Sir William Hamilton, who discovered that this progression is
multiplicative rather than additive; that is, that the next step up is not from 2 to 3
but from 2 to 4.

First define a verb which transfoms a 2-list of real scalars into a matrix of the above
form:

r2ltom=.,._1 1&x@]|. NB. matrix from real 2-list
r2ltom 2 3

2 _3

3 2

Next observe that is possible to have a matrix with complex coefficients which
nevertheless has a real determinant, for example:

C=. 2 2$4§3 6j_2 _6j2 4j3
det C
39
The matrix € has the form
PjQ (-R)j-S
RjS PjQ
which is the form

a -b
b a

extended to complex elements. Straightforward arithmetic shows that the determ-
inant of a matrix of the above form has a real part (P>-Q?+R?-5?) and an imaginary
part 2(PQ+RS) and so, if PQ = -RS, as is the case with ¢, the determinant is real,
otherwise not. In the ‘all real” case, Q =S =0 and det(M) = P>-R2.

If the form is now changed to

115

VECTOR Vol.23 N°4

PjiQ (-R)jiS

RjS Pji-Q
that is,

a -b

b a

where the dashes denote complex conjugates, then the determinant is arithmetically
guaranteed to be real for all values of P, Q, R and S. If this is now taken as a
standard form then four fundamental matrices obtainable by setting each of P, Q,
R and S to 1 and the other three to zero correspond to unit points on the axes of a
four-dimensional geometrical space as denoted by (1,0), (0,1), (i,0) and (0,i). A verb
analogous to r21tom which constructs the above matrix from a 2-list of complex
scalars is

c2ltom=.,.+@|.@(*&1 _1) NB. matrix from complex 2-1list
c21tom 2j3 4j5

2j3 _4j5

435 2j_3

Define variables to correspond to (1,0), (0,1), (i,0) and (0,i):

1'T i j k'=.c21tom &.> 1 0 ;0 1;0j1 030 0j1

B ettt tomm———— +

1 0l0 _1]0j1 0] o0 0j1l

[0 111 o] 0 0j_1]0j1 O

B et TR R tomm———— +

and self-multiply each of these matrices:

times=.+/ .x &.> NB. matrix multiply
times~ i;3;jsk NB. squares of i, j and k
+-———- +-———- +-———- +

|_t ol_t ol_1 ol
| 0 _1]1 0 _1] 0 _t]|

times~*:2 i3jsk NB. 4th powers of i, j and k
tomm—tmm—t——— 4
|1 0]1 0|1 O]
|0 1]0 1|0 1]

tom—t——————+

which shows that i = j2 =k*=-landi*= j4 =k* =1 where I is the identity matrix.
Now multiply i, j and k by each other:

116

VECTOR Vol.23 N°4

(isjsk)times(jsksi) NB. result is k;i;j
tomm———— tomm e +
| 0 o0j1l0 _1]0j1 0l
[0j1 oIt o] 0 0j_1l

tommm——— tommmpm - +

(jsksi)times(isjsk) NB. result is (-k);(-i);(-3)
tomm tomm e +
| 0 0j_1] 0 1]0j_1 O]
10j_1 0ol_1 ol 0 0j1]
tomm tomm e +

det&> isjsk NB. determinants equal 1
111

If i, j and k are raised to third powers a further three matrices not previously en-
countered arise:

J'ci cj ck'=.(isjsk)times(isjsk)times isjsk
S oo +
| 0 1]0j_1 0] 0 0j_1]|
I_1t 0ol 00j1l0j_1 o

B s Fmmm +

but now, however much the set of eight matrices I, -I, i, j, k, cj, ck, ci
are intermultiplied, the result is always another member of the set, for example:

(isjsk)times cjscksci NB. result is cksciscj
T —— T +
| 00j_1] 0 1]0j_t O]
10j_1 0l_1 0] 0 0j1]
T —— T +

The set of eight matrices possesses the properties of a group, more specifically the
quaternion group. Although there are eight elements in the group these are all related
to each other, and the whole set of seven excluding the identity matrix can be
generated from any two. For example if i and j are chosen as generators, k is i j,
ci and cj are defined as powers of i and j, and ck is c¢j multiplied by ci. The
seventh matrix is the common value of i? and j2.

If, analogous to j,] were to contain two further independent number constructors
k and m such that 2 j3k4m5 were a scalar, and the same rules i2=j2=k?=-] and i*=
j* = k* =T applied where I = 1, i = 0j1k0m0, j = 0j0kim0, k = 0j0kOm1 then these
scalars would be recognised mathematically as hypercomplex numbers. The four
basic hypercomplex numbers for which the real elements are (1 0 00), (01 00), (0
010)and (000 1), would follow the same multiplication structure as the set of
eight matrices, and form a group isomorphic with the quaternion group.

117

VECTOR Vol.23 N°4

A scalar such as 0j3ktm5 whose first element is zero corresponds to a pure quaternion
and so pure quaternions exactly match points in three-dimensional space, or
quantities such as E, B, H which define electro-magnetic fields as three-dimensional
entities. Such equivalences are of course only useful if the operations employed
on them are guaranteed to produce further pure quaternions.

118

VVVVVV

PROFIT

VECTOR Vol.23 N°4

VECTOR Vol.23 N°4

Partitions of numbers
An efficient algorithm in J

R.E. Boss
r.e.boss@planet.nl

Abstract

A partition is a way of writing an integer as a sum of positive
integers. [1] [2] So 5=3+1+1 is a partition of 5. The subject of this
paper is an efficient algorithm in J [3] to generate all partitions
of a given number.

Introduction

This analysis was inspired by a remark of Roger Hui [4] “This computation of
partitions in 3 lines is the neatest I have seen over the years (although it is not the
most efficient).”

Since you can add any number of zeros to a partition, the zeros are left out. Fur-
thermore, in this paper a partition is given in non-ascending order, to identify the
uniqueness of the partition. A partition can usually be given as a sequence of the
(smaller) numbers with any separator, such as 3,1,1.

If you start generating partitions, you get for the numbers 1, 2 and 3 the partitions
1;11and2;111,21 and 3 respectively.

Let P(n) be the set of all partitions of n and P(n,k) be the partitions of n starting
with k or less [5]. Obviously P(n,n) = P(n). In formula this looks like

Pm)={x=(xp x5, ...) | n2xp2x;2x,2... 20, n=2x;}
and
Pnk)={x=(xg x1,..) L k2xp2x12x,2...20;,n=2x;}

We can group the partitions of n according to their starting number, which can be
1 to n. If a partition of n starts with number, say k, the rest is a partition of n-k
starting with number k or less. This can be put in formula (A) as follows.

(A) P(n)={(k xp x1,...) | 0<k<n x [Pn-kk)} where x=(xy x;,...)
Notice that for k > ¥2n we have k > n-k, so P(n-k,k) = P(n-k).

We develop a] program, based on this analysis.

121

VECTOR Vol.23 N°4

Using smaller partitions

In generating P(n), we suppose for all O0<k<m<n that P(m,k) is known already. Ap-
plying equation (A), that is, for all O<k<n we generate P(n,k) from P(n-k k) by pre-
fixing k, and since P(n,n) = P(n), we are done.

Assume the partitions of 1 to be boxed according to the starting number; see Fig.
1. So we start (at the right hand side) with <<i. 1 0 being the partition of 0, fol-
lowed by the partition of 1 etc.

Now suppose we have a list of boxes, each box containing the (boxed) partitions,
as in Fig. 1, and we want to generate the partitions of the next number, n=5. This
is done in a few steps.

Figure 1.

D dmmm B o — 4
| 4=-====-- +| 4= +H-m—t | -4 | 44|
[14 0 4 A ie 4 o af el
|4--=---- + 4= Ao —t | -4 | 44|
12 11 1121 |12 || (.
112 20 |l#=---=#fs==s] | |
| +---m--- IEY Lo
[13 1 | [+----- +| | (.
| +--mmm-- +] ! Lo
|14 I'l | | (.
R +] ! Lo
P P P o4

First we generate the list of starting numbers of the partitions of 5, here 1...5, which
is produced by >:@i .@# applied to the given list of boxes. This will be the left ar-
gument of our verb to be developed, the right argument being the list of boxes.
See Fig. 2, where both arguments are depicted.

122

VECTOR Vol.23 N°4

Figure 2.

Fmmm P o o — 4
|4------- +| 4= Aot | -4 | 44|

12345 |11 140 411t 0 a0l afiierinl
|4-=-===-- + 4= A=t | -4 | 44|
12 ¢t 11121 |12 || (.
1122 0 [[#-=--=t]4=-=t] |
R SIERT Lo
113 1 [1+----- +| | (.
| #-mmmmme +] ! Lo
|14 I'l | | (.
| 4-mmmmmm +] ! Lo
o +-————— +-———- +-——+-——+

Second, with these left and right arguments, the numbers left are matched to the
boxes right and within that box, this number is used to select the first partitions.
So from the first, only the first box is selected, from the second the first 2 etc. Of
course, no more sub boxes can be selected than available. So the selections are done
by (<.#){.] and are visualised in Fig. 3.

Figure 3.
tomm—————— to————— +-———- +-——t——+
|4-====-- +| 4= At | -4 | 44|
(A A O RN AR A AR R R RN
| 4=====-- +]| 4= +d-m—t |+ | 44|
| 121 1112 |l (.
! R Lo I B
tomm—————— to————— +-———- +-——t——+

Then the numbers of the left argument are appended with the content of the selected
partitions in the boxesby >:@i.@# ([,.&.> (<.#){.])&.>]producing theboxes
as in Fig. 4.

123

VECTOR Vol.23 N°4

Figure 4.
B it Fmmm P o -4
| 4= +| 4o +| 4= LR
[Tt 1 1 0 111201 41113 ¢ tllI% 1]]I5]]
| 4= = + 4 + 4= A=t | 44|
| 1221 11132 |l | |
! | +---mm-- +]rmmmmmt] I
B it Fmmm P o -4

But the items in the sub boxes should be taken together since they start with the
same number, which is done by >:@i.e@# ;@ ([,.&.> (<.#){.]1)&.>]resulting
in the output from Fig. 5.

Figure 5.
o —— +
1111 1]
Hmmmmmm o +
12111 |
12 21 |
Hmmmmmm o +
1311 |
1320 |
Hmmmmmm o +
It 1 |
B +
15 |
o +

Now this outcome is exactly the set of partitions of 5 in the required form, so must
be boxed and then can be prefixed to the boxes from which we started. Then we
are in the same situation, but now with one number further, see Fig. 6.

124

VECTOR

Vol.23 N°4

Figure 6.

B it B P tm——— -
| 4= +| 4o +| 4= + 44|44
1111 1 1)1t 10 1)1 2 1] 1111
| 4= = + 4 + 4= +H-——4 |-+
12 ¢ 14 112 ¢ 1121 [I12 |l
12210 [ll220 ||+-=---- +]| 4=+
[#-=-mmmmmm e R +|13 I'l |
[13 11 113 1 [1+----- +| |
1320 | [+====---- +| | |
[#-=-mmmmmm +| 4 I'l | |
14 1 [1+------- +| | |

R +| | | |
|15 I'l | | |

[+----mmmmm +| | | |
tommm - o +-————— +-———- +-—=

So, the whole process is given by

,~ <@(>:@i.e# ;e([,.&8.> (<.#){.1)&.> 1)

[++]

(.
[
I
(.
[
I
(.
[
I
+

-—+

Starting with the initial empty partition of 0 and repeating this the required number

of times, this finally leads to
(,~ <@(>:@i.e# ;e([,.&.> (<.#){.1)&.>]
If we distinguish the different processes we get
nrsO0=: >:@j.@# NB.
apsl0=: [,.&.> (<.#){.] NB.

new0=: ,~ <@(nrs0 ;@aps10 &.>]) NB.
partO=: 3 : ';;{. newO”:y <<i.1 0' NB.

An alternative with single boxing

)) My <<i 1t 0

numbers to be generated
select partns, append nmbrs
new partitions to be added
the complete script

We change the foregoing construction by representing all partitions of number n
in a matrix with n columns, where shorter partitions are padded with zeros, like
in Fig. 7, the analogue of Fig. 6, with the order of the boxes and the order in the
boxes reversed. At the left hand side the partitions of 0, than of 1, etc. until finally

the partitions of 5 are given.

125

VECTOR

Vol.23 N°4

Figure 7.

+t—t———t————— +o————— o ———— +
|1112 013 0 0|4 0 0 0|5 0 0 0 O]
Il 11 112 10l3100|4 100 0]
I |11 1|2 20013200 0]
I | 121103110 0]
I | 111112210 0]
I | | 2111 0]
I | | 11111 1]
B e tomm————— tommm—————— +

Now the processes are adapted as follows.

nrsi=:
apsli=:
newl=:
parti=:

Not all smaller partitions are needed

(-i.)e#
.. (>:

{."1)#]

, [: <@; nrst apslt &.>]
3 : '> {: newl *:y <i.1 0

NB.
NB.
NB.
NB.

numbers to be generated
select partns, append nmbrs
new partitions to be added
the complete script

Let’s have a closer look at this example of the partition of 5. If you look at Figures
0 and 2, itis obvious that not all smaller partitions are selected. From the partitions
of 4 only the first one is used and from those of 3 only the first 2. So why not con-
sider only those partitions which are needed for the final result?

From equation (A) we conclude that for generating all partitions of 1, we need
only the partitions P(k) and P(n-kk) with 0 <k < %n to combine with n-k and k re-
spectively. As an example, we take n=6, for P(6) we need the partitions P(5,1),

P(4,2), P(3,3) = P(3), P(2), P(1).

First we determine max(k,n-k) for k=1...n-1, which is done by (1(-<.>:@])i.)e«<:
and append these numbers to the original number, see Fig. 8.

Figure 8.

(1,(1(-<.>:@])i.)e<:) 6

6123

21

Now these numbers, taken from right to left, are used to generate the partitions
P(6), P(5,1), P(4,2), P(3,3) = P(3), P(2), P(1), also in the order from right to left. This

is done as

follows:

126

VECTOR Vol.23 N°4

2321 P(0)

2 3 2 P(1) P(0)

2 3 P(2) P(1) P(0)

2 P(3) P(2) P(1) P(0)

1 P(4%,2) P(3) P(2) P(1) P(0)

P(5,1) P(4,2) P(3) P(2) P(1) P(0)
(6) P(5,1) P(4,2) P(3) P(2) P(1) P(0)

[

6
6
6
6
6
6
P

It is obvious that P(5,1) and P(4,2) are quite a bit less numerous than P(5) and P(4).

Since we want to apply scan instead of power, we have to box these numbers first
and then append the empty partition (of 0): see Fig. 9.

Figure 9.

(<<i 1 0),~<"0(1,(1(-<.>:@])i.)@<:) 6
ottt —d—d—t——4
l6l1112]1312]1]++]
[R R

[1++]

Scanning these boxes from right to left generates P(0), P(1), P(2), P(3) = P(3,3),
P(4,2), P(5,1), P(6) subsequently. To explain this process, suppose we have reached
P(3), as depicted in the last box of Fig. 10, together with the remaining parameters
6,1,2.

Figure 10.

ot pmmmmmm— o +
161112 +-----+---t-++]
[O A Y R A R AR N
I 11 11210120 [II
I 11 1130 0] [y
L] Jmmmmmtm s |
ot pmmmmmm— o +

The process applies to the last two boxes, being

127

VECTOR Vol.23 N°4

e +
|4----- do——d—t+|
-4 111 111 111111
12] and |12 1 0|2 O] |||
+-+ 13 0 0] I 11l
| 4-=-=-- P |
e +

Opening the boxes first and selecting the items from the right as indicated by the
left: ({.)&.> we get

tm——— +-——4
111 1)1 1]
12 1 0]2 0]
13 0 0} |
+-———- +-——+

From the left argument, the (smaller) integers are generated (1 2) and from each
of the boxes in the right argument those partitions are selected by

(>:@i.e[(((>:{."1) # 1)&.>) {.)&.>

giving
R +-—=+
11 1)1 1]
| 2 0]
R +-—=+

The numbers from the left side now are prepended with those on the right side
and the appropriate unboxing and boxing is done. This gives

1111 1]
12 11 0]
12 2 0 0]

This output is prepended to the right hand side. In] this becomes
(1,~ >:@i.e[<@;@:(([,.(>:{."1)#1)&.>) {.)&.>

The corresponding output is in Fig. 11.

128

VECTOR

Vol.23 N°4

Figure 11.

|4------- tm————— do——d—t+|

11 1 1 111 1 1)1 1]1]]]

1211 0]2 1 0|2 0]
|12 2 00[30 0]

|4=-====-- +-———- |

If this is applied to all the elements of the initial noun — see Fig. 9 — then we get the

script

(1,~ >:@i.@[<@;@:(([,.(>:{."1)#])&.>) {.)&.>/ ..

(<<i.1 0),~<"0(],(](-<.>:@])i.)@<:) 6

and the output as in Fig. 12. The first box contains the desired partitions of 6.

Figure 12.

b e e
R o to————— +o———- |
11111111111 1)1 11 1]11 1)1 1]1]]]
|12 1111 0] |12 110]210]|20] |Il
|12 2110 0] |2 2 00|30 0] |11
|12 2200 0} | | | |11
[131 110 0] | | | |11
[132100 0} | | | (RN
[133000 0} | | | |11
Il 11 00 0 | | | |11
Il 2 0 0 0 0 | | | (RN
|15 1000 0} | | | |11
|16 00 00 0 | | | |11
R o ———— m—————— m——— |

If we split this script into comprehensible verbs we get

129

VECTOR Vol.23 N°4

NB. initial sequence

init=: (<<i.1 0) ,~ <"0@(] , (] (- <. >:@]) i.)@<:)

NB. select partns, prepend numbers

ppsl=: >:@i.@[<@;@:(([,. (>: {."1) # 1)&.>) {.

exit=: >@{.@> NB. desired partition
part2=: [: exit [: (],~ pps1)&.>/ init NB. complete script

Performance

Performance is measured for n =5 10 15 20 25 30 35 40 45 50. If we measure only
the relative performances of part0 and part1 with respect to the third verb part2,
we get the following figures for execution time respectively:

5 10 15 20 25 30 35 40 45 50
1.49 2.19 2.86 3.28 3.08 2.52 2.18 2.17 1.94% 1.97
1.32 1.84 1.80 2.28 2.48 2.98 3.11 3.56 3.24 3.40

with averages 2.4 and 2.6 respectively.

For execution space the relative performances of part0 and part1 compared to
part2 are respectively:

5 10 15 20 25 30 35 40 45 50
1.32 1.31 1.35 1.37 1.43 1.52 1.65 1.65 1.74% 1.75
1.10 1.17 1.36 1.57 1.75 1.88 2.06 1.97 2.13 2.14

with averages 1.5 and 1.7 respectively.

The factor of increase of execution time and space of part2 with each step of 5 extra,
is shown in the following chart.

Performance increase factor
5,0
4,5
10 Tl
35 / T~
3,0 / /::—\ S
25 = \“\aﬂ"pp
f‘
2,0 \1"'--__.._
1,5 /
1,0 "' -
o Ji | —Time Space |
00 11 |
10/5 15/10 20/15 25/20 30/25 35/30 40/35 45/40 50/45

As can be seen, the partition of each 5 more elements costs about 3 times more.

130

VECTOR Vol.23 N°4

Notes

1.

“Partition” Eric W Weisstein, in MathWorld, a Wolfram Web Resource, ht-
tp://mathworld.wolfram.com/Partition.html

. The Art of Computer Programming , Donald Knuth, Vol. 4, Fascicle 3, p.37. Knuth

uses non-negative integers for the addends, although “... the zero terms are
usually suppressed.”

. http://www.jsoftware.com
. http://www.jsoftware.com/pipermail/general/2005-June/023191.html

. So all the numbers of any element of P(1,k) are less than or equal to k.

131

http://mathworld.wolfram.com/Partition.html
http://mathworld.wolfram.com/Partition.html
http://www.jsoftware.com
http://www.jsoftware.com/pipermail/general/2005-June/023191.html

VECTOR Vol.23 N°4

About polynomials
Part 1

Gianluigi Quario
giangiquario@yahoo.it

Abstract

This is the first part of an article dedicated to polynomials: some
thoughts about polynomials, their evaluation, their functional
treatment; how APL helps us to understand the strict ties between
polynomial evaluation and division; and a new insight into
polynomial division. The second part of the article addresses the
problem of finding zeros.

A univariate polynomial p(Y) of degree N is defined to be a formal expression in
the CMN (common mathematical notation) of the form:

p(Y) = o[NIxYN + [N-1]xYND 4 4 c[1]xY! + ¢[0]

Here the expression is in descending order, Y is a formal symbol, and every power
of Y is just a placeholder for a coefficient c[k].

Suppose that in the APL environment 0I0«0, ¢ is a numeric vector, c[0] is the
constant term in the polynomial and c[k] is the coefficient of Yk,

One can associate with every polynomial a polynomial function, whose values are
obtained everywhere by replacing symbol Y by a numerical value.

The reason that mathematicians distinguish between polynomials and polynomial
functions is subtle and not worth investigating here. We shall later consider the
polynomials as vectors representing polynomial functions and ponder about their
functional status.

Nonetheless we’ll consider the problem of their evaluation.

Some hints were given by J's dictionary and by suggestions from Phil Last,
Stephen Mansour and Stephen Taylor. The APL expressions are written in Dyalog.

Handy definitions

A polynomial of degree 0 is a constant polynomial.

When c[0]=0 and N=0 the polynomial is called a zero polynomial or null polynomial.

132

VECTOR Vol.23 N°4

An integer polynomial is a polynomial where all elements of ¢ are integer.

A polynomial, all of whose ¢ elements are zeroes with exception of one element,
is called a power polynomial or monomial polynomial.

For example: Y2 or -5xY° or 3xY

A polynomial is said to be primitive if the greatest common divisor of its coefficients
is 1.

For any field F (Integers, Rationals, Reals, Complexes, etc.) the polynomials with
coefficients in F form a ring which is denoted by F{}.

A polynomial p(Y) in F{} is called irreducible over F if it is non-constant and cannot
be represented as the product of two or more non-constant polynomials from F{}.

This definition depends on the field F.

For example: p(Y) < Y*+1 is irreducible over Real field R but not over Complex
field C.

APL evaluation of a polynomial function
A polynomial function can be evaluated in several ways.

Let poly be a numerical vector of coefficients of polynomial p(Y); let point be a
numerical scalar or array.

Then the value of polynomial p(Y) at point is

Ruffini-Horner (a) poly[0] + point x poly[1] + point x
poly[2] + .. point x poly[N]

Sum of power monomials (b) (pointe.xippoly)+.xpoly

Base value (c) internal Ruf-Horn method valid also when poly
is a null polynomial
(pointo.+,0)1¢poly

Ruffini-Horner (d) s>{a+pointxw}/poly
Ruffini-Horner (e) s+e(pointex)/poly
Ruffini-Horner (f) spoint{a+aaxw}/poly

133

VECTOR Vol.23 N°4

Chain of forks (g) PolyEval«(poly[0]e+)e
(xo+o(po]y[1]o+)o
w (xo+e(poly[2]e+)e
(xo+o(po]y[3]o+)o
w (poly[t]ox)=)=)=)
PolyEval point

Form (a) shows the superiority of Iverson notation to the Common Mathematical
Notation (CMN):
poly[0] + point x (poly[1] + point x (poly[2] + ... point x poly[N]) ...))

The Iverson notation is neat, does not use any parentheses, and shows a strict
symmetry between addition and multiplication. If we could couple the primitive
reduce operator with an array of functions + x we could write:

(+ x)/poly[0],point,poly[1],point,poly[2], .. ,point,poly[N]
The Jlanguage does not provide for arrays of functions, but includes the wonderful
idea of gerunds.
The polynomial can be evaluated in] by means of conjunction tie in this way:
+'%x/poly[0],point,poly[1],point,poly[2], .. ,point,poly[N]
Form (f) stresses the prominence and simplicity of Horner’s algorithm and shows

a greater semantic clarity than the form (c), which internally uses — but also hides
— this algorithm.

Form (g) is an example of another way to define the evaluation function of poly.

It is reported here because it is a direct assignment function, to which the inverse
operator ¥~1 can be applied (it could be useful for finding a root of poly).

Functional background of polynomials

The set of all polynomials of degree <N, over a field (or a ring) F, is denoted F{NJ}.
With the usual algebraic operations, F{N} is a vector space, because it is closed
under addition (the sum of any two polynomials of degree <N is again a polyno-

mial of degree <N) and scalar multiplication (a scalar times a polynomial of degree
<N is still a polynomial of degree <N).

There is a simple isomorphism between F{N} and the vector space pND,

134

VECTOR Vol.23 N°4

The standard basis for F{N} is the base {1, Y, Yz, YN}.

This basis is also called the monomial basis and comes from the standard basis for
EN+1).

If F is the field of Integers/Rationals/Reals, the APL vector poly (ppoly « — N+1)
of coefficients of any polynomial can represent a unique element of the vector
space F{N} .

Hence we can think of a numerical vector as a generic polynomial: furthermore it
is straightforward to imagine an isomorphism between functional programming
(over polynomials) and traditional data programming (over APL numerical vectors)
... sometimes Functional Programming can be carried out with no need to be mixed up
with functions!

The vector space of all polynomials with coefficients in F forms a commutative
ring denoted F{} and is called the ring of polynomials over F. The symbol Y is
commonly called the variable, and this ring is also called the ring of polynomials
in one variable over F, to distinguish it from more general rings of polynomials in
several variables. This terminology is suggested by the important cases of polyno-
mials with real or complex coefficients, which may be alternatively viewed as real
or complex polynomial functions.

However, in general, Y, and its powers Yk, are treated as formal symbols, not as
elements of the field F. One can think of the ring F{} as arising from F by adding
one new element Y that is external to F and requiring that Y commute with all
elements of F. In order for F{} to form a ring, all powers of Y have to be included
as well, and this leads to the definition of polynomials as linear combinations of
the powers of Y with coefficients in F.

If F is the field of Integers/Rationals/Reals, the set of all APL numerical vectors
(any length) can represent the set of the ring F{}. Note that a null polynomial can
be represented by a zero-length vector or by the vector , 0.

Functional management of polynomials

Sum and product

A ring has two binary operations, addition and multiplication.

In the case of the polynomial ring F{}, let po1y1 and po1y2 be the vectors represent-
ing two polynomials, then these operations are explicitly given by the following
definitions:

135

VECTOR Vol.23 N°4

polySUM <« {deg+«>[/pe,"a w ¢ (degta)+degtw }
polyPROD « {+#(0I0-1p,a)dao.xw,140x0}

where the arguments and results of po1ySUM and po1yPROD are all vectors.
The identity element for addition is the null polynomial.
The identity element for multiplication is the polynomial , 1.
Let us use the following function for polynomial evaluation:
PolyEval « {ow{a+aaxw}/a}

Then the functional highlight is that — for any point point — the following pairs of
expressions are equivalents:

(polyl PolyEval point)+(poly2 PolyEval point)
polySUM PolyEval point

polyl PolyEval poly2 PolyEval point
polyPROD PolyEval point

Note that this definition of the multiplication of two polynomials is assimilable to
the o function-composition operator or — in maths speech — the ‘Discrete Convolu-
tion” of the polynomial functions. In fact the following two are also equivalent:

(polylePolyEval)e(poly2ePolyEval)
polyPRODePolyEval

Note that the product of two primitive polynomials is also primitive.

Over the Complex field, every non-constant polynomial can be unambiguously
factored into linear factors. In the CMN:

p(Y) = poly[N] x (Y-z1) x (Y-z2) x ... x (Y-zN)
or (in APL), p(Y) is given by:

PolyMult « {+#(0I0-1p,a)dac.xw,140xa}
poly[N] x sPolyMult/-(z1,z2 .. zN), ™1

where poly[N] is the leading coefficient of the polynomial and the zs are the zeroes
of p(Y).

Hence, over the Complex field, all irreducible polynomials are of degree 1: this is
the fundamental theorem of algebra.

136

VECTOR Vol.23 N°4

So, over the Complex field, the polynomial represented by vector po1y can also be
represented by poly[N]jointly with vector z1, z2 .. zN.The]language has chosen
to represent any polynomial either with poly or the nested vector:

(poly[N1)(z1,2z2 .. zn)

Division
When the ring F{} has the zero-product property (this is true for Integers, Rationals,

Reals, Complexes), it is possible to define a division between the polynomials of
the ring F{}.

If fand g are polynomials and g is not the null polynomial, then there exist unique
polynomials g and r such that:

fag+r
where the degree of r is smaller than the degree of g.

This division is called division with remainder. The polynomial f is said to be di-
visible by ¢ when remainder r is the null polynomial.

At school we learned Ruffini’s “simple-division’ rule to obtain the quotient polyno-
mial g4 and the remainder polynomial r.

The following function performs this algorithm; it is a transcription of a C-language
procedure.

137

VECTOR Vol.23 N°4

v
[o] Z«u PolyDivi_0 vin;inv;qg;rsk;js0I0
A division of 2 general polynomials

[1] A cfr Numerical Recipes in C :the art of scientific computing
[2] A u v pAnumerator and denominator polynomials

[3] A g r nAquotient and remainder

[4] A void poldiv(float ul[], int n, float v[], int nv, ..

float q[], float r[]
[5] n the coefficients of quotient poly are returned in ..
q[0..n] and the coeff
[6] A of remainder poly are returned in r[0..n]
[7] na the elements r[nv..n] and gln-nv+1..n] are returned as zero
[8] 010<0
[9] n<"1+pu pAdegree of numerator
[10] nv«<1+pv adegree of denominator
[11] reu
[12] g<«(pu)pO
[13] :For k :In ¢ri+n-nv

[14] qlkJ«rlnv+k]I+v[nv]
[15] :For j :In ¢k+inv
[16] r{jl-«qlkIxvlj-k]
[17] :EndFor

[18] :EndFor
[19] r[nv+il+n-nv]<«0
[20] Z«q r

v

For example

(gr) «546 41 PolyDivi_0 1 3 1

q
21100

r
373000

Given a divisor polynomial g, every polynomial in F{} is associated to two polyno-
mials g and r, and

(degree f) > (degree q) + (degree 1)

But we can define a slightly different polynomial division where, given a divisor
polynomial, every polynomial in F{} is associated with a single polynomial in F{}
of the same degree.

For that purpose it is necessary to look at Ruffini’s rule and adapt its algorithm by
means of Horner’s algorithm coupled with the ‘Accumulating reduction” D-oper-
ator

138

VECTOR Vol.23 N°4

acc « {2a0{(ca ao>8pw),w}/14{w,<8pw} 1dw}

Let us start with the simple case where the divisor g is a monomial (1-degree)
polynomial.

Then consider the result s of:
s « (-2g) {o+aaxw} acc f

We obtain a vector s of the same length as f, composed by the catenation or the
remainder polynomial r and the quotient polynomial q.

The first element of s is also the value of polynomial f evaluated at point >g.
For example

1 {a+aoxw} acc 5 4 6 4 1
20 15 11 5 1

The remainder of dividing 5 4 6 % 1 by "1 11is 20 and the quotient is 15 11 5
1.

By means of the simple expression {a+ooxw} and operator acc, it is possible to
implement Ruffini’s ‘simple division’ rule between a polynomial and a monomial:
we have neither iterations nor recursions.

Funny! The polynomial division is achieved through sum and product.

Note that the APL notation emphasises that Ruffini’s rule is just a more general
form of the polynomial evaluation function:

(-2g9) {o+aaxw} / f

In the case where the degree of divisor g is greater than one, the polynomial division
is usually executed by means of the ‘long division” algorithm. Yet it is enough to
extend the “simple division” rule above; now we can perform it for any divisor:

139

VECTOR Vol.23 N°4

PolyDivi<«{
A division of polynomial o by polynomial w
A higher degree synthetic division algorithm
A return: vector (remainder,quotient) polynomial
A purge highest_degree_terms when coefficient is 0
ZeroClean<{(-+/A\¢w=0)w}
num den<ZeroCleana w
Oepnum:num num A NULLpoly + poly or NULLpoly <> NULLpoly
Oepden: 'DENOMINATOR ERROR'[SIGNAL 11
1=pden:num+den
(pnum)<pden:num
acc«{ A accumulating reduction
sa0{(ca ao>8pw),w}/14{w,<8pw} 1dw}
extRuffini«{ A extended Ruffini-Horner cfr {a+aoxw}
((pao)t(2a),w)+aox"1tw}
synt«(-"14den+"1tden)extRuffini acc (pliden),/num
(2synt),>"¢"14synt
}

For example

54 6 4 1 PolyDivi 1 3 1
373211

Into the bargain, polynomial division with a fixed polynomial divisor can be con-
sidered as something more than an operation that returns a quotient and a re-
mainder: it can be seen as a one-to-one correspondence between F{} and F{}.

Given the polynomial f with degree N we obtain a polynomial s with degree N,
thus there is also a one-to-one correspondence between F{N} and F{N}.

Derivative and Integral

Inside any ring F{} or F{N} it is possible to define another correspondence, the de-
rivative: this is a many-to-one correspondence.

The following function returns the derivative s of any polynomial f:
PolyDerivative « {(1<pw)tw x-(JI0-+i1pw}

The degree of s < degree f (except when f is a constant or null polynomial).

For example:

PolyDerivative 5 4 6 4 1
b 12 12 4

We can also have a one-to-many correspondence inside F{} : the integral.

140

VECTOR Vol.23 N°4

Since a single polynomial can have an infinity of integral polynomials, it is not
possible to define a suitable APL function. But we may anchor any number of the
field F and build a function that defines a one-to-one correspondence:

PolyIntegral«{0IO«1 ¢ o,w+ipw}
The degree of s > degree f (except when f is a null polynomial).
For example:

33oPolyIntegral 5 4 6 4 1
3352210.2

Perspective

Polynomial evaluation is the first step to the old problem of root finding. The
second part of this paper will address the task of defining a stable and wide range
function for the extraction of complex roots.

Further reading
1. http://en.wikibooks.org/wiki/Abstract_algebra
2. http://mathworld.wolfram.com/topics/Algebra.html
3. http://www.jsoftware.com/jwiki

4. http://www.dyalog.dk/dfnsdws/n_contents.htm

141

http://en.wikibooks.org/wiki/Abstract_algebra
http://mathworld.wolfram.com/topics/Algebra.html
http://www.jsoftware.com/jwiki
http://www.dyalog.dk/dfnsdws/n_contents.htm

VECTOR Vol.23 N°4

Subscribing to Vector

Your Vector subscription includes membership of the British APL Association,
which is open to anyone interested in APL or related languages. The membership
year runs from 1 May to 30 April.

Name:

Address:

Postcode/Zip and country:

Telephone number:

Email address:

UK private membership £20
Overseas private membership £22
+ airmail supplement outside Europe £4
UK corporate membership £100 __
Overseas corporate membership £110 __
Sustaining membership £500 __
Non-voting UK member (student/OAP/unemployed) £10 __

Payment should be enclosed with your membership form as a sterling cheque
payable to “British APL Association” or by quoting your Visa or Mastercard
number.

I authorise you to debit my Visa/Mastercard account

Number: Expiry date: [

for the membership category indicated above,

e __ annually, at the prevailing rate, until further notice
e __for one year’s subscription only

Signature:
Send this completed form to:

BAA, c/o Nicholas Small, 12 Cambridge Road, Waterbeach, Cambridge CB25 9N]J

142

	Vector
	Table of Contents
	
	Ch-ch-changes

	NEWS
	Quick reference diary
	Meetings
	Future issues of Vector

	Changes at the BAA
	A little bit of history
	So, what happens now?
	In summary

	Extraordinary General Meeting of the BAA
	Regulations of the British APL Association
	1. Name
	2. Objects
	3. Constitution
	4. Members in Good Standing
	5. Appointed Officers
	6. Elected Officers
	7. Management
	8. Annual General Meeting
	9. Extraordinary General Meeting
	10. Finance
	11. Dissolution

	Annual General Meeting of the BAA
	BAA Management Committee Meeting
	Industry news
	APL2000
	Dyalog Ltd
	2008 conference programme
	Hologram

	Kx Systems
	Charles Skelton to take over as CTO
	Kx growth continues with new partner in Australia
	Enhanced multi-core Kdb+ includes DTrace and more speed

	DISCOVER
	Fire from heaven
	Getting started
	Overview and language basics
	Functions and atoms
	Lists

	Primitives and functions
	Casts and enumerations

	The serious stuff – dictionaries and tables
	Dictionaries – a statement of the bleedin’ obvious?
	Tables like you never seen ’em before
	Primary keys and keyed tables

	Working with queries in q-sql
	Loops, files, namespaces and other matters
	Summary
	References

	First experiences with Unicode in Dyalog 12
	Things to test in the interpreter
	Things that may break your application
	Things they tell you about
	Things you find out the hard way

	Mappings that stop working
	Removing workarounds
	Wrap-up

	Parallel Each
	What is performance?
	How does hardware affect performance?
	What affects distributed computing performance?
	What affects interpreter performance?
	Parallel Each
	Syntax

	Sample
	Usage guidelines
	Summary

	Classes as a tool of thought
	Creating our first class
	Let’s play football
	Saving objects
	Re-factoring classes
	Any questions?
	Creating a football league
	Changing the class of an object
	Send in the clones
	Producing a league table
	One more thing…
	In conclusion

	An autobiographical essay
	Preamble
	Schooling
	Teaching I
	First test of notation
	IBM Research Center
	Teaching II
	Rigidity of viewpoint
	IBM Scientific Center
	Teaching III
	I.P. Sharp Associates
	Second retirement
	Teaching IV
	References

	LEARN
	SALT II
	Introduction
	Basics
	Simple examples
	Automatic update
	Making life easier, the settings

	Everyday examples
	Method 1: store each function in a separate file
	Method 2: regroup some functions into namespaces first

	Important note
	Saving new code
	Using your code
	Tackling variables
	Version control
	Epilogue
	Notes

	Functional calculation
	Introducion
	Calculation
	Numbers
	Number representation
	Some examples

	Numeric functions
	The hierarchy of functions

	Summary

	The ruler’s edge revisited
	If you think J is complex try j
	1. The two complex number constructors
	2. The complex number deconstructors
	3. Monadic operations with complex numbers
	4. Basic dyadic operations
	5. The enhanced arithmetic operations
	6. Complex powers and logarithms
	7. Extension to quaternions

	PROFIT
	Partitions of numbers
	Introduction
	Using smaller partitions
	An alternative with single boxing
	Not all smaller partitions are needed
	Performance
	Notes

	About polynomials
	
	Handy definitions
	APL evaluation of a polynomial function
	Functional background of polynomials
	Functional management of polynomials
	Sum and product
	Division
	Derivative and Integral

	Perspective
	Further reading

	Subscribing to Vector
	

