
VECTOR Vol. 24 N°1

 1

Contents

Quick reference diary 2

Glorious summer Stephen Taylor 4

News

Industry news:

APL2000, Dyalog, Kx Systems, MicroAPL 7

Dyalog 2008 at Lo-skolen, Denmark Adrian Smith 19

GSE & APL-Germany Fall Meeting Adrian Smith 27

Discover

Structured Storage and

Monitor Expressions David Liebtag 35

ISO 9000 Certified APL development Chris Hogan 41

Unicode support for APL Morten Kromberg 52

Learn

Rain flips its q Adrian Smith 71

The year 1997 Neville Holmes 82

Spice for beginners Dan Baronet 89

Congratulations not in order? Stephen Taylor 99

Suffer the little children… Norman Thomson 100

Profit

Cauchy curves Bill Jones & Cliff Reiter 109

About polynomials Gianluigi Quario 121

Quick calculation of Kendall’s

Rank Correlation Distribution Gordon Sutcliffe 131

Consultants 137

Subscribing to Vector 144

VECTOR Vol. 24 N°1

 2

Quick reference diary

15-16 Apr Talinn, Estonia Baltic APL Seminar

7-9 May Stuttgart, Germany Spring APL Meeting

11 May Mountain View, CA Bay Area Users’ Group

8-9 Jun Reading, Hants. British APL Association 2009 conference

13-16 Sep Princeton, NJ Dyalog 2009

Dates for future issues

Vector articles are now published online as soon as they are ready. Issues go to

the printers at the end of each quarter – as near as we can manage!

If you have an idea for an article, or would like to place an advertisement in the

printed issue, please write to editor@vector.org.uk.

VECTOR Vol. 24 N°1

 3

VECTOR Vol. 24 N°1

 4

EDITORIAL

Glorious summer

The effects of the collapse of the international financial system this winter are

still rumbling through the economy. With revenues in freefall, firms are slashing

costs and shedding workers. Already Britain has two million unemployed.

Wintry times are always summer for the APLs. With budgets frozen, managers

abandon IT doctrines for tools and people who deliver quickly and cheaply. The

times are ripe again for the Direct Development methods in which the APLs have

always performed well.

Go get ’em. In this vein we are holding a 2-day conference – BAPLA 2009 – in

Reading in June. This is an opportunity to introduce a new generation of business

managers to what Direct Development makes possible.

The BAA London chapter now meets every month. See the APL Wiki for their

agenda; join their Google Group baa-london to keep in touch.

We have resurrected from the defunct Product Guide a listing of companies and

individuals offering consulting services in the APLs – see the back pages. This

listing is free to BAA members and non-members alike. Contact Ray Cannon for

changes and additions.

We know many Vector readers valued the Product Guide as a community ‘white

pages’ for former colleagues, but a little study showed our listings were not up to

date. Web applications such as Facebook and LinkedIn now do this job much

better. For personal listings we recommend homepages on the J Wiki or the APL

Wiki. And LinkedIn and Facebook both have Iversonians groups you can join. All

of these can be found from the Community page at vector.org.uk.

Ian Clark, our projects officer, has brought to press the first title

under the Vector Books imprint. Over the years, Eugene

McDonnell wrote 41 articles for his Vector column on J. The first

edition of At Play With J reproduces the articles as originally

printed, and can be ordered from Lulu.com – see the Books page

of our website. Because J has evolved since the first article

appeared, volunteer editors are revising now for a second edition,

VECTOR Vol. 24 N°1

 5

in which the examples match the current version of J. Contact Ian if you can lend

a hand.

Catherine Lathwell is making a documentary film about

the story of APL. Find her project blog APL Diaries

through the Community page at vector.org.uk and see if

you can offer her any help. Catherine will be speaking

about her project at the APLBUG meeting on 11 May at

the Computer History Museum in Mountain View, CA.

In this issue, Chris Hogan explains how to negotiate the ISO 9000 certification

some clients might demand you have, without losing your Direct Development

agility. Morten Kromberg shows Dyalog in the ecumenical world of Unicode and

Windows IMEs. Inspired by q and Paul Mansour’s flipdb, Adrian Smith whips up

an in-memory DBMS. Dan Baronet introduces Spice, an addition to the Dyalog

IDE, and David Liebtag describes new features of APL2.

The mathematicians are out in force. Bill Jones & Cliff Reiter

marvel at Cauchy curves. In J-ottings 51, Norman Thomson has a

go at the kids’ homework. In Italy, Gianluigi Quario completes

his meditations on polynomials. And Gordon Sutcliffe reports a

fast way to calculate Kendall’s rank correlation frequency

distribution.

Stephen Taylor

VECTOR Vol. 24 N°1

 6

N E W S

VECTOR Vol. 24 N°1

 7

Industry News
from Sustaining Members

APL2000, Dyalog, Kx Systems, MicroAPL, Optima Systems

APL2000

2008 conference round-up

On November 10-11, 2008 APL enthusiasts from across the United States and

seven other countries gathered at the Hyatt Regency Hotel in Bethesda, Maryland

for the 2008 APL2000 User Conference.

The conference hotel was conveniently located with easy Metro access from the

airport and to downtown Washington D.C. The nation’s capital offered many

opportunities for sightseeing, viewing exhibits at the Smithsonian Institution’s

museums, fine dining and shopping. Many attendees took advantage of special

weekend rates and arrived early to spend a few extra days in the area.

Attendees represented industry leaders from a broad spectrum of business,

engineering and science. APL2000 has a significant presence in the fields of

finance, insurance, healthcare, aerospace, engineering, employee benefits, airline

and automotive industries among many others.

Each conference attendee received a conference bag including an APL2000

conference shirt, flash drive with the conference proceedings and a copy of Ajay

Askoolum’s book, System Building with APL+Win.

For two exciting days the attendees immersed themselves in informative

sessions and participated in stimulating discussions surrounding new

developments in APL2000 products, particulary APL+Win, VisualAPL and APL

WebServices.

APL EDUCATION

John Estep presented his pro-bono APL Workshop

program, which trains high school students

interested in programming using the APL language.

Mathematics, software design and engineering are

also emphasised. APL2000 and other APL

APL education

VECTOR Vol. 24 N°1

 8

programming-language vendors have provided John with books and software for

his students. John encouraged other APL programmers to use his course as a

model for regional APL programmer training and development.

APL+WIN SESSIONS

John Walker’s presentation, “What’s New in APL+Win” highlighted the

developments in the APL+Win product including:

 Enhanced Unicode support in APL+Win, for instance, the ability to convert

between Unicode code points and various representations, such as UTF-8

and APL+Win ⎕AV.

 Localisation level specific referencing, the ability to reference functions

and variables at specified localization levels.

 Enhanced printing and print preview in the APL Grid.

 Major overhaul and refactoring of the behaviour of tooltips in APL GUI

objects.

There have been 10 releases from Version 6 in 2006 to Version 8.3 in 2008.

Ajay Askoolum’s presentation, “C# As the GUI and APL+Win Supporting the

Business Rules” illustrated how to interface APL+Win with mainstream

technologies including:

 Creating a C# web service which relies on APL+Win to support multiple
clients needing access to application-specific business rules.

 Exposing a .Net assembly as a COM for use with APL+Win.

 An introduction to the many examples of APL+Win interfaces in Ajay’s
book, which was distributed to conference attendees

 An HTA (HTML Application) using APL+Win as a COM Server.

 An additional, detailed example was provided by Ajay as part of the
conference materials – a C# Windows Service using APL+Win as a COM
Server – with SQL Server Express as the data tier, accessed by C# using
ADO.NET and by ADO from APL+Win.

Eric Lescasse’s presentation, “Interface APL+Win

and .NET (C#)”, also illustrated how to interface

APL+Win with mainstream technologies

including:

Eric Lescasse & Ajay Askoolum

VECTOR Vol. 24 N°1

 9

 Consuming C# DLLs from APL+Win using the NetAccess product. It was
announced at this conference that current APL+Win Subscribers will
receive a licence for the NetAccess software, installer and documentation.
NetAcess is a convenient tool to prepare C# DLLs that expose Microsoft
.Net features for access by APL+Win. NetAccess opens the power of the
.Net framework to APL+Win users, including the Microsoft .Net visual
objects which can now be embedded in APL+Win forms.

 Porting your existing APL+Win application to the .Net environment with a
C# WPF or Ajax GUI, an APL+Win calculation engine on the server and the
project deployed over the Internet as a client-server .Net (C#) ClickOnce
application.

Joe Blaze’s presentation, “Improved Efficiency of Execution of APL Primitives”,

illustrated the new APL+Win interpreter enhancement, which a programmer can

activate to utilise an alternate order of execution for APL+Win expressions

involving multiple primitive operators. For large size, double data type

arguments, significant performance increases can be achieved. The alternative

order-of-execution option can data-fetch and store overhead.

Jeremy Main presented “Reverse Geocoding

with APL”. APL functions are used to access GPS

position data and various public databases to

establish the relative location of geographical

elements, enterprises, parks, public places and

other points of interest.

APL WEBSERVICES SESSIONS

Joe Blaze presented the APL WebServices sessions:

 Overview of the APL WebServices product from inception in 2002 to 2008
as a high performance, high-reliability tool to interface APL+Win functions
and workspaces with web-based clients.

 Exposure to APL WebServices features for
scalability, load balancing, request queueing,
multi-threading and stateless/stateful client-
server interaction were illustrated.

 Health, underwriting and financial examples
were provided, illustrating APL WebServices
on the client side supporting business rules
and creating client-ready output. These
examples also illustrated client-side GUI
creation using HTML, PDF or C# WPF forms.

Jeremy Main

Joe Blaze

VECTOR Vol. 24 N°1

 10

 An additional example was provided which uses APL WebServices to
efficiently organize a grid of computers to perform stochastic analysis for a
health-related application system. Extensions of this model to other monte
carlo simulations is easily done.

VISUALAPL SESSION

Jairo Lopez presented the VisualAPL session:

 The VisualAPL version now available for Microsoft Visual Studio 2008 was
demonstrated. VisualAPL also remains available for Microsoft Visual
Studio 2005. VisualAPL remains the only APL implementation which is
fully integrated with Visual Studio and produces fully-managed CLR
output. The performance of VisualAPL is outstanding. VisualAPL
programmers can take advantage of extreme memory (including 64-bit
addressing), multi-threading and all .Net data types.

 The Cielo Explorer interactive session and scripting engine included with
VisualAPL was demonstrated as unique among Visual Studio add-ins
because it enables easy exploration of all of Microsoft .Net without the
overhead of building and compiling an entire project. Line-by-line entry of
APL or C# code in the Cielo Explorer is immediately processed and the
results displayed within the Cielo Explorer window. In addition Cielo
Explorer scripts can be incorporated into a .Net namespace and compiled
into a .Net assembly, if desired by the programmer.

 A health and underwriting example was provided using a C# WPF GUI
form and a VisualAPL .Net assembly to perform the analysis and prepare
the output.

OVERVIEW OF APL2000 MISSION AND LICENSING OPTIONS

Sonia Beekman made this presentation.

APL2000’s mission

APL2000 is a full-service software company that develops and markets APL

products for the Win32, .Net, Unix and Linux operating system environments.

APL2000 also provides consulting services to assist in the design, development,

implementation, conversion, update, enhancement and deployment of APL-based

application software systems.

APL+Win is the product for customers with an investment in Win-32 based

programming. The APL+Win Subscription Program has been very well received

by APL2000 customers, and APL2000 remains dedicated to the development and

maintenance of this product.

VECTOR Vol. 24 N°1

 11

VisualAPL is the product for customers interested in an APL implementation

which can fully exploit the features of the Microsoft .Net framework and is

integrated with the mainstream Microsoft Visual Studio 2005/2008 interactive

development environment.

APL WebServices is the product which provides an easy and effective way to use

APL+Win code to support the calculations and business rules for a web-based or

.Net graphical user interface. APL WebServices is the high-performance, high

reliability, .Net-based Web Services application to expose an APL+Win based

software application to any Web-connected user.

APL2000 product licensing options

APL+Win subscriptions will now include Lescasse Consulting’s NetAccess.

APL+Win subscriptions will continue to provide unlimited ‘runtime’ use. Seven

subscription levels are available to best meet the APL+Win needs of the

customer.

A no-cost education version of APL+Win is available for classroom use by

instructors and students.

VECTOR Vol. 24 N°1

 12

The Professional and Enterprise versions of VisualAPL will now include

unlimited production use as part of the licence. ‘Production’ use in the Visual

Studio environment means distribution of the compiled output of a VisualAPL

product. This ‘production’ use is analogous to ‘runtime’ use in the Win32

environment. A lower-cost desktop version of VisualAPL remains available for

those programmers not requiring distribution of their output beyond their

desktop.

No-cost, full-featured, limited-time-period, demonstration and evaluation

versions of VisualAPL and APL WebServices are available.

Further information on APL+Win, VisualAPL, APL WebServices and other

APL2000 products can be obtained on the APL2000 web site, www.apl2000.com

or by contacting sales@apl2000.com.

MONDAY EVENING DINNE R CRUISE

Monday evening, conference attendees were

given a bus tour of the Washington D.C.

monuments on their way to the waterfront.

There they boarded the “Capital Elite”, a 70-foot

yacht chartered by APL2000 for a private 3-

hour dinner cruise down the Potomac River.

The boat provided a cozy atmosphere to wine,

dine, network and chat with friends. The main

deck was set for dinner and offered hors

d’oeuvres followed by a delicious buffet. The

upper deck had a bar and lounge area with comfortable sofas and cocktail tables.

Although the weather was a bit nippy, a few brave souls ventured onto the outer

decks to take in the fresh air and enjoy the view. A great time was had by all.

APL MEMORY LANE

The closing session provided a trip down memory lane with an APL Jeopardy

Game prepared by Kevin Weaver.

NetAccess from Lescasse Consulting now included with all APL+Win
subscriptions

NetAccess opens the power of the .Net Framework to APL+Win. All APL+Win

Subscription licensees will receive NetAccess software, the installer and

documentation, as part of their subscription benefits.

Cruising on the Potomac

VECTOR Vol. 24 N°1

 13

NetAccess, developed by Lescasse Consulting, is a convenient tool to prepare C#

DLLs that expose Microsoft .Net features for access by APL+Win. NetAccess uses

APL+Win's ActiveX interface to great advantage by exposing the user-selected

methods, properties and events of the C# DLL as ActiveX elements.

With NetAccess, you can write Microsoft .Net C# DLLs to be used with ⎕wi from

APL+Win. This enables you to tap the power of .Net. For example the Microsoft

.Net visual objects can now be embeded in APL+Win forms.

This exciting new feature is provided to our APL+Win subscribers at no

additional cost, and reflects APL2000's commitment to APL+Win and to our

customers. To further support NetAccess users, a separate section on the APL

Developer Network Forum has been established for NetAccess related

discussions.

For further information, or to purchase APL2000 products, contact

sales@apl2000.com or call Sonia Beekman at +1 (301) 208-7150.

Dyalog

Dyalog 2008 at a glance

As we’re rapidly approaching the end of a very eventful year it seems there has

been something new almost monthly. Let us take the opportunity to re-cap some

of the highlights.

October 2008 – Dyalog ’08 User Group Conference

This year Dyalog hosted its most successful user conference ever in Elsinore in

Denmark. More than 100 delegates (plus guests) attended the 2½-day

conference and many also took part in the 1½ days of training and workshops on

offer. Dyalog is already in the process of planning the Dyalog ’09 conference –

currently scheduled to take place near New York in the US in the early autumn of

2009. If you were unable to attend, would like to refresh your memory, or

perhaps see one of the sessions you were unable to catch, take a look at:

 Adrian Smith’s conference review in this issue

 This year Dyalog taped most of the conference sessions and you can access

the slideshows with full audio from www.dyalog.com.

 Andrea ‘Tony’ Grignani and Stefano ‘Wildheart’ Lanzavecchia have put

together a photo Gallery show from the Conference featuring Tony’s

beautiful pictures supported by original music composed by Wildheart.

VECTOR Vol. 24 N°1

 14

You can find their YouTube show at uk.youtube.com/watch?v=

lW552GGVQxk.

 Do not miss the wonderful presentation John Scholes made at Dyalog ’08

where he took a look at Dyalog through 25 years and made a plea for

simplicity. You can find John’s presentation at uk.youtube.com/

watch?v=qSVR4Z3DA24.

September 2008 – LearnAPL

In the previous issue of Vector we featured the joint apprenticeship scheme

launched by Dyalog Ltd and Optima Systems Ltd. This initiative is aimed at an

individual looking to expand their knowledge into the exciting world of APL. The

apprenticeship scheme will hopefully attract interesting candidates over the next

couple of months and since this is part of Dyalog’s ongoing activities with regards

to attracting new programmers, we would like to highlight the initiative again.

See more at www.dyalog.com/pdf/LearnAPL.pdf.

August 2008 – Version 12.0.3

Dyalog announced the commercial availability of Dyalog Version 12.0.3, including

support for secure sockets. Version 12.0.3 is available ‘off the shelf’ for Windows

32 & 64, AIX and Linux. Solaris and other Unix versions are available on request.

Version 12 Manuals are available as free-of-charge PDF downloads or as print-

on-demand from stores.lulu.com/dyalog.

Two new public workspaces (APL2IN and APL2PCIN) were also made available

for download. You can get them from www.dyalog.com/version12.html.

June 2008 – New Dyalog team member – Richard Smith

In June the Dyalog Development Team welcomed Richard Smith. Richard landed

firmly on his feet in Dyalog and he quickly started excellent – and independent! –

work on Journalling Component Files. The first result of Richard’s work was a

presentation held at Dyalog ’08. Hear and see it at winweb.dyalog.com/

Dyalog08/RichardSmith_JournalingFiles.html.

May 2008 – New Board member, Michael Holmberg Andersen

Michael joined the Dyalog Board of Directors in May. He has worked in

SimCorp A/S since 1991 and currently holds the position of Senior Vice President

for the IMS Development Department, where he is responsible for SimCorp’s

software-development activities.

VECTOR Vol. 24 N°1

 15

April 2008 – Dyalog@25

The Dyalog APL language celebrated its 25th anniversary in April, where Dyalog

Ltd hosted an open-house day in the office in Bramley on Friday the 11th,

followed by a more formal event on the 12th. The Dyalog story has further been

published as a booklet which was distributed with the previous issue of Vector to

BAA members, and to delegates at the Dyalog ’08 Conference. You can get a PDF

version from www.vector.org.uk/archive/v234b/d25.pdf.

February 2008 – Dyalog Version 12.0.1

At the end of February Dyalog announced the commercial availability of Dyalog

Version 12.0 for 32-bit Windows, with Unicode Support. At the same time the

company launched two new online libraries for Help and Documentation. You

can peruse the new libraries at www.dyalog.com/documentation and

www.dyalog.com/help. (Both these sites include the full version 12.0 and 11.0

Release Notes.)

Kx Systems

Kx Systems and Nagler & Company have announced a strategic partnership

agreement covering the German-speaking areas of Europe, primarily Germany,

Austria and Switzerland as well as Benelux and Poland. Nagler has formed a new

company, Symagon, specifically to work with Kx and to provide market data

solutions to European financial institutions. Symagon is a wholly owned,

Germany-based subsidiary of Nagler & Company.

The main drivers for forming the partnership were the deep market knowledge

of Nagler’s consultants and their successful track record of working with Kx and

implementing kdb+ at financial institutions, most notably in Germany. The

partnership will see Symagon provide sales, consultancy and support services to

firms in Benelux, Germany, Austria, Switzerland and Poland.

Says Jens Rick, managing director of Symagon: “Having worked with Kx on a

number of market data projects for the last three years we decided that we

wanted to formalise what has become a very productive working relationship.

We found kdb+ to be far superior to other systems on the market in terms of the

speed of implementation, performance and cost of ownership. We are very

impressed with Kx’s dedication to its customers, its excellent standard of client

support and the continuing enhancement of kdb+.”

Nagler & Company first started working with Kx in 2005; from the first joint

project it was clear to both firms that together they offered a winning

VECTOR Vol. 24 N°1

 16

combination of talent, experience and location. Symagon specialises in market

data, providing consultancy that spans all phases of planning, development and

implementation and covers quantitative analysis, structuring, algorithmic

trading, market making and risk management.

Janet Lustgarten, CEO of Kx Systems, says: “Symagon consultants have a thorough

understanding of our philosophy and of our products, kdb+ and q. They have

many years’ experience in our core markets and have worked on numerous

projects with Kx. Symagon will help us to extend our presence in Europe and

provide a high level of expertise to financial institutions in the region.”

MicroAPL

At MicroAPL we have always worked hard on making new versions of APLX

backwards-compatible, believing that new versions of the interpreter should not

break existing APL applications if at all possible.

As an example, consider APL programs written the Apple Macintosh. Our original

APL product, then called APL.68000, was released in 1986 and included a

number of then-innovative workspaces for GUI programming. At that time, a

typical Macintosh had an 8MHz 68000 processor and 512K of memory.

Over the years, Apple made the transition from 68000 to PowerPC processors,

then changed the operating system to the modern OS X, and finally changed

processors again to use the Intel x86 architecture.

Despite this – and despite the fact that the APL.68000 interpreter was originally

written in 68000 assembler – you can still load an original APL.68000 workspace

into APLX. All the original APL code will run, and even most of the original GUI

functions still work (although we would not recommend them for new

programs).

One of our APLX users recently demonstrated the importance of this approach in

a very exciting way. Dr Glenn Schneider from the University of Arizona’s Steward

Observatory is an umbraphile – literally a ‘Shadow Lover’ – who travels all round

the world taking spectacular photographs of solar eclipses.

The August 2008 solar eclipse was visible from the Arctic Ocean, with the path of

totality close to the North Pole. Dr Schneider viewed the eclipse from an Airbus

A330-200 flying high above Svalbard, with his cameras pointing out of the

aircraft windows. The software he used to control the cameras and help navigate

the aircraft is written in APLX running on a Macintosh. It was originally

VECTOR Vol. 24 N°1

 17

implemented in APL.68000 and still makes use of GUI features we introduced

back in 1986.

As a testament to the enduring strength of APL as a language, readers might like

to note that some of the core algorithms were originally implemented in 1974 in

APL on a Xerox Sigma 9 computer under the UTS (and later CP-V) operating

system.

To see some pictures of the eclipse and scenes from inside the Airbus, visit

nicmosis.as.arizona.edu:8000/ECLIPSE_WEB/ECLIPSE_08/TSE2008_FLIGHT_FD

/TSE2008_FLIGHT_DECK_SETUP.html

Looking to the future, the development team at MicroAPL is currently working

hard on APLX Version 5 which will be released in 2009. Although we already

have a long list of new features, it’s not too late to suggest anything you would

like to see added to APLX.

Please send your ideas to aplxv5@microapl.co.uk. We can’t promise to

implement everything in this release but we’re always interested to hear your

ideas.

VECTOR Vol. 24 N°1

 18

From Vector Books: first edition available now at Lulu.com

VECTOR Vol. 24 N°1

 19

MEETING

Dyalog 2008 at Lo-skolen, Denmark
reported by Adrian Smith

adrian@apl385.com

Setting the scene

Back to Denmark, for what everyone seemed to

agree was the best Dyalog gathering yet. The

delegate list numbered over 100 for the first time,

and the sun shone for the Viking challenge. The

quality of the food was almost too good – I for one

had to go for a very minimal lunch to keep my wits

about me for the afternoon sessions.

The presentations covered a wide range of topics,

and the feedback forms showed there had been

something good for everyone there, from the talk by

Charles Brenner (APL content zero) to the talk by

Roger Hui (APL content close to 100%) – both were

highly rated, and by very different groups of

attendees. As always, the slack time was well used, and I walked past lots of small

groups clustered around laptops in the various coffee areas.

The recreation opportunities were welcome, although I mourned the 9-pin

bowling. But there were woods to walk in, a tough little par-3 golf circuit (50kr

including hire of equipment), table-tennis, skittles/pool, table football and an

easy walk down to the beach if you wanted to smell the sea air from a little closer.

All told, it is hard to beat Lo-skolen as a venue for a group of this size.

Major sessions

Opening keynote

This was all about usability, consolidation and gradually expoiting the new multi-

core hardware that is coming our way. Morten showed us how to use the new

logging capability of the interpreter, and asked everyone to give it a run, and

On target for the 12th century

VECTOR Vol. 24 N°1

 20

send in the logfiles for Dyalog to analyse. This looks like a great way to find the

remaining bottlenecks in the interpreter, and will point Nicolas and Roger Hui at

the most productive speedups.

Here is Morten, illustrating a simple Conga

server which gives the impression of APL

running a genuine parallel each operator. The

CPU buckets very satisfactorily both fill up and

both empty at the same time. The ability to

spread load across cores like this will become

increasingly useful as we go from dual to quad

cores and on upwards.

Morten briefly showed the Unicode chessboard again, and stressed the benefits

of moving across to the new interpreter family as soon as possible. He also

outlined a true ‘managed code’ project which will one day allow a new build of

Dyalog to run anywhere a .Net process is allowed to run. It will be lean, mean,

and will tick all the required boxes for implementation in highly secure

environments. It will definitely not carry forward any baggage from the current

Dyalog, so is unlikely ever to replace it completely as an application development

tool.

Apart from these announcements, it will all be about getting the bug-list fully

under control, and making it possible to work with really big classes in a

productive way. Morten pointed us to John Daintree’s talk on the IDE as well as to

Nicolas Delcros and Roger Hui who have both been working to improve the

efficiency of the current interpreter, and at Richard Smith who has been helping

John Scholes to make great strides in eliminating FILE DAMAGED by adding

journalling to component files.

Charles Brenner on “Forensic Mathematics”

Dr Brenner has almost single-handedly

established a whole new discipline of ‘Forensic

Mathematics’ and (naturally) is a world-

respected expert in the field. Having seen a prior

run of this talk at Naples a few years back, I

knew a fair bit of the background, but this was

still a fascinating insight into the world of DNA

matching, as well as Bayesian likelihood and all

the other stuff you need to know to make a reasoned judgement based on DNA

‘evidence’.

Morten Kromberg’s keynote address

Charles Brenner on DNA-View™

VECTOR Vol. 24 N°1

 21

I think the key element I had missed from his previous talk was that all DNA

matches are made between rather few highly specific loci in the junk DNA.

Obvious when you think about it – we are highly likely to match exactly in the

DNA that actually does something useful, as anyone who didn’t would be unlikely

to make it into the world at all! Look out for his paper in a forthcoming Vector.

John Daintree on the IDE for Dyalog 12.1

This was also rated ‘most useful’ on many of the feedback sheets. Classes are a

great new capability, but (as many of us have quickly noticed) they could use

some help for serious development – the editing environment is nowhere near as

comfortable as the traditional namespace full of functions. Typically (see flipdb,

for example) you have a skeleton class and a companion namespace with all the

code in it, which the class ⎕IMPORTs whenever it gets instanced. Alternatively

you go the whole hog and generate/fix/instance an entire script from a your

namespace on the fly.

Both of these are kludges and should be wiped from the map, which is what John

has set out to do by making the editor respect the content of a class in a much

better way. He showed the ‘obvious’ things working again – you can just say)ed

myclass.foo in the session and get straight to the function – and there may be

some extras like the ability to roll up sections of code the way Visual Studio does.

For now, it would be good just to have the basics – if I can go)ed

myclass.newfn and have it show up in the script, add stuff, double-click on a

new name within it, get another new function, and so on, then I’m a 95% happy

bunny.

Roger Hui, Nicolas Delcros and Richard Smith on APL internals

These three talks were closely related, and all promised simple incremental

improvements in performance. John Scholes has a watching brief on all of these

areas, but is was good to see the ‘new boys’ let loose in the core of the

interpreter.

 Roger has been working on speedups to common boolean operations like

≠\boolmat and has discovered that by playing with the byte alignments,

he can quite easily write simple APL expressions that beat the raw

primitives for speed. Read his script (on the key disk) or await the full

paper to see a very neat use of the new LCM capability that came in with

Dyalog 12.

 Nic has been investigating matrix indexing which was written in the days

when the entire interpreter had to fit in a 64k segment, so takes very few

VECTOR Vol. 24 N°1

 22

optimisation choices indeed. In the case where one or more axes are

elided, it builds the entire index set in memory, before iterating around it.

Clearly it can do much better with high-rank arrays by taking the elided

ranks ‘as read’ in an extra layer of iteration. Nicolas showed some good

speed improvements, and even the pathological case with a 15-

dimensional array was only a little slower.

 Richard (there were two Richard Smiths at the conference – this is the one

who recently joined Dyalog) has been taking over existing work on

component file reliability. By first writing a journal of a pending update, he

allows the file to recover from nearly all the bad things that can happen

when data is written. By adding an optional level of explicit cache flushing,

he even overcomes the pathological cases where the operating system has

actioned the file writes in a random order, so you never know what failed

when the power was pulled.

This block of talks was concluded by Jonathan Manktelow with a quick demo of

the latest .Net toys (called Windows Presentation Foundation or WPF for short)

which implement screen-management in a much more web-oriented way.

Interestingly the world is moving towards a flow-layout model where you

arrange your fields and buttons using simple nested groups ({this above that}

beside these) and the system is responsible for the detailed layout, depending on

the space available, the fonts chosen, and so on. The convergence with Gary

Bergquist’s ZarkWin framework is very close (it was good to see Gary at a Dyalog

conference for the first time) and I am seriously wondering about a modern

edition of CPro which merges Gary’s screen-layout tools with the ‘observer

pattern’ engine that I think is the key ingredient of CausewayPro.

25 years of Dyalog with John Scholes

The usual mix of deadpan humour, interesting

history, and jokes for programmers like the

carefully timed demo of ⎕DL ¯5, which he must

have been practising. The hammer sketch was all

his own work, and will stick in lots of memories,

for the quality of the acting as well as the

originality of the script.

25 years is actually a very long time in the

software industry, and it was interesting to see

how quickly the key moments get blurred into

history. When did namespaces first appear?

John Scholes on display

VECTOR Vol. 24 N°1

 23

Which APLnn meeting saw a Windows GUI for the first time? John had left plenty

of gaps in the chronology, and the audience found it hard to fill in all of them. The

relationship between the known ‘hard’ dates (when people joined and left, when

the company address changed) and the key moments in the life of the interpreter

proved very hard to pin down. Even the special Vector supplement (a good read,

by the way) leaves quite a lot of detail to be filled in by some enterprising local

historian.

Day 2 – User presentations, the Viking challenge and the Banquet

Most of these talks are on the

conference keydisk, and will very

likely appear in future issues of

Vector, so better not to attempt a

summary here, I think. The

feedback forms mentioned most of

them as ‘useful’ so I think the

programme must have worked

well. I was rather sad that my

RainPro session collided with

Morten on Conga, as this was

something I would have definitely

attended, given the chance.

As you can see from the picture,

axes were thrown again this year.

There were some rather less

physical challenges too, mostly to

see how well the groups could function as a team. One task involved everyone

holding a rope and pulling as hard as they could in opposite directions. Now there

is a true metaphor for APL development!

And so to the banquet, with the usual great food and quality entertainment (this

time from a champion accordion player). Here are a couple of shots from the

rogues’ gallery to give you a flavour:

Anne’s airborne axe

VECTOR Vol. 24 N°1

 24

Chala from the Carlisle Group, with a serious camera!

Vibeke chatting with Gary Bergquist

The challenge is on to find a venue as good as this one anywhere else in the

world, starting with the Eastern USA for next year. It will be tough, even in the

more relaxed parts of Europe, and (apart from Minnowbrook) I don’t think I can

pick out any stateside venue that comes close. If anyone can think of one, let

Vibeke know!

VECTOR Vol. 24 N°1

 25

Day 3 – closing sessions and afternoon courses

Tommy Johannessen and his lunch server

Tommy writes software the way he throws axes – see opportunity … charge!! …

which may get a few people hurt along the way but sometimes comes up with

something really great. This talk showed us how to order our school meal on the

internet, along with over 25,000 regular users of his ASPX-based system. Along

the way he has bounced off all the nasty hidden features of the interface between

the web server and Dyalog, and he has bullied all of them into submission.

Wonderful stuff.

Gert Møller and his logic engine

This is another great use of APL, originally for prototyping but increasingly as an

implementation tool for crashing straight through huge (and I mean really huge)

constraint networks. This is based on some core work that was done many years

back in APL, and Gert has been patiently waiting for some key patents to expire

so that he can start over with a new company ready to exploit some very neat

compression algorithms in APL. I get the feeling that Dyalog is beating C++ for

speed on many of the crucial operations – it would be great to throw some of his

code at our C# translator to see if there is a ‘best of both worlds’ solution out

there.

Romilly Cocking returns to APL

Romilly was one of the founders of the BAA and co-owned the most successful

APL consultancy business in the UK for many years. Then he quit the APL world

for Smalltalk and made a pretty good living out of that, too, before exploiting his

experience in developing with dynamic languages to win a reputation as a coach

for ‘agile’ Java teams. Now he’s back to APL and says it’s better than ever before.

His talk was a very clear and simple introduction to genetic algorithms (GAs for

short) and to some of the uses they can be put to. The core code was about 25

DFns and fitted very nicely on one slide. So that made two talks in one conference

on DNA, and they complemented each other beautifully.

Wrap up

Morten closed with a slide of all the things they would love to shake out of the

interpreter, like the underscored alphabet, ⎕SM, and external variables. As you

would expect, almost every oddball feature was used by at least one person in the

audience, so this is going to be a tough call, but signalling the intention can’t be a

VECTOR Vol. 24 N°1

 26

bad thing. Then it was off to one last lunch, and some final training sessions for

the true stalwarts.

The morning light over Lo-skolen

If you missed any of it, many of the sessions were fed through 1024×768 screen-

capture and should come with high-quality audio, so you can watch them again

on the Dyalog web site.

http://validator.w3.org/check?uri=referer

VECTOR Vol. 24 N°1

 27

GSE and APL-Germany Fall Meeting,

Augsburg, November 24-25 2008
reported by Adrian Smith

adrian@apl385.com

Around the City

Augsburg dates from Roman times, and where ancient buildings have survived

(mostly by virtue of being below ground-level) it is very impressive. The

cathedral had a quiet simplicity most unusual in a region generally associated

with the extremes of baroque. As always, the centre of town is for pedestrians

only (and the occasional tram) so it was a real pleasure to walk back from the

restaurant in the gently falling snow after a typically warming Bavarian meal.

The undercroft of the cathedral

The joint meeting was really well attended, so much so that we slightly

overflowed the seminar room on the second day. Thanks to Dittrich and partners

for setting it all up in their home town, and for paying for the magnificent flagons

of locally-brewed dunkelbier on the second evening. Much good work was done,

and all of the talks had interesting material to keep us awake.

VECTOR Vol. 24 N°1

 28

The GSE requirements day

In the past, I have tried to come to these joint meetings for the second day only,

as Day 1 is to some extent a private conversation between IBM and its most loyal

customers. However there was a most interesting talk from Sandvik which I

really wanted to hear, and the summary of “what’s new in APL2” is intended for

public consumption, so I tagged along for the morning session.

The Sandvik CAPP system, shown by Gunnar Jörtsö

This was the first time anyone from Sandvik has been allowed to talk about the

system outside the company, so we were very privileged to see it. The 20-page

handout would make an excellent paper in its own right, but I doubt we will get

permission to publish more than some very brief notes here!

The system is implemented on the mainframe with GDDM drawing, and

overlayed text. Engineers create the specifications for components in a visual

flowchart, attaching ‘COBOL-like’ logic at each process stage. The specifications

are (very carefully) checked, ‘compiled’ into APL2 functions which generate the

CAD drawings to drive the machine tools directly. This can take the time from

specification to manufacture down to a few hours, rather than the many days

which would be involved in processing the drawings manually.

It is big in any terms, with around 1,500 users, who have built some 25,000

flowcharts which compile into over 2.5 million lines of APL2 code. The engineers

still like the mainframe interface, but for the sales users (who configure new

components while talking to customers) find a web front-end gives that modern

look and feel. There are currently 10 servers running with a load-balancing

master server handling the 20,000 daily browser requests from the web

interface.

A few years back in Florida, we were shown a wonderful APL2000 system which

simulated mineral processing, down to the level of detail that you need if you are

thinking of opening a copper mine. Twice now, we have been given a

walkthrough of the petroleum-chemistry simulator that Mobil research wrote in

Dyalog APL to configure oil refineries in the most profitable way. Well, now there

is a new companion for both these applications – the Sandvik system is at least as

wide in scope, at least as business-critical, and rooted just as firmly in APL. Long

may it stay that way!

David Liebtag on new things in APL2

David has been quietly working away at making the APL2 session more

comfortable for developers, to some extent in response to previous GSE days, and

VECTOR Vol. 24 N°1

 29

sometimes just because he likes a new idea, and it is easy to do. Some of the

things that have been bugging his users are quite interesting:

 Commercial rounding has been speeded up by quite a large factor (×11 on

integer data, ×3 on float) which could be beaten easily on Intel hardware

by using the on-chip instructions if this were still not adequate.

 Reading LF-delimited files just got nearly 1000 times faster for big files. (A

simple change of approach can work wonders).

 The toolbar with the APL symbols opens a stand-alone documentation

window (rather than just showing a transient tooltip) from a right-click. I

think I would like this better than the Dyalog tip – you can copy/paste the

examples and maybe park the window somewhere for easy reading later!

 Hitting Ctl+Enter on an expression throws the output into a simple editor

window, rather than into the session. This is a very nice feature, as you can

easily stuff your session with a huge array you really didn’t want to see all

of!

 You can set a trace or stop on all labels in one keystroke, and F7 in the

editor throws out unused locals.

 You can quickly save a selected part of the session log to a named file,

handy for sending off for debugging support.

We also got a very quick overview of the structured storage, which has been

slightly enhanced to allow you to move any array (so untyped data) into the

external storage, for reasons which would become obvious when David showed

us the new monitor capability on Day 2

Day 2 – User presentations at the APL Germany Day

Adrian Smith shows ‘Dyalog for students’

This talk will get a full paper in a forthcoming Vector, so for now just a quick

summary:

 Typing stuff is becoming cool again. The top 5% of students who may get

to like APL are the rebels who relish the chance to get some real power

over the machine. One of the coolest developer tools around is Microsoft

PowerShell, which just makes the command prompt into a full-blown

hackers toolkit. We need to get after these guys with APL!

VECTOR Vol. 24 N°1

 30

 There was a time when APL was cool. It was the only place where it was

easy to type in some numbers,)SAVE what you typed, make some simple

analysis, and print out the results neatly (good old ⍕) with the minimum of

fuss. ‘Dyalog for students’ is an attempt to recapture some of that old

simplicity.

 The biggest problem is Microsoft Excel, which makes it so easy to type in

the numbers, then makes it almost impossible to do anything useful with

them. Microsoft Access does let you do useful things with data, but is

impossible for mortals to get it moving. Adrian proposes a step back to

something that looks like a command prompt, lets you easily enter and

save data (so it has a well-hidden but powerful database engine),

positively encourages you to analyse it with real he-man statistical tools

(thanks to Alan Sykes and Ellis Morgan), charts it (now this really is quite

cool) and helps you make your report if you find Word too boring and

LaTeX too geeky.

I think this made a hit with the meeting, although Morten qualified my estimate

of 5% down to 1%. This is still enough to be worth chasing – there was a time

when almost all the students from a German Technical University had met APL,

and this makes the job of recruiting new blood into the industry that much easier.

I think I will get some good support from several directions if I can make this

stuff work seamlessly with Dyalog.

David Liebtag on Monitor expressions with Processor 15

AP15 started as a way of enforcing typed arrays,

mainly so APL2 can interface cleanly to external

routines which expect strict data typing.

However it has a few extra capabilities, which

David showed us around.

 Once notified to P15, a variable has some
attributes, for example you can find (or
set) its address in memory, which gives
you an easy way to define little Union
structures by overlaying two arrays at the
same address.

 New to this release is the Monitor
attribute. This may be set to any
executable expression (for example ⎕SI

⍳0 which will run whenever the variable is assigned. This has obvious
debugging uses, but David did point out that there is quite an overhead in

David Leibtag on new features in

APL2

VECTOR Vol. 24 N°1

 31

Bernd with the image album

Dr Reiner Nussbaum

moving data to the external storage, so you should not think of using this
in production code for large arrays.

 The monitor expression runs in the same way as code executed by ⎕EC so
it cannot change the variable which triggered it. Seems sensible enough!

I think this will be very popular – when you are trying to track an obscure bug in

a big mainframe application (written 20 years ago by a team of programmers

who left the company long ago) then having a handle on all the assignment points

to some rogue variable can be an enormous help. The drumming on the tables

was exceptionally enthusiastic for this one!

Actually, you could abuse this quite nicely by using little scalars (say a version

number) to track updates, and having a monitor on this variable trigger updates

elsewhere in the system. It is probably really easy to tell the programmer “when

you are done, just increment ∆version” rather than having to call some

particular follow-on code. Just a small step in the direction of event-based

programming.

Emulating ⎕WI in APL2 by Bernd Geißelhardt

This was a nice little gallery-maker, but the

impressive thing for me was that it was

converted from an APL2000 original using cover

functions to mimic ⎕WI in APL2. Bernd reckoned

that with about 900 lines of (very tedious) code

he can do a good percentage of the basic

Windows toolkit. Obviously a full-blown generic

conversion kit would be a lot, lot harder.

Unix for grown-ups by Dr Reiner Nussbaum

The code behind this talk is all being shared on

SourceForge, so search for unix4aplers if you

want more details. Basically it is an attempt to

transfer a bit of APL thinking to the tasks system

programmers do on big Unix boxes. Jobs like load

balancing can be handled very well by the APL ?

if all the tasks are roughly the same weight.

Reports showing the disk space taken by files

more than x days (or years or whatever) old can

benefit from the typical APL calendar routines

which convert from ⎕TS form (as reported by the

VECTOR Vol. 24 N°1

 32

Unix system time) to decimal Julian days.

Remarkably, Reiner could not find any good (i.e. working) examples on the Net to

do this job, so he carefully hand-translated an existing APL calendar library to

Perl to do the work.

Trying to manage huge arrays in a limited workspace by Holger Walliser

How do you program a recursive summation on a 5-dimensional matrix when the

size gets above 250Mb? For the lucky few on 64-bit APL systems on

workstations, the answer is obvious – just buy enough memory! On the

mainframe the job is much harder, and Holger took us through a few approaches,

none of which worked particularly well.

At the end, David Liebtag suggested a more radical approach, using simple

sequential files (the data is a homogeneous floating-point matrix) where it

should be possible to make a fairly simple cover function to ‘map’ the file in bite-

size pieces back into the workspace very efficiently. Maybe at the next meeting,

we will see if the problem can be solved this way!

Themes for 2009 by Morten Kromberg

Dyalog left the Elsinore conference with the best of intentions (stop working on

new stuff, get the reliability up, document what we have) with the 12.1 release

expected quite early in 2009. It sounds as if the big customers have just come

strongly back behind APL, are recruiting new APL staff, and (of course) have a list

of new features which they really, really need. Oh bother, here we go again, said

Morten, looking pleased, but slightly hassled. So look forward to 12.1 a little later

than planned, but definitely with a much shorter list of outstanding bugs.

In the few spare hours available to him, Morten has been working on a simplified

version of Stefano’s WildServer (known for now as the MildServer) which allows

APLers to interact really easily with data coming in from web forms. This looks as

if it is midway between Pete Donnelly’s original ‘demo’ server (which has been

running Starmap and a few related Causeway sites like CUSP very quietly for a

little over 10 years now) and the serious object madness offered by the

WildServer technology. For simple-minded APL folk who just want to get on the

Ajax bandwagon, it has a lot to offer, and it will be offered as an open-source

project on the Dyalog website. Incidentally one of the good things about saving

your APL code outside the workspace as Unicode text files is that such

collaborative development becomes practical.

VECTOR Vol. 24 N°1

 33

Wrap up

This whole meeting had quite an optimistic feel to it. APL on the mainframe is

alive and well in Germany, and seems likely to stay that way for many years yet.

But the APLers of the old school are well aware of new ideas, and (see for

example the Sandvik application) are able to skip a generation very easily by

adding HTTP support to the big old iron kit and coming out smelling of browser.

A well-attended session on the second day

The APL2 language remains almost unchanged over the decades since its

inception, but the interfaces and environment are moving steadily ahead, and as

long as David is around and willing to work on it, steady and reliable progress

will continue. These meetings are always worth the trip, and I hope to see the

same old faces (and a few more new ones) again next year.

http://validator.w3.org/check?uri=referer

VECTOR Vol. 24 N°1

 34

D I S C O V E R

VECTOR Vol. 24 N°1

 35

Structured Storage and

Monitor Expressions
by David Liebtag

liebtag@us.ibm.com

This is a version of a presentation made to the APL Germany 2008 Spring Meeting, since

updated to reflect the release of APL2 Service Level 13. Ed.

Introduction

APL2’s name association facility ⎕NA allows APL programs to cause references to

names to be processed by associated processors rather than the APL2

interpreter. Associated processors are supplied which provide access to files and

programs written in other languages such as C, Java, and Rexx. APL2 Service

Level 12 included a new Associated Processor 15, which provides access to

structured storage. Service Level 13 added support for Processor 15 monitor

expressions which can be used to perform data change tracing and validation.

APL is traditionally a loosely-typed language. Arrays simply contain numbers and

characters and the structure and type of their data can be changed at any time.

APLers usually view this as one of the language’s benefits: they don’t have to

worry about how data is represented internally; they can focus on their

problems. However, many users of other languages view strong typing as a

benefit: type checking helps programmers avoid domain, rank, and length errors.

Associated Processor 15 supports strong data typing and enables APL2

programmers to gain the benefits of type checking that are usually only enjoyed

by programmers of compiled languages. In addition, Associated Processor 15 lets

APL2 programs access data that is outside and larger than the workspace and

share data with programs written in other languages. This article introduces

Associated Processor 15 and demonstrates some of the ways that it can be used.

Strong data typing

Have you ever encountered an error in an application and discovered that a

variable’s array had an unexpected type, rank, length, or depth? How would you

go about finding the cause of such an error? You might have to look at every line

VECTOR Vol. 24 N°1

 36

that the application might have executed that assigned a value to the variable.

Needless to say, in a large application, this might be tedious. Wouldn’t it be nice if

you could force your application to suspend at the point at which the incorrect

value was assigned? That is exactly what you can do with Associated Processor

15.

Consider this expression:

 'I4 1 3' 15 ⎕NA 'Integers'

1

The expression associates the name Integers with a rank one array that

contains three 4 byte integers. (⎕NA returns 1 to indicate the association

succeeded.)

You can use the name just like normal:

 Integers←4 6 8

 Integers

4 6 8

But look what happens when you try to assign a value which does not match the

pattern:

 Integers←12 4.56 17

DOMAIN ERROR

 Integers←12 4.56 17

 ^^

The new second element is a floating point number rather than an integer.

Because the new array does not match the pattern, Associated Processor 15

immediately signals an error.

If you reference the variable, it has the last valid value:

 Integers

4 6 8

Patterns

Associated Processor 15 supports simple, nonhomogeneous, and nested arrays.

The arrays may contain a wide variety of types of data including 1-, 2-, and 4-byte

characters, 1-bit and 1-, 2-, and 4-byte integers, and 4- and 8-byte floating-point

numbers. Character vectors may be fixed-length or variable-length null-

terminated strings. Here are some sample patterns:

VECTOR Vol. 24 N°1

 37

Integer scalar: 'I4 0'

Character matrix: 'C1 2 3 4'

String: 'S1 1 64'

Nested array: 'G0 1 3 I4 1 3 E8 2 3 4 C1 1 32'

In short, Associated Processor 15 supports the all same data types as APL2’s

Associated Processor 11 and the ATR, PFA, and RTA external functions.

Accessing data by address

Sometimes programs written in other languages refer to data by address rather

than by value. Associated Processor 15 can be used to share data with these

programs.

Suppose you used a variable named ADDRESS to hold the result of a program

which returned the address of a three-integer vector. Consider this expression:

 ('I4 1 3' ADDRESS) 15 ⎕NA 'NotMine'

1

In this case, the name NotMine refers to the storage owned by the other

program. You can use it just like before:

 NotMine←14 16 18

 NotMine

14 16 18

You can also retrieve the address of an APL2 array and pass it to programs

written in other languages. Here’s another association expression:

 ('ADDRESS' 'Integers') 15 ⎕NA 'ArrayAddress'

1

This expression associates the name ArrayAddress with the address of the

Integers array. You could use ArrayAddress as an argument to a non-APL

program and that program could access the array directly.

For simple arrays with types corresponding exactly to the APL2 internal data

types, Associated Processor 15 can access arrays that are larger than the

workspace. This enables APL2 programs to access very large arrays that are

allocated by other programs.

VECTOR Vol. 24 N°1

 38

Naming array elements

Because you can acquire the address of arrays, and you can associate names with

arbitrary addresses, you can use Associated Processor 15 to name elements of

arrays. For example:

 ('I4 0' (ArrayAddress+4)) 15 ⎕NA 'SecondInteger'

1

 Integers←3 4 5

 SecondInteger

4

 SecondInteger←67

 Integers

3 67 5

The expression adds 4 to ArrayAddress to adjust the address to the second

four-byte integer.

Accessing exported variables

Sometimes programs written in other languages share data by placing it in

shared libraries (or DLLs on Windows) and exporting it by name. This enables

multiple programs on the same machine to all use the same storage. Associated

Processor 15 supports accessing exported variables.

For example, APL2 on Windows includes a library named aplwin.dll that

exports a 4-byte Boolean variable named DisplayLogo. The following

expressions demonstrate how to access this variable:

 ⍝ Associate name

 ('I4 0' 'aplwin') 15 ⎕NA 'DisplayLogo'

1

 ⍝ Reference value

 DisplayLogo

0

DisplayLogo controls whether the Session Manager displays the product

information dialog during invocation.

Monitor expressions

Each variable associated with Processor 15 has a monitor expression. The

monitor expression is executed each time the variable is changed. Here’s another

association expression:

VECTOR Vol. 24 N°1

 39

 ('MONITOR' 'Integers') 15 ⎕NA 'Monitor'

1

This expression associates the name Monitor with the Integers variable's

monitor expression. You can use monitor expressions to trace variable

specifications. For example:

 3 11 ⎕NA 'DISPLAY'

1

 Monitor←'DISPLAY Integers'

 Integers←3 4 5

┌→────┐

│3 4 5│

└~────┘

You can also use monitor expressions to validate values. For example:

 ⍝ Ensure the first element is 1, 2, or 3.

 Monitor←'⎕ES(~(↑Integers)∊1 2 3)/5 4'

 Integers←17 2 3

DOMAIN ERROR

 Integers←17 2 3

 ^^

A variable’s monitor expression is executed after the variable's value has been

changed.

Arbitrary arrays

Sometimes you want to use Associated Processor 15’s support for monitor

expressions, but you do not want to impose strong data typing. For these cases,

you can supply an empty pattern:

 '' 15 ⎕NA 'Array'

1

Any arbitrary array can be assigned to Array.

Summary

Associated Processor 15 provides efficient ways to detect data errors and share

data with programs written in languages other than APL2.

VECTOR Vol. 24 N°1

 40

Further information about APL2 is available at http://www.ibm.com/

software/awdtools/apl. Detailed information about APL2, Associated Processor

15, and Service Level 13’s other new facilities can be found in the APL2 User’s

Guide through the Library link.

VECTOR Vol. 24 N°1

 41

ISO 9000 Certified APL development
How to achieve Quality Assurance in a small company

or How to do the boring bits and get on with the fun stuff

Chris Hogan

chris.hogan@4xtra.com

That light-hearted subtitle is to point out from the start what this paper isn’t

about: it’s not about making you change the way you develop APL software.

What is it that makes APL so good for software development?

Well, that is a sufficiently large and contentious topic for a raft of papers. I’ll limit

my remarks to a few obvious points. I’m not trying for a rigorous set of

definitions, just a simple list we can all agree with:

 APL’s functional richness gives compact code and high productivity:

 Which in turn leads to small teams as there is no point chopping work up if

a few people can do it, not when larger teams lead to longer

communication lines or adding extra developers results in information

overload by rushing the development.

 The immediacy of function results makes it easy to incorporate non-

technical business experts into the team to interpret and guide the

developers. Not pair programming as advocated by XP perhaps, but

certainly what we might call pair development is a common feature of APL

projects. This simplifies communications at a vital stage of project

evolution.

 The fact that defined functions and operators are a normal part of the

invocation structure enables the developer to build rapidly from small

units. When combined with the rapidity of results this means prototyping

and incremental delivery are a natural way forward.

 Looking at that list we can see why APLers were pioneering modern Agile

methods long before they were even called ‘RAD’. My point is that

VECTOR Vol. 24 N°1

 42

whatever our Quality Management System (QMS) does it cannot interfere

with the advantages of developing in APL.

So what is ISO 9000?

ISO 9000 started life with the British Ministry of Defence: during a war they

wanted to say to any factory in the land “stop what you’re doing and make

tanks/guns/bombs” and be reasonably assured that said tanks would run, the

guns would fire and the bombs wouldn’t blow up while still in the factory.

In 1979 this military standard was published by the British Standards Institute as

BS 5750, with the intention of applying it to peacetime manufacturing, to

improve quality control in industries such as aerospace, where variations in

quality can be disastrous.

BS 5750 became European standard EN 29000, then in 1987 went global as ISO

9000 – ISO is the International Organization for Standardization in English and

the Organisation Internationale de Normalisation in French: neither gives us

“ISO”, it’s from the Greek for equal, so a link with APL already…

The way ISO 9000 worked was to require the factory, or software company, or

call centre, to document, not what they made or did, but how the manufacturing /

coding / telephone-answering procedures were managed, and to prove by

record-keeping that the procedures were being followed.

This first version of ISO 9000 was essentially BS5750 with a different name. It

had three main variants, numbered 9001, 9002 and 9003, depending on whether

you originated new products, maintained products or just handled products with

no concern for how they were made.

I use the word products, but the 9003 version proved popular with service

companies, because you can define, say, a complaints procedure even though you

don’t actually manufacture a physical product. Call centres use this to show they

are handling customers in a consistent way, even if it is badly.

The emphasis was still on conformance with procedures, so a new version was

published in 1994 concentrating on quality assurance via prevention, instead of

just checking final outputs, but even this didn’t change the main product of ISO

9000: shed-loads of work instructions, records and an army of bureaucrats.

Probably most frequent criticism of ISO 9000 was the amount of money, time and

paperwork required to achieve certification. You’re probably thinking “Not good

news for APLers so far”, but please bear with me,.

VECTOR Vol. 24 N°1

 43

The current version, which appeared in 2000, combines the three variants into

one, also called 9001, so an organization claiming to be ISO 9000 registered

probably means ISO 9001:2000 as ISO 9000:2000 is actually the reference guide.

The 2000 version has two main differences which should interest us.

Firstly, it makes ‘continuous improvement’ of the company’s performance the

central purpose of a QMS. Think of it as being more proactive, rather than just

reactive to reviews of the final output. From the APL point of view, we can treat

all business processes as an evolving prototype.

Secondly, the standard became ‘parameterised’: instead of different standards

according for the different activities companies perform, ISO 9001 is intended to

include the lot, but if you can show you don’t need bits, you can leave them out

and if you show you can combine bits, then combine them you can – as long as

the auditor is able to find out where you’ve put them.

I said that everything has got simpler, but ISO 9000 has spawned a slew of

specialised standards, some of which don’t even use the ‘9000’: ISO 10007 is for

configuration management, which can be included in any ISO 9000 QMS for

software development; 14000 is for environmental management; and to add to

the confusion, health systems managers often refer to EN 29000 where there is a

specific medical standard. I’m not going to go into the rest of the range, but I

should mention TickIT, which is an ISO 9000 scheme to “suit information

technology companies, especially software development”. This paper is not about

TickIT, which is a lot more prescriptive and better suited to large companies with

time to waste sufficient personnel to implement it. A software company can have

a certified ISO 9000 QMS for its products and services without having to use

TickIT.

The earlier versions of the standard were very declarative: “the company shall

establish a process to…”, with little guidance on how, and even less idea of why,

you were to do it. The new wording is a bit clearer and more process-driven. I

would argue that developing software is a process, but equally the QMS itself can

be seen as a collection of objects which change state according to a set of rules

applied to them. Nothing in the standard dictates a procedural rather than object

oriented approach, it is up to the developers to describe what they do and stick to

it, not to change they way they work to fit the QMS. Nor is ISO 9000 hostile to the

APL prototyping approach, in fact continuous improvement implies incremental

delivery and refers to the QMS itself as well as the product or service quality. It is

a symmetrical equivalent to the incremental development of an APL project.

VECTOR Vol. 24 N°1

 44

Certification

An ISO certificate is not a once-off, but has to be renewed to prove to the outside

world you are sticking to the procedures you’ve defined. How can a non-IT

professional comment on your work? Well:

He or she doesn’t, they just testify to all and sundry that the processes you said

you would implement have been implemented, are being following and (just

maybe) are having an effect.

If the auditor can follow it, then so can your clients and it should prove

reassuring to them that you can prove the actions you’ve taken on their behalf to

fix their problems or develop their code.

Contents of ISO 9001

ISO 9001:2000 is only about 30 pages long, but like anything important it’s how

you use it that counts. Having said you can leave out what you don’t need, a QMS

must have the following:

Quality Policy

A formal statement by management, usually about one page long, to

commit to the QMS

Quality manual

The guidebook to all other documents, so the auditor can see what you’ve

left out or combined

Control of Documents

How you hand out instructions and details of the QMS to your employees

Control of Records

How you record what you did

Control of Nonconforming Product or Service

What do you do when it goes wrong

Corrective Action

How you fix the problem

Preventive Action

How you stop it happening again

VECTOR Vol. 24 N°1

 45

Internal Audits

Are you following your own standards?

Audits

A problem for the typical APL development team is that there are two types of

auditing: external by a certification body and internal by company staff who are

not part of the team, but how do you audit when you are only a one-man band?

Or even a ten-man band, if you don’t have a dedicated QA department? Like so

many things today, you use the Internet.

In HMW’s case, the Professional Contractors Group (PCG) offers a scheme where

the QMS is kept locally, but backed up via Subversion, commonly used as a code

repository by multi-site development teams. The Internal Auditor is a member of

the PCG staff who can scan the records you’ve published and keep you on track.

The external auditor can also see these records, though they often prefer it if you

visit them for a brief chat. As we’ll see HMW have gone beyond Subversion to

produce an interactive QMS directly available to the auditors.

The PCG scheme

There is one unique feature of the PCG scheme, which is not a part of the general

ISO 9000, but is mandatory for any QMS which is certified to PCG ISO 9000. This

is the Code of Ethics, which is in effect a manifesto of how the company works. It

has to be sent to every client and referred to in any contract. HMW also posts our

copy of the code of ethics on our web site.

The PCG scheme supplies standard documents, such as the “Control of

Documents” and “Control of Records” and templates for the Quality Policy and

Manual. The scheme defines just two main work flows to cover the rest of the

compulsory sections: finding work and doing work. A bit obvious isn’t it?

Finding work

The idea is to show that you are trying to find work you are competent to

do. This just keeps all your records in one place where the auditor can find

them, so you:

List your clients, agencies, web sites, wherever you source your potential

work from. Show that the code of ethics was included in the materials sent.

Perform a simple risk assessment – -does the company have the skills and

resources to do the required work? Keep copies of any quotations sent.

VECTOR Vol. 24 N°1

 46

Doing work

Doesn’t really add a lot more which is specific to this stage:

Keep copies of all contracts and other policies agreed, for example health

and safety, any confidentiality agreements, etc. Any instructions give about

the work you are to perform, basically log what you do, if you’re not given

formal specifications, a daily work log will do. Much of what a developer

does is technical and therefore is outside the remit of the QMS. Invoices

show you billed for work you did and any timesheets, but only if the

contract requires billing by signed timesheet.

Some items, such as the confidentiality agreement, can be stored under either

work flow. There is, of course a bit more about QMS reviews, training (increasing

the skills of staff is as important to the idea of continuous improvement as better

quality in products and service) and so on, but as far as direct work for a client

goes, that’s it. You should have all this information to hand anyway or do you

really work with no idea of what the customer wants?

All ISO 9000 asks is that you record what it was you were asked to do and show

that you did it, or at least worked on it Customer feedback is the only proof you

need. If they are happy then ISO doesn’t care how you made them happy, just that

you record their state of happiness.

The scheme extended

The standard PCG scheme assumes the company is a service provider and

therefore leaves out some aspects of the standard. This isn’t a problem for

developers working closely with users or to a set of requirements, that is those

providing a development service, but it does preclude developing software as a

distinct product.

Fear not! Procedures for these steps have been added into the PCG scheme by

several companies including HMW. There are only really two missing elements: a

specific design and development cycle; and a process to publish and maintain

separate versions of the products.

For design the PCG requirements documents are easily expanded. ISO 9000 does

not dictate what the technical content of any of these documents has to be. If you

like patterns, then your procedure might be to state which pattern you are using

and that it is verified by someone in your company. The auditor just has to see

that one was specified and that someone bothered to verify it. You don’t fail for

VECTOR Vol. 24 N°1

 47

using the wrong pattern, that’s your choice as an expert. You can fail only if you

boast to the world you are using patterns and then either you don’t use them or

can’t prove to your customer and auditor that you did.

An ISO 9000 Quality System for APL developers

HMW Computing has developed a Wiki based system using TWiki, which follows

the PCG scheme structure, with optional extensions for product development, but

is directly available via the world wide web, raher than Subversion. I’m not

intending this section as a sales pitch, but I do have to explain some features of

our QMS Wiki to show how APL fits with ISO 9000 – but if anybody wishes to talk

to me later…

What do we have to do?

Not as much as you might think, as long as we do it consistently. I’m not the sort

of person to add unnecessary bureaucracy to anyone’s burden, especially my

own. Our solution is based on the premise that if a development team has

documented its work properly, then most of the effort to comply with ISO 9000

has already been done. I stress that this is a structure for a team to record

everything about any type of project. So for a particular project, much of this will

be unpopulated. Only a few items are mandatory to satisfy ISO 9000.

You don’t have to document payroll procedures for example. Nothing stops you

from doing so, but this is where companies often get bogged down, putting things

into the QMS which only have peripheral impact on the work they do for the end

customer. In XP terms YAGNI – “You Ain’t Gonna Need It”. Just stick to what’s

necessary to get the APL project done.

Another mistake made by many companies is that they attempt to get the QMS

right first time. An auditor at a working party meeting of the PCG the other day

stated that this was a very bad idea: get your QMS working and go for the audit. If

nothing else it leaves room for some “continuous improvement”!

The Wiki facilities

The Wiki has pages for our client entities, which can proceed through the

different states of being a prospect, a client, and sadly sometimes an ex-client.

Various topics may be associated with them at different stages. Also we keep all

VECTOR Vol. 24 N°1

 48

our suppliers in the system. The clients’ staff get their own pages, so we can

mange contacts with them and their responsibilities within projects.

The fact that all the project-related events are held in the Wiki made a team-wide

calendar an obvious extension to the QMS. We have pages for meeting minutes

and site visits, with a debrief form for that vital feedback, so we can tell if they

are satisfied, well, at least as far as the QMS is concerned. All events, together

with scheduled development actions and purely private events can be displayed

on the calendar. We have the usual options for repeating events, appointments

and public holidays. In short, the Wiki has all the features of a Customer

Relationship Management System, without going over the top.

At an early stage the entity is only potentially a Client. Recording at this level is

simple: a Wiki Page to record our understanding of the requirements; proof that

we sent the code of ethics and (we hope) some acknowledgement that they read

it (most clients don’t bother); a form for risk assessment (mainly can we do the

job and do we want to); and container pages to which are attached any

Quotations, CVs or Confidentiality agreements exchanged.

Quotations can be as brief as an email saying something like: “It’ll cost you

£5,000” to do the work you describe in the attached Word document”, which you

send to the quotations page (there is a email to Wiki gateway)- you have to be

able to prove you did quote and that the customer agreed for you to go ahead on

that basis. If on the other hand, you use a method to estimate the effort, then say

so in the Quality Manual and prove you use it every time you issue a quotation to

your customers

The prospect becomes a client when we start some work for them, so it doesn’t

add much more, except give us places to hold more documents, such as any

Health and Safety policies or other general instructions, to initiate projects and a

set of searches to aggregate information for the project level Wiki pages, which is

really were the main activities take place.

Though I said earlier that we could leave out the ISO 9000 section on handling

and storage of products if we were just in a consulting project, we do have to

allow for the situation where we are lent, or placed in charge of, some property

belonging to our client. This might be a piece of software installed on our

equipment to access a database, or the loan of a laptop. In all cases we must

demonstrate to the auditor we are taking care of our client’s assets. If we go as

far as to provide facilities to a client (for example web hosting), or if we are given

the responsibility to run some facility on behalf of the client we must once more

list what it we are doing and do and fill in a risk assessment form. All of these are

VECTOR Vol. 24 N°1

 49

in pre-defined Wiki pages, so the burden of completing them is light. They are to

record what it is we are up to for the auditor to have a clearer understanding and

to ensure we keep an eye on what we agreed to do.

HMW uses Process and Data Definitions to gather user requirements into outline

system specifications. They are based on a number of sources and are compatible

with IEEE 830 (which I won’t go into here), we’ve successfully used them for

years, but this particular layout is not mandatory for ISO 9000. We turn the

definitions into Development Schedules and Modules, which act both as a part of

the code repository. And as a data item for the Incident and Change Request

tracking parts of the QMS.

There is a page to record the project environment, which describes the hardware

and operation system the project is to use. The daily notes log is a bit like a

project Blog. There are a number of other supporting pages, but I won’t go into

them here. The fact that all this information is all kept in a Wiki enhances the

project documentation over anything kept on paper. For example, by

automatically cross indexing Process and Data Definitions we can see which

processes create and access particular data items.

This supports the whole software development lifecycle. It’s all ISO 12207

compatible, which is yet another standard (but don’t get me started on this one),

so we are killing two birds with one stone. Of course, other documents could still

conform to ISO 12207 if they satisfy the QMS requirements.

ISO 9000 says a lot about checking output for defects, which I think is called

testing in software developments. We use our development schedule pages to

assign testing activities, but as long as you can prove you’ve tested the software

to an auditor, then you can use any layout you wish.

HMW uses Maya and Inca our in-house code and change management tools. They

are separate from the QMS, of course, but we use the Wiki to publish change files

to clients and as the repository for completed products, which covers the

preservation, handling and dispatch requirements of ISO 9000. Other teams

could use workspaces or some other mechanism. TWiki handles all file types as

attachments, with the added advantage of built in version control on each

attachment. I stress that we use the Wiki as a repository of official releases, not as

the development platform.

The Wiki has a sub-system to allow recording of hours worked against any

project defined in the QMS. The result is searchable time sheets, which are used

by our in-house accounts to generate invoices based on the time recorded.

VECTOR Vol. 24 N°1

 50

We monitor the QMS performance with a series of searches and the work flows

provide sensible points for reviews, with appropriate links to on-line forms

which activate when needed. The data model is fully documented, but I’ve not

included it for the sake of brevity, as this article is long enough as it is.

Why would you want ISO 9000?

For some business sectors it is a pre-requisite: defence; engineering; and some

NHS work. Many other organizations have ISO 9000 certification for at least their

customer services and feel more comfortable with suppliers who can

demonstrate the same standard of service. I would think that all customers care

about the quality of work that is done for them and ISO 9000 is one way of

advertising that you are the ones to provide it.

It shows you have a process in place and so increases customer confidence and

satisfaction, improving the likelihood of closing deals or renewing contracts.

Using a standard document can increase your efficiency, obviously by making

sure you don’t forget something, but also by stopping you don’t from putting

down too much, wasting time and confusing the client. After all aren’t things like

“patterns” development templates? Aren’t they just a reminder of what to include

and exclude in any process or object?

Conclusion

Our experience shows that, admittedly once we put in a lot of effort to build the

QMS, it doesn’t have to be painful to use keep it going.

APL projects using the type of development approach we take for granted can

achieve international standards and not be seen as some bastard child of the

“mainstream” techniques.

ISO 9000 can help you to make your company more productive, efficient and

therefore more profitable.

Further reading

1. PCG ISO 9000 official site http://iso9001.pcg.org.uk/cms/index.php

2. List of ISO 9000 standards
http://www.iso.org/iso/iso_catalogue/catalogue_ics/
catalogue_ics_browse.htm?ICS1=3&ICS2=120&ICS3=10

VECTOR Vol. 24 N°1

 51

3. Twiki Open Source Enterprise Wiki http://twiki.org

4. HMW’s Code of Ethics
http://www.hmwcomputing.co.uk/CodeOfEthics.html

5. IEEE 830 Recommended Practice for Software Requirements
http://standards.ieee.org/reading/ieee/std_public/description/se/
830-1998_desc.html

6. ISO/IEC 12207 Framework for Software Lifecycle Processes
http://www.iso.org/iso/catalogue_detail?csnumber=43447

VECTOR Vol. 24 N°1

 52

Unicode Support for APL
by Morten Kromberg

mkrom@dyalog.com

An earlier version of this article was presented as a paper at APL07 and published in

APL Quote Quad as part of the Proceedings. Ed.

Unicode offers users of APL the same benefits as users of other programming

languages, namely the ability to consistently represent and manipulate text

expressed in any of the world’s writing systems. For APL users, there is a

significant bonus, which is that Unicode includes the APL character set, and

therefore allows APL programs to be represented and manipulated using

industry standards which are finally becoming widely supported (‘only’ 17 years

after the first version of the Unicode standard). The paper presents the design of

Unicode support for an APL interpreter which fully supports Unicode in all

phases of system development and deployment. The paper discusses the internal

representations used for Unicode characters in Dyalog version 12.0, and how the

design is intended to provide a smooth upgrade path of users of earlier versions

of the system.

Introduction to Unicode

Unicode is an industry standard allowing computers to consistently represent

and manipulate text expressed in any of the world’s writing systems. It assigns a

number, or code point, to each of approximately 100,000 characters, including

the APL character set. The first version of the standard appeared in 1991, but it is

only in the last few years that support for Unicode has become common in

operating systems and ‘mainstream’ applications.

The adoption of Unicode provides APL users with three important benefits:

 It becomes possible to write applications that fully support not just North

American and Western European character sets, but all of the world’s

languages and writing systems – including the APL character set itself.

VECTOR Vol. 24 N°1

 53

 Character data no longer needs to be translated as it enters or leaves the

APL system during interoperation with other components like database

systems or code libraries written in other languages.

 APL source code can now be handled by the off-the-shelf source code and

project management tools.

Adding support for Unicode requires changes to the way character data is

entered, displayed and stored in an application. Much of the work involved

consists of ripping out special APL mechanisms for handling keyboards and

translating data, in favour of using standard tools provided by the operating

system. Although work is required to change the way the interpreter and session

manager works, the resulting system is easier both to maintain and to explain to

future generations of APL users.

Character encodings

Although the Unicode standard assigns a unique number to each character, these

Code Point Numbers can be stored using a number of different encodings. There is

a set of fixed-width encodings named UCS-n, where UCS stands for Universal

Character Set and n is the number of bytes used to represent each character, and

another set of variable-length encodings named UTF-n, where UTF stands for

Unicode Transformation Format and n is the smallest number of bits (not bytes)

used per character.

The four most commonly occurring representations are probably UCS-4, UCS-2

(which has become obsolete since Unicode broke the 2-byte boundary), UTF-8

and UTF-16:

UCS-4

(also known as UTF-32) is a fixed-width encoding which uses 4 bytes per

Unicode character, and is able to represent all characters that will ever be

defined by the standard. The Unicode standard guarantees that the highest

code point which will ever be allocated is x10FFFF, a number which

requires 21 bits to represent, so 4 bytes (32 bits) is ample to represent all

of Unicode. This format is common in some Unix environments.

UCS-2

is an obsolete representation which was popular in the early days, when

the standard only defined characters in what is now known as the Basic

Multilingual Plane. Until Windows 2000, it was the default encoding on the

VECTOR Vol. 24 N°1

 54

Windows platform. It can only represent Unicode code points up to xFFFF

(65,535 - which does still cover most of the commonly-used characters).

UTF-8

is the most commonly used encoding for data in files (especially web

pages), under both Unix and Windows. The reason for the popularity of

UTF-8 is that it is backwards compatible with 7-bit ASCII (using one byte

to store each character in the range 0-127), and also that – unlike the other

encodings - it is not affected by the endianness of the platform (see the

following discussion of the Byte Order Mark). Two bytes are required to

represent code points from 128 to 2,047 (x7FF), three bytes per character

from 2,048 to 65,535 (xFFFF), and 4 bytes per UTF-8 encoded character

outside the Basic Multilingual Plane.

UTF-16

is an encoding which is identical to UCS-2 for all characters in the range 0-

xFFFF, except for 2,048 so-called surrogate code points (D800-DFFF).

Some bit patterns in that range are used in UTF-16 to indicate that second

16-bit word is required. UTF-16 is the default encoding on the Windows

platform, from Windows 2000 onwards.

The Byte Order Mark

The final thing that should be mentioned in a five-minute introduction to Unicode

is the ‘BOM’. Because microprocessors differ in whether the most or least

significant byte is written to storage first, it is necessary to know which type of

system wrote a text file in order to properly decode it. Unicode defines two code

points, xFEFF and xFFFE, as the big- and little-endian Byte Order Marks,

respectively. Some (but not all) applications will write byte order marks, usually

at the beginning of a text file, to make it possible to detect the encoding used:

File starts with… Encoding is

EF BB BF UTF-8 (these 3 bytes are the UTF-8 encoding of FEFF)

FF FE UTF-16 (or UCS-2), little endian

FE FF UTF-16 (or UCS-2), big endian

FF FE 00 00 UTF-32 / UCS-4, little endian

VECTOR Vol. 24 N°1

 55

When writing text files, especially in a Windows environment, it can be a good

idea to prefix the file with the above byte sequences (but some applications still

ignore or get confused by BOM sequences).

Wikipedia is a good source of information about encodings: take a look at

Comparison of Unicode encodings.

Using a Unicode APL system

The APL system with Unicode support is designed to look, feel – and work – just

like the non-Unicode systems that preceded it. With a very small number of

exceptions, APL code that does not either exchange data with external

components, or use the system function ⎕DR to explicitly work with the internal

representation of character data, should run unchanged.

The obvious difference (which is hard to detect if your main language is English),

is that you can enter and display all the characters on your keyboard – and use

‘Input Mode Editors’ for eastern languages – not only to enter data into

applications, but also into the APL development environment itself.

The following example shows the definition and execution of a simple multi-

lingual application:

The black rectangle at the top of the screen, which has dropped down a menu, is

not part of the APL session – it is the Windows Language Bar. The language bar

allows multi-lingual users to switch keyboard layouts – in the above example

Danish and Japanese are available. For entry of APL characters, an alternative

layout for the main language is typically used:

VECTOR Vol. 24 N°1

 56

Danish – Dyalog AltGR (selected above) is an APL keyboard based on the standard

Danish keyboard, with the addition of AltGR (which can also be keyed as

Ctrl+Alt) key combinations to enter APL symbols. For example, ⎕ is entered using

AltGr-L. ‘Classic’ Dyalog Keyboards based on Ctrl key combinations are also

provided, but these are harder to use in most Windows applications, which tend

to define a number of Ctrl combinations as ‘hotkeys’. The bad news is that more

and more applications are starting to use AltGR key combinations as keyboard

accelerators, which means that some APL characters remain hard to enter in

those applications (some applications allow you to disable these hotkeys).

The APL keyboards are not part of the standard operating system language

support, but they have been created using standard tools (in the case of Microsoft

Windows, we use a tool called the Microsoft Keyboard Layout Creator). One

immediate advantage of using standard tools is that we have been able to involve

more people in keyboard creation, so version 12.0 is shipped with significantly

more national APL keyboards than earlier versions.

Hotkeys (typically Ctrl+Left Shift) can be set up for quick switching between

input modes without using the mouse to click on the Language Bar.

Most of the behavioural differences apparent in the Unicode edition consist of

strange behaviour having disappeared, for example:

 You can copy and paste between the APL development environment and

other applications, and all that is required for APL symbols to appear

correctly in a word processor is that a Unicode font containing APL glyphs

is selected. Both Windows and Unix systems come with at least one

standard Unicode font which can be used to display APL.

 The same is generally true when you write data to files or database

systems: No translation of the data is required (although you might be

required to encode the data, depending on the interface used).

The code changes that are required are natural consequences of the new internal

representation of characters in the Unicode edition of Dyalog APL.

VECTOR Vol. 24 N°1

 57

Internal representation

Historically, APL systems have used a single byte (8 bits) to represent each

character in an array. The list of all the 256 possible characters [1] is known to

APL users as the Atomic Vector, a system variable named ⎕AV. Atomic vectors

differ from one vendor to the next, sometimes even between products from the

same vendor, and some vendors (including Dyalog) allow the user to redefine

sections of this system constant, in order to support different national languages.

The highest currently assigned Unicode code point is currently around 175,000,

and the standard specifies a maximum value of x10FFFF (a number slightly

larger than one million – an order of magnitude higher than the total number of

characters currently defined). Three bytes (24 bits) would be sufficient to

represent any Unicode character. In practice, it is more common to use four bytes

(UCS-4/UTF-32) for a ‘complete’ fixed-width representation, simply because

three bytes is an impractical group size for most computer hardware.

Obviously, a single byte per character is no longer sufficient to represent

character arrays in a Unicode APL system.

Unicode representations in other array languages

At least two array language vendors (IBM and Jsoftware) had implemented

Unicode support before Dyalog, so we had the benefit of examining the solutions

that our colleagues had chosen before deciding what to do. I am grateful to David

Liebtag at IBM and Chris Burke of Jsoftware for helping me to understand the

details of – and the reasoning behind – the choices that were made:

IBM added multi-byte character support to APL2 before the first version of the

Unicode standard saw the light of day. From Version 1 Release 3 (dated 1987),

APL2 uses 1 and 4 byte representations for character data. The 1-byte

representation is used for arrays containing characters that are all elements of

the APL2 atomic vector. The 4-byte representation is used for other character

arrays. In the 4 byte representation, 2 bytes contain the data’s codepage and 2

bytes contain the data’s code point. Support for Unicode was added in Version 2

Release 2 (dated 1994), where APL2 supports codepage values of zero and 1200

which both indicate the data uses the UCS-2 representation. These APL2

representations have the advantages that existing applications can run without

change and applications which only use characters in the APL2 atomic vector

have minimal storage requirements.

VECTOR Vol. 24 N°1

 58

J introduced a double-byte character type containing UCS-2 encoded characters

in Version 4.06, which was released in 2001. From Version 6.01 (September

2006), J switched from using ANSI to UTF-8 as the default encoding of (single-

byte) character constants entering the J system from the keyboard and through

the execution of J script files. This change was made in order to make it easy to

work with text files, and in particular to support J scripts containing Unicode

characters, as UTF-8 had emerged as the de facto standard for such files. If J

applications wish to view Unicode strings as arrays where each element of the

array is exactly one Unicode character, conversion to the double-byte (UCS-2)

representation is required.

Initially, we considered following the APL2 model and having two encodings –

one based on our atomic vector and a ‘wide character’ type containing Unicode

characters not in ⎕AV. Upwards compatibility is important to our users, and this

solution would allow existing applications to run completely unchanged, without

changing the storage requirements. Eventually, we decided against doing this for

two reasons:

 Simplicity: the number of people who will learn to use APL in the future

vastly exceeds the number of people using it today. Maintaining two

representations, and trying to continue to explain to future of generations

of APL programmers how the single-byte representation came about, was

not felt to be in the long-term interests of our users.

 The above was compounded by the fact that users of Dyalog APL have

been able to customize their atomic vectors for different languages (in

Eastern Europe in particular), so not all atomic vectors are the same.

Exposing the variable-length encoding to the end user in the way that J has done

did not feel like an attractive solution. This gives a system in which character

arrays containing about 50 European characters in the ANSI set (but outside

ASCII) cannot easily be compared – or easily extracted from an array – without

first being converted to a double-byte representation, where they consume twice

as much space. For example, the following expression gives a length error in J:

 'ä'='Seppälä'

This is because the array on the right has 9 elements, and the one on the left has

2. It is very easy to work around this in J, all you have to do is convert the strings

to double-byte characters first using the public utility function ucp – but this just

didn’t ‘feel right’ to us.

VECTOR Vol. 24 N°1

 59

Finally, Unicode had broken the 2-byte barrier in the years following the APL2

and J implementations, and we did not feel that we should restrict our users to

the Basic Multilingual Plane.

One code point, one character

After much debate, we decided that the new Unicode product should only have a

single type of character as seen from the user’s point of view. Therefore, all

character arrays contain one Unicode code point number for each character in

the array. The system picks the smallest possible internal representation (1, 2 or

4-bytes), depending on the range of elements in the array – in the same way that

Dyalog APL has always stored integers. This means that most existing customer

data will continue to be represented using one byte per character. Arrays which

contain APL symbols require two bytes per element, and a very small number of

characters require four bytes (but no pre-existing data created by an earlier

version of the system will require more than two). The character array

'Seppälä' requires 7 bytes to store the contents of the array, and the system

behaves as any Finnish or Japanese [2] person would expect:

 'ä' = 'Seppälä says: "こんにちは世界"'

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the above example, the array on the right is stored using two bytes per

character, because of the Japanese characters, which have code point numbers

above 255:

 ⎕UCS'こんにちは世界'

12371 12435 12395 12385 12399 19990 30028

⎕UCS is a new system function for converting to and from integer code point

numbers to the corresponding characters. The monadic function is self-inverse,

and has the same definition as in APL2 implementation: a right argument of code

points gives you a character array of the same shape:

 ⎕UCS 123 9077 91 9035 9077 93 125

{⍵[⍋⍵]}

In Dyalog APL, ⎕UCS also accepts a left argument which must be the name of a

UTF encoding. In this case, if the right argument is a character array, the numeric

result contains the encoded data stream, and vice versa:

VECTOR Vol. 24 N°1

 60

 'UTF-8' ⎕UCS '界'

231 149 140

 'UTF-8' ⎕UCS 65 195 132

AÄ

The dyadic extension makes it straightforward to work with variable-length

encodings. Writing any character string to a UTF-8 encoded text file requires a

slightly more complex expression, along the lines of:

 (⎕UCS 'UTF-8' ⎕UCS text) ⎕NAPPEND tn

The leftmost ⎕UCS converts the integers returned by dyadic ⎕UCS back into

characters before writing them to file. This is necessary because numbers in the

range 128-255 would cause data to be written using two bytes per element. In

effect, the last ⎕UCS is used to turn the numbers into 8-bit unsigned integers. We

debated adding an ‘unsigned’ type number to native file functions, or even a type

number to select UTF-8 encoding as part of the native file interface, but decided

to be conservative in the first Unicode release, as the above expression is quite

straightforward and easily embedded in utilities for manipulating files.

If your application inhabits the Microsoft.Net framework, you can leave the

encoding to the framework, and simply write:

 System.IO.File.WriteAllText filename text

The default encoding used is UTF-8, but this can also be selected using an

optional third argument, for example:

 System.Text.Encoding.UTF16

The Classic Edition

Most applications written in Dyalog should load and run in the Unicode version

without any changes – if they only use APL’s own storage mechanisms

(workspaces and component files) [3]. Applications which use Microsoft.Net,

OLE/COM and the ODBC interface, will generally also only require minor

changes, if any. Data moving through these interfaces was already being

translated to UTF-16 for the first two and ANSI for ODBC.

However, many of our users have applications which share data with the outside

world using other mechanisms. These applications will almost certainly contain

some code which is dependent on the internal representation of character arrays.

Even if an application is not actually going to use any new characters, modified

code will need to be verified and tested in the new environment.

VECTOR Vol. 24 N°1

 61

Even in the case where an application loads and runs without changes,

components which the APL code connects to may not be able to deal with data

outside of the ASCII or ANSI range. The application may need new validation

code to be inserted in order to avoid breaking partner code. If it is the intention

to extend the domain of data that can be handled to include new Unicode

characters, the format of any external storage and encodings used in all

connections with the outside world also need to be reviewed and possibly

changed.

In recognition of the fact that many applications are going to have to go through a

conversion cycle which might take some time to plan and execute, a ‘Classic

Edition’ will be available for several future releases of the product. Dyalog Classic

Version 12.0 will continue to use the single-byte atomic-vector-based

representation of characters and all of the old translation mechanisms for data

entering or leaving the system, and is intended to be 100% upwards compatible

with earlier versions.

Although it is 100% compatible with old versions, the Classic edition is able to

read the new data formats that the Unicode system uses in component files and

TCP sockets. The intention is that users will safely be able to experiment with

building Unicode-capable versions of their applications without having to have

two sets of source code. Classic and Unicode variants of the Dyalog product itself

are built from the same source code, differing only in whether character data is

translated and limited to one byte per character – so the burden of supporting

them both is mostly a QA and packaging issue.

We could have decided to carry the ‘old style’ character type forward into a single

new system (as APL2 and J have done), but although this would possibly have

made the transition smoother in the short term, it would quickly become a

burden both for us and for our users. We felt that having two character types

which required translation when moving between the two would be an endless

source of confusion, particularly for new users.

Instead of complicating the product indefinitely, we decided to have two separate

editions of product for a period of time, and design these in such a way that they

inter-operated easily, in order to provide an environment which encouraged

people to move to Unicode. This required a significant amount of additional work

for us, and perhaps a little extra work for our users in the short term, but should

result in a simpler system going forward.

VECTOR Vol. 24 N°1

 62

Inter-operability between Classic and Unicode

A large part of the work involved in producing the Unicode implementation has

been aimed at minimizing the effort required to move an existing application to

the Unicode system – and in particular doing everything reasonable to avoid ‘big

bang’ data conversion events, which can be daunting in large systems with many

components – and tend to discourage conversions.

The Unicode edition is able to load workspaces and share component files with

Classic editions (versions of Dyalog APL before 12.0 are also considered to be

Classic). Component files created by Classic editions are considered to be ‘non-

Unicode’, and new files created by Unicode editions can optionally be created

with the Unicode flag switched off. TCP Socket objects have an equivalent flag.

Any character data written to non-Unicode files or sockets is translated to the old

format as it is written. This makes it possible to move part of an application to

Unicode, allowing unconverted parts of the application to continue to work in

Classic mode, in a controlled fashion.

In order to share data with Classic systems, a Unicode interpreter needs to know

what the atomic vector ‘used to look like’. A new system variable ⎕AVU (Atomic

Vector-to-Unicode) defines the Unicode code points of the Atomic Vector [4]. In

the Classic edition of version 12.0, which still uses single-byte characters based

on an atomic vector, ⎕AVU defines how to map characters to Unicode (for

example, when writing data to a component file with the Unicode flag enabled).

The Unicode edition uses the variable to map data received from old APL

systems, and to translate back to the old format when writing to non-Unicode

component files and TCP sockets. Users who have defined translate tables and

fonts to provide regional atomic vectors can set ⎕AVU to ensure that old data is

correctly converted to Unicode. ⎕AVU can be localized and has namespace scope,

making it straightforward to integrate data from different regions, or old

applications using different conventions. ⎕AVU is intended as a migration tool. It

should be used as a temporary measure to access data which absolutely has to

remain in the old format (which might take a decade or two, but hopefully not

longer than this).

Interoperability between the Unicode edition and versions before 12.0 is limited

to the ability of the Unicode system to write to component files in the old format,

and the ability of the Unicode system to)LOAD old workspaces. However, from

Version 12.0, both editions can read each other’s data formats (workspaces,

sockets and files) – so long as a Classic edition is not required to receive or read

characters which cannot be represented in its atomic vector. In this situation, a

TRANSLATION ERROR is signalled.

VECTOR Vol. 24 N°1

 63

Name Association

The Microsoft Win32 API is still used by many applications to access services

provided by the Windows platform. As part of the migration to Unicode that is

still ongoing in the platform itself, Windows generally provides two versions of

every Win32 API function: a version which expects string arguments to contain

single-byte ANSI data (with a name ending with the letter A), and a version which

expects Unicode data encoded as UTF-16 (with a name ending with W for Wide).

The system function ⎕NA has been extended to make it simple to write code

which can run on both versions of the API. If an API function is named with a

trailing *, ⎕NA will link to the A function from the Classic edition, and the W

function from the Unicode edition.

Likewise, the argument type T without a width specification is interpreted to

mean a wide character according to the convention of the host operating system.

This translates to T1 in the Classic edition, T2 under Windows Unicode, and T4

under Unix or Linux.

For example, the following function will display a Message Box with OK and

Cancel buttons in both editions (under Windows):

 ⍷ok←title MsgBoxmsg;MessageBox

[1] ⎕NA'I user32⍹MessageBox* I <0T <0T I'

[2] ok←1=MessageBox 0 msg title 1 ⍝ 1=OK, 2=Cancel.

 ⍷

Underscores

Somewhat surprisingly, Unicode seems to spell the death of the use of the

underscored alphabet in APL identifiers. The APL Standards committee deserves

huge credit (Praise them with Great Praise, except for the unfortunate episode

regarding the naming of tacks [5]) for getting all other APL symbols that have

ever been used or proposed in an APL system into the standard. However, the

underscoring of letters of the English alphabet is seen as a form of emphasis, and

underscored characters have not been assigned code points.

In most Dyalog installations, it is a long time since the 26 characters that used to

be the underscored alphabet have been ‘recycled’ to provide a selection of

western European accented letters:

 ⎕AV[97+⍳26]

ÁÂÃÇÈÊËÌÍÎÏÐÒÓÔÕÙÚÛÝþãìðòõ

VECTOR Vol. 24 N°1

 64

However, some users of Dyalog APL still have significant quantities of code using

underscored identifiers. To allow these users (even more) time to migrate,

underscores have been mapped to a circled alphabet – which somehow did

manage to get included. Adrian Smith’s font APL385 Unicode, which has become

the standard font for most Unicode APL systems, displays these characters

(‘incorrectly’) as underscores:

 ⎕AVU[97+⍳26]←⎕UCS 9397+⍳26

 ⎕AV[97+⍳26]

ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

The first statement above specifies that the relevant part of the atomic vector

should be mapped to the circled alphabet in Unicode, the second displays the

‘third alphabet’. In any other Unicode font, these would display as the circled

alphabet, Ⓐ to Ⓩ. We strongly recommend that anyone still using underscored

letters makes plans to give them up. The underscored alphabet now constitutes

the sole remaining incompatibility between the APL character set and Unicode.

Future challenges

We believe that Version 12.0 of Dyalog has achieved a number of important

objectives:

 Dyalog applications can make full use of Unicode data in applications.

 A reasonably smooth migration path exists from the Classic to Unicode

editions of the product.

 The use of Unicode script files for APL source code makes it easy to tap

into a large collection of software development tools that we can now

share with users of other programming languages.

There is not space here to discuss the latter point, but the following screenshot

shows an inexpensive file comparison tool called Compare It!, which the author

spent about an hour finding and downloading from the internet. It was able to

compare and merge APL source files without any other work than selecting the

APL font for display:

VECTOR Vol. 24 N°1

 65

A number of challenges remain to be resolved in future releases:

Allowing new characters in names

Unicode supports just about all human alphabets, which raises questions about

whether letters from other languages should be allowed in identifiers named by

APL users. In the first Unicode version, we have not taken any steps in this

direction, except to allow letters from the circled alphabet and the alternative

European letters shown in the discussion of underscores (these were previously

mutually exclusive, as pre-Unicode users had to pick one or the other of these

sets).

The main reason that we have hesitated is that there is significant potential for

confusion between similar characters. In particular, the APL language uses a

number of Greek letters as primitives. There is a body of opinion which holds

that the clearly visibly distinction between primitive symbols and user-defined

names is an important aspect of the readability of APL language statements.

Greek APL users are undoubtedly justified in wanting to write αρίθ←{⍴⍵} in

place of count←{⍴⍵}, but (depending on the font), readability may suffer.

Other languages can cause confusion due to similarity with English letters. For

example:

 ⎕UCS 65 913 1040

AΑА

The above statement returns the first letter of the Latin, Greek and Cyrillic

alphabets. I’m not sure I would like to debug code in which A, Α and А were three

different variables – or go looking for a font in which I could tell the difference

between all the capital As in Unicode.

VECTOR Vol. 24 N°1

 66

The issues above were enough to convince us to chicken out of extending the set

of characters allowable in user-defined names, until we have had a bit more time

to think about the consequences. In an age where writing components for use by

other languages is getting more and more important, a conservative approach to

naming seems like a good idea.

Improved display

While the use of fixed-pitch fonts for APL sessions and code editors has clearly

been the best choice to date, Unicode poses new challenges. Some scripts use

symbols which should occupy twice as much space as Latin letters. In addition,

some languages are expected to be displayed from right to left. The following

screen shot illustrates both issues. The code sample creates a form containing an

edit field, and inserts into it:

 The three first letters of the Hebrew alphabet

 Two double width Japanese “Zenkaku” characters.

Windows controls have the knowledge required to correctly render this text: The

three Hebrew letters are displayed from right to left, and the Japanese characters

are given more space. The extent to which it would help developers if the session

did the same, is not clear. It is probably a good thing if we could avoid having the

Japanese characters overlapping in the session, as they do above. As an interim

measure, Version 12.0 has a property on the session which can be used to

increase the spacing between characters if you are using characters which are

wider than normal.

On the other hand, it seems that one would want it to be easy to predict the result

of a statement like:

 '全角גבא'⊂3

 ג

VECTOR Vol. 24 N°1

 67

In this case, it seems to make sense that the session manager of an array oriented

language should stick to the view of each character as separate element of the

array, and always display arrays in the same way – first element on the left.

Fun and Games with Unicode

Unicode can be fun, too:

 ChessPieces←⊃'♔♕♖♗♘♙' '♚♛♜♝♞♟'

 Officers←3 5 4 2 1 4 5 3 ⋄ Pawns←6

 White Black←1 2

 ix←Black White∘.,Officers,8⍴Pawns

 Pieces←4 8⍴ChessPieces[0 ¯8⌽ix]

 Board←(2⌽4/1 0)⍀Pieces

 'Chess' ⎕WC 'Form' 'Uni-Chess Beta'(40 20)(341 381)'Pixel'

 'Chess' ⎕WS 'Font' 'Arial Unicode MS' 30

 'Chess.Board' ⎕WC 'Grid' Board (0 0) Chess.Size

 Chess.Board.(TitleWidth CellWidths←60 40)

 Chess.Board.ColTitles←,¨'ΑΒΓΔΕΖΗΘ'

 Chess.Board.BCol←(192 192 192)(127 127 127)

 Chess.Board.CellTypes←(⍳8)⌽8 8⍴2 1

 Chess.Board.RowTitles←,¨⎕UCS 8543+⌽⍳8

Pawn to Queens Bishop 4?

 Chess.Board.(Values[5 7;3]←Values[7 5;3])

VECTOR Vol. 24 N°1

 68

The hard part is now done; the rest is left as an exercise for the reader.

Acknowledgements

I would like to thank:

 David Liebtag and Chris Burke for helping me get the story a bit straighter

on the details of the APL2 and J Unicode implementations.

 Anssi Seppälä for the use of his name in an example, and Alexey

Miroshnikov for “Здравствуй мир”

 John Daintree, John Scholes, Geoff Streeter, Nicolas Delcros and Vincent

Chan – and many others at Dyalog.

For more on Dyalog Version 12.0, see www.dyalog.com/help

Notes
1. Or in the case of APL systems on 9-bit DEC architectures, 512.

2. If the Japanese example doesn’t actually mean “Hello World”, it is the Internet’s fault!

3. The only language APL primitive affected is monadic grade up, which now sorts

according to Unicode rather than Atomic Vector indices. For more information on coding

VECTOR Vol. 24 N°1

 69

changes, see http://www.dyalog.com/help/

html/relnotes/converting%20to%20unicode.htm

4. The system variable ⎕AV still exists in the Unicode edition, in order to allow old code to

continue to run. It is still a 256-element character vector, which is now ‘defined’ by

⎕AVU, in that ⎕AV≡⎕UCS ⎕AVU.

5. It is unfortunate that Unicode names ⍕ “APL functional symbol up tack jot” and ⍸ “Down

Tack”.

VECTOR Vol. 24 N°1

 70

L E A R N

VECTOR Vol. 24 N°1

 71

Rain flips its q
A database engine for simple folk

by Adrian Smith

adrian@apl385.com

These notes are lightly adapted from the script I wrote for the Sunday night light-

entertainment at Dyalog 08. Yes, the apparent integration of q-sql with the APL

session was a gross deception using ⎕TRAP but the basic idea of running a low-

tech relational database inside your workspace is a perfectly good one. I pretty

well depended on it for the 10 years I led a team who wrote applications in APL,

and who knew no other way. Morten also made very good use of the query tools

in his examples of monitoring APL primitives, which was nice to see. Sometimes

the best ideas are the ones you come up with under so much time pressure that

you have no time to look ahead. We shall see. Anyway, here is the script that I

spoke to, and which was included on all the memory sticks, along with the

workspace.

Motivation

There was a time, long ago and far away, when I used to write proper business

applications in APL. I am thinking back to 1983 and my Loughborough paper on

databases, which reminded me of just how heavily I depended on a simple,

reliable DBM working entirely within the confines of the APL workspace.

Subsequently, I had evolved into something of a tool-builder rather than a tool

user, and this state persisted until a few weeks ago.

When I had a phone call from a old Rowntree friend (he used to run Assortments

in York) for whom I wrote a lot of planning and scheduling applications. He is

kinda retired now, and has ended up managing the rebuild of the east end of York

Minster ‘in his spare time’. This is a big project (around £21M of lottery funding

over 5 years) and has put huge pressure on the Minster Stoneyard to turn out

carved blocks to a predictable schedule. Herding cats comes to mind.

VECTOR Vol. 24 N°1

 72

Carver at work

So Peter called me, and wondered if I would be interested in reviving some 20-

year old skills and cranking out a little scheduler for them, so at least they might

know a little way ahead who will be carving which blocks when, and

consequently when various bits of the overall project might get completed. Was I

interested – of course I was!

Panic then set in fairly quickly, as I realised that an essential chunk of the

software I needed was last seen on a VS APL system that was turned off in late

1999. So I looked around my collection of heaps of things and found a flipdb user

guide and (of course) a copy of q for Mortals, which I recently reviewed. Towards

the end of this review, I caught myself musing around the possibility of

implementing something comparable in APL. After all, kdb was originally just a

bunch of q and Paul Mansour had gone down a very parallel road with flipdb.

Time to give it a go, thought Adrian.

A database architecture for APL

Firstly, this has to be designed to make the raw data available to your application

in the simplest way imaginable. You must not have to run a query (or call a

server) just to get some numbers back. In the old days I just used variables in the

workspace, with a ‘master variable’ called (say) ⍙emp which was just a namelist

of other variables like ∆name, ∆sal and so on. A few simple utilities implemented

operations like take and compress on the table as a whole. The description

VECTOR Vol. 24 N°1

 73

variable developed a few whistles and bells, the main one being support for

foreign keys (when the emp table has a pointer to a dept table) which were

implemented as simple (zero-tolerant) 1-origin indexer variables. So when you

deleted a department, it knew to fix up the indices in any other tables which

referenced it (or yell at you if the deletion was not acceptable).

Let’s slide forward from the VS APL timeframe where this was all written, to the

21st century and Dyalog APL. Namespaces could be very handy here, and maybe

those foreign keys could just be refs? If we start with the basic notion that a table

maps to a namespace with some variables in it, then we pass the first hurdle of

data accessibility. What could be easier than:

 emp.sal

12340 2345 2345 1200 1234 0 1234

 +/emp.sal

20698

Rather than using prefixed names in the old-fashioned way, we just prefix with

the namespace. This makes it pretty trivial to code up (for example)

 8 db.take emp

 emp.sal

12340 2345 2345 1200 1234 0 1234 0

 ⍷ {tbl}←len take tbl;nl2

[1] ⍝ Normal APL take/overtake for all vars in namespace <tbl>

[2] nl2←tbl.⎕NL ¯2

[3] :With tbl

[4] ⍎¯2↓∊(⊂'↑⍨←len ⋄ '),⍨¨nl2

[5] :End

 ⍷

Of course you need to be sure that the only variables you leave lying around are

valid to be taken/compressed by the same expression. Anything else we want to

store about the data is going to be tucked away in a sub-namespace. Alert readers

should have spotted the flaw in the above function. I should really have

formatted the length and used dyadic execute rather than :with here. One day

I’ll have a variable called len in a table, and it will all go horribly wrong.

Anyway, moving quickly on, if we could throw some descriptive stuff into a sub-

namespace, that would help with the formatting of the output, and also give me

somewhere to record those pesky relationships.

VECTOR Vol. 24 N°1

 74

 db.Columns emp

 Varname Key Type Format References Shape

 ------- --- ---- ------ ---------- -----

 #.emp.id ⍝ * num 8

 #.emp.name ⍝ text 8

 #.emp.dept ⍝ ptr #.dept 8

 #.emp.sal ⍝ num £##,##0.00 8

 #.emp.bonus ⍝ num 8

 #.emp.band ⍝ num 00 8

 #.emp.sex ⍝ ptr #.sex 8

The references really are refs here, everything else in the description namespace

is just text, so is pretty trivial to edit. There are a few handy utilities called

db.CreateTable and db.CreateColumn which help you to get things in the

right order. So far so good. If I reorder the dept table it can check for any refs to

itself and go fix up the corresponding pointers (fortunately most primitives like

iota and membership work fine on refs now) so we are still quite low on rocket

science. Just formatting the content and throwing it into the session is very easy

now:

 db.Show emp

 id name dept* sal bonus band sex*

 ---- ---- ---- ---------- ----- ---- ---

 5728 │ William 451 £12,340.00 100 01 Male

 1234 │ Gill 777 £2,345.00 100 03 Female

 1238 │ Richard 451 £2,345.00 400 02 Male

 1240 │ Tim 822 £1,200.00 100 02 Male

 1241 │ Beryl 451 £1,234.00 0 01 Female

 1242 │ Hello there 822 £0.00 0 01 Male

 1243 │ Farewell 451 £1,234.00 321 02 Never

 0 │ 0 £0.00 0 00

Better get rid of that dodgy extra row (the overtake a few lines back) but at least

you can see what it did.

How hard can it be

to write a db.Select utility that takes a table and some expressions, and throws

you back what is effectively another table?

 db.Select emp ('' 'sal>1000')

#.db.sel

VECTOR Vol. 24 N°1

 75

Well, it returned a ref all right, can we see the content with the same kit we used

to see the original table?

 db.Show qq←db.Select emp ('' 'sal>1000')

 id name dept* sal bonus band sex*

 ---- ---- ---- ---------- ----- ---- ---

 5728 │ William 451 £12,340.00 100 01 Male

 1234 │ Gill 777 £2,345.00 100 03 Female

 1238 │ Richard 451 £2,345.00 400 02 Male

 1240 │ Tim 822 £1,200.00 100 02 Male

 1241 │ Beryl 451 £1,234.00 0 01 Female

 1243 │ Farewell 451 £1,234.00 321 02 Never

More to the point, can we run a further query on the result of this one?

 qqq←db.Select qq ('name,sal,bonus,both←sal+bonus' 'bonus>100')

 db.Show qqq

 name sal bonus both

 ---- --------- ----- ----

 Richard £2,345.00 400 2745

 Farewell £1,234.00 321 1555

This is the property of closure that the database gurus insist is so important. It

allows you to write a proper relational algebra, with functions like set-union and

set-difference that act on tables and return tables. It is one of the great strengths

of q and is something we should constantly keep in mind. Of course we can still

get at the raw data very easily:

 qqq.(name both)

 Richard Farewell 2745 1555

The only magic here is the magic that comes with your interpreter. Honest!

More interesting queries

Hands up everyone who hates writing joins in SQL. Both Arthur and Paul

(independently, I think) had the brilliant idea of using the dot-notation to allow a

query to ‘look down the link’ in a very intuitive way. An example will make this

clear:

VECTOR Vol. 24 N°1

 76

 sel←db.Show∘db.Select

 sel emp ('name,dname←dept.name,mgr←dept.mgr.name' 'bonus<100')

 name dname mgr

 ---- ----- ---

 Beryl Main office

 Hello there Dogsbodies Gill

The dot is appropriate for many-to-one relationships, and of course you can

chain them to follow the links to the end of the earth (and back again, as in the

example above). Just try asking Oracle to list all employees who earn more than

their manager, and you will rapidly appreciate the power of this simple

extension. Incidentally variables get ‘sensible’ new names if you leave them to

default, but giving them names explicitly generally makes sense.

Paul takes this a step further by allowing us to look through the wrong end of the

telescope and see the many from the one, like this:

 sel dept 'id,name,emp[dept].bonus'

 id name bonus

 --- ---- -----

 451 │ Main office [100 400 0 321]

 977 │ Real workers are here again []

 822 │ Dogsbodies [100 0]

 777 │ The End [100]

Which illustrates another great thing about q (and flipdb, of course) which is that

you are allowed to group things without applying a reduction. Of course you can

reduce the groups if you want to:

 sel dept 'id,name,max emp[dept].sal'

 id name sal

 --- ---- -------------------

 451 │ Main office 12340

 977 │ Real workers are here again ¯1.797693135E308

 822 │ Dogsbodies 1200

 777 │ The End 2345

… but be aware that this is APL and that reductions on empty arrays don’t always

do what you expect! I need to have a proper think about missing-value support

before I fix this one.

Grouping is something we need to do all the time, so it makes sense to

accommodate it in the normal query syntax. Along comes another optional

VECTOR Vol. 24 N°1

 77

argument (sorry Arthur, I put these in a different order) to the selection to give

us the new keys for the output table:

 sel emp ('count,sum sal,avg sal+bonus' '' 'dept.name')

 name count sum sal avg col4

 ---- ----- ------- --------

 Main office │ 4 17153 4493.5

 The End │ 1 2345 2445

 Dogsbodies │ 2 1200 650

Note that the grouper(s) are marked as keys (as they are always unique

combinations) and the output is once again a table that we can do further

processing with, or just treat as a handy repository for some working data. If we

group on two columns:

 sel emp ('count,sum sal,avg sal+bonus' '' 'dept.name,band')

 name band count sum sal avg col5

 ---- ---- ----- ------- --------

 Main office 01 │ 2 13574 6837

 The End 03 │ 1 2345 2445

 Main office 02 │ 2 3579 2150

 Dogsbodies 02 │ 1 1200 1300

 Dogsbodies 01 │ 1 0 0

Then we get two keys (duh!) and something stirs deep in Adrian’s subconscious.

Maybe we could use these as the row/column indices into a crosstab, like this:

 xtab←db.XTab∘db.Select

 xtab emp ('sum sal' '' 'dept.name,band')

 name 01 03 02

 ---- ------- ------- -------

 Main office │ 13574 3579

 The End │ 2345

 Dogsbodies │ 0 1200

As of today, this is just a fancy way of displaying a table with two keys, but a

sense that it should become another first-class object, related to a table, but not

quite the same. Perhaps brick or box would be good names for it. Cube has

already been done to death, I think! The bit in the middle looks awfully like a

matrix.

VECTOR Vol. 24 N°1

 78

A quick look beneath the surface

There is really only one important idea behind this. Having checked out the

tokens in each expression, the Select function runs the expressions in the table

(so they can see all the variables) but with the path set to look for the utility

namespace which lives inside #.db. This allows you to write any APL you like in

the query, or make use of some simple canned functions if you can’t be bothered

to re-invent average every time you want it. Here are the 6 wettest days we

have had, in date order:

 sel rain ('' '{⍵>¯6+⌈/⍵}⍋⍋rain')

 date rain mintemp maxtemp

 ---- ---- ------- -------

 25/10/92 │ 38.9 ¯2 6

 08/06/99 │ 38.1 6 11

 02/08/02 │ 49.3 15 20

 10/08/04 │ 55.4 18 21

 15/06/07 │ 53.4 10 12

 25/06/07 │ 38.1 12 18

… and here is what our avg function does:

 avg←{1{(+/⍵)÷↑⍴,⍵}godeep ⍵}

 godeep←{

 (1+⍺)>|≡⍵:⍺⍺ ⍵

 ⍺ ⍷¨⍵

 }

… with much the same stuff for all the standard summary functions. I am sure 10

mins of Alan Sykes’ time will add lots more, like variance, median and all those

other ones that standard databases never have when you want them.

With one mighty bound

We have a functional query engine, we have an APL session. Perhaps we should

put them together to make one of those little languages that we all remember

from the 1970s. Remember where we came in? Well, Stones have Types and Types

have estimated days, so wouldn’t it be great if we could type:

 xtab count,ManDays←sum Type.Mason+Type.Carve

 from ym.Stone

 by Type.Id,Level.Name

 where Level.Id in 'B,C'

VECTOR Vol. 24 N°1

 79

 asc Type.Id

 Id Level B Level C

 -- count ManDays count ManDays

 Arcading │ 1 25

 Arcading/string │ 3 45

 Ashlar │ 4 4 3 3

 Grotesque │ 2 80 2 80

 Niche head │ 4 180

 Niche head course 2 │ 2 48 5 120

 Shaft moulding │ 31 248 44 352

 Shaft stooling │ 2 20

 String/pedestal │ 3 60

… to get an overview of how much work is left. Perhaps some of you are old

enough to remember those special daisy-wheels that allowed you to plot to some

small fraction of a character? Well, with Unicode we have some 1/8th blocks, so

it’s back to the future again:

 select ManDays←sum Type.Mason+Type.Carve '⎕24 ###9'

 from ym.Stone by Type.Id asc Type.Id where Type>0

 Id ManDays

 -- -----------------------------

 Arcading │ ▌ 25

 Arcading/string │ █ 45

 Ashlar │ ▎ 12

 Ashlar return │ ▎ 12

 Carved pedestal │ █▎ 60

 Grotesque │ ███▍ 160

 Niche head │ ██████▋ 315

 Niche head course 2 │ ████▌ 216

 Shaft moulding │ ████████████████████████ 1144

 Shaft stooling │ ▍ 20

 String │ ▍ 20

 String/grotesque │ █▋ 80

 String/pedestal │ █▎ 60

 String/shaft stooling │ ▌ 25

There is a font update on your keydrive if you don’t see all the blocks correctly!

The workspace is called iqx, it is definitely work in progress, and there are

plenty more examples. You won’t see the stone data (for obvious privacy

reasons) but there is 15 years of rainfall to play with, as well as the infamous

VECTOR Vol. 24 N°1

 80

“Suppliers and Parts” data that everyone uses these days. Of course what would

be really nice would be:

select photo from ym.Stone where Id=467

Stone with id

… but that one will have to await the next update to the Dyalog session!

Roundup

This is first and foremost a programmer’s toolkit, and I would expect to use the

functional form of db.Select nearly all the time. The stuff with queries and the

session I see mostly as a handy debugging tool, but you never know. That is really

how q got started, and look what happened to it. The session is a much under-

VECTOR Vol. 24 N°1

 81

appreciated resource, so exploiting it in this simple way was good fun, and may

develop into something useful. Let me know.

Postscript

As always in live talks, I overstated my case in a few places. In particular I

annoyed several people by slagging off Oracle (and its friends) rather too

enthusiatically. My SQL primer is dated 1985 and was written by one Lawrence

Ellison (now whatever happened to him?) so I am definitely a touch behind the

pace. However it would be good if some of you SQL buffs out there could pick up

the challenge and show me how to code up:

t2:select sum qty by p.color from sp

/s)select p.color,sum(sp.qty) from sp,p where sp.p=p.p group by

p.color order by color

This is a simple example from the scripts shipped with personal kdb+ where the

standard sql is shown alongside the q dot-notation. I agree that you can do this in

standard sql, but the dot-notation is so much cleaner, that the ‘tool of thought’

argument comes into play even here. Now for a couple of flipdb examples which

look like more of a challenge!

⍝ Suppliers with at least 700 in shipments

 select sno,sname,city from s where 700≤sum sp[sno].qty

⍝ Who supplies ALL parts

 select sno,sname,city from s where sp[sno].pno seteq p[].pno

Or even just my rather trivial home-oriented database:

 usage←(delta meter)÷delta date '##0',notes from lecky

 select date,date.weekday,meter,usage

 date weekday meter usage notes

 ---- ------- ----- ----- -----

 23/09/08 │ Tue 11908 12 Kitchen fridge off

 24/09/08 │ Wed 11919 11

 25/09/08 │ Thu 11929 10 Outside fridge off

 26/09/08 │ Fri 11940 11

 27/09/08 │ Sat 11949 9

...

This clearly needs more thought and probably a bit more work, but if Arthur can

take the ultimate pragmatist approach of switching parser on seeing select

then maybe APL could too. Keep watching this space.

VECTOR Vol. 24 N°1

 82

Functional calculation
2: The year 1997

by Neville Holmes

neville.holmes@utas.edu.au

Functional calculation does with operations applied to functions and numbers

what numerical calculation does with functions applied to numbers. In preceding

articles an introduction was given to what could be done with one commonly

available tool for functional calculation, using a notation called J, then details

were given of simple numerical calculation. This article is intended to allow the

reader to consider how simple numerical calculation can be done in J by showing

numeric expressions to produce whole numbers below 100 starting from the

digits of the number 1997.

Numerical calculations

Preceding articles have introduced numerical calculation using the interpreter

for the J notation. This article gives a change of pace in which the notation

already introduced is used in modest examples so that the reader can get used to

its differences from the more usual (though inconsistent) mathematical notation.

To set up some simple examples, expressions to produce all the non-negative

integers of fewer than three digits are to be sought. There are several

restrictions.

Firstly, only the following scalar primitive functions are to be used, though

clearly many of them are not very useful – there are more comparisons than are

needed, and nand and nor have very restricted domains.

VECTOR Vol. 24 N°1

 83

+ conjugate add +. GCD +: double nor

- negate subtract -. not -: halve

* signum times *. LCM *: square nand

% reciprocal divide %: square root root

| magnitude residue

^ exp power ^. loge logarithm

= equal

< less than <. floor lesser <: decrement not more

> more than >. ceiling greater >: increment not less

 ~: not equal

! factorial choices o. pi times circular p: prime

[(same) (left)

Secondly, only the digits 1 9 9 and 7 must be used as arguments, all those digits,

and only in the sequence given. Thus up to four arguments may be used in an

expression, but no argument may be a list, that is, all arguments must be scalar.

The significance of this will be clearer later.

In the following, two expressions are given for each number, both because there

is room for them, and to add interest. The reader should, as an exercise, look for

solutions better in some way than those given – there should be plenty, and

looking for them should lead to insights, whether the search is successful or not.

One avenue to explore is the use of numbers other than simple integers. These

are avoided in the examples but, for instance, 19+<.|9j7 gives 30 using only

three functions, which is fewer than in the expressions given below. Similarly,

>.%:1p9-9p7 uses fewer functions to get 52 than do the examples.

Making 1997 give 0 to 19

Taking the four digits 1 9 9 and 7, in that sequence, combine them using J

functions and operations, in as short and simple an expression as possible, to

yield each of the numbers between 0 and 19 (here, 99 later), and to yield them as

scalars using only scalar arguments and scalar functions. (As a matter of

aesthetics, parentheses and decimal points are also avoided as far as possible.

Also as a matter of style, the negative sign is avoided and subtraction or negation

is used to similar effect.)

VECTOR Vol. 24 N°1

 84

0 19=97 ˆ.*1997 10 19-9>.7 |1-9+9-7

1 *1997 199>7 11 19-9-*7 19--:9+7

2 19|97 +:*1997 12 1+9+9-7 19-9|7

3 19-9+7 199-*:+:7 13 -:19+9|7 1*9+%:9+7

4 19|9ˆ7 1+%:9s<.97 14 199|+:7 1+9+%:9+7

5 19-+:9|7 19|>.ˆ.97 15 >.19%9%7 1+9+>.ˆ.97

6 19|9*7 1+9-%:9+7 16 19|9+7 <.19*9ˆ.7

7 1!9-9-7 19|9!+:7 17 1+9+9|7 19-9-7

8 1+9|97 19|%:>:9*7 18 19-*97 1+9+9-*7

9 19<.9>.7 19-9+*7 19 1*p:9-9-7 1+9+9>.7

Two expressions are given in the table for each number. Several expressions use

only the one primitive function, but none needs more than four.

Expressions abound for 0 and 1, particularly expressions using functions that

yield logical values. Thus 1>997 and 199<7 yield 0, while 19<97 and 19+.97

yield 1. The restriction of yielding a scalar rules out /:1997 and =1997 which

otherwise give a quite respectable 0 and 1. Also, #1997 gives a scalar 1, and #19

97 gives a scalar 2, but the restriction on scalar components rules the second of

these two possibilities out of order.

Certain components of expressions are repeatedly used in the table above. Thus,

199| (and 19|) is used to pass over the digits of the left argument of | when the

value of its right argument is lower than that of its left. In particular, 9|7 simply

yields 7. Otherwise, <. or >. are widely used where the digits to the right or left

of the <. or >. are to be ignored and the simpler and more pleasing | won’t serve

instead. Notice, though, that the instances of 19| in 19|9ˆ7 and 19|9*7 and

19|9!+:7 are not ignorant.

Expressions starting with monadic increment (>:) and decrement (<:) functions

can often make a shorter expression than the example given, but since these will

only be trivially different from neighbouring expressions they are avoided if

possible. Monadic halve (-:) and double (+:) are useful, but these are also a bit

trivial for generating smaller or larger numbers.

The year 1997 is interesting in the scope it gives for the square root function

(%:). In the above, %:9<.97 is used to give 3, %:9+7 is used to give 4, and

%:>:9*7 is used to give 8. In fact -:9+7 and 9-*7 also give 8, but maybe not so

cutely. Otherwise, >.*:1.997 could have been used for 4 and >.ˆ.1997 for 8,

both of which are quite interesting.

VECTOR Vol. 24 N°1

 85

Making 1997 give 20 to 99

Making numbers beyond 19 follows a similar pattern, and it is convenient here to

take them twenty at a time. Of course, expressions starting 19+ will be common

in the next table.

20 19+9>7 19+*97 30 19+9++:*7 1+9++:9+*7

21 19+9-7 19+>:*97 31 <.19*9%:7 <.%:-:1997

22 <.-:%:1997 >:19+9-7 32 1+<.%:997 +:19|9+7

23 19+%:9+7 p:1+9-9-7 33 >.19ˆ.ˆ97 1+9>.+:9+7

24 19-9-+:7 19+p:9+7 34 +:19-9-7 1[<.9*9ˆ.[7

25 19+9|<:7 1!9+9+7 35 19+9+7 >.19+ˆ.9ˆ7

26 1+9+9+7 19+9|7 36 +:19-*97 1[9*>.9ˆ.[7

27 19+-:9+7 19+9-*7 37 1+-:9+9*7 >.ˆ.199ˆ7

28 19+9>.7 1+99|!<:7 38 1+p:9+9-7 19*9-7

29 >.199%7 19+9+*7 39 -:-19-97 <:+:19+9>7

At a pinch, all the numbers here, and in the next table for that matter, can be

constructed from the solutions of the previous table by doubling (monadic +:)

possibly combined with incrementing (monadic >:) or decrementing (monadic

<:). However, these solutions will only reluctantly be used here, in the absence of

some other expression.

Getting these larger values is somewhat more difficult, so it useful more often to

go to non-integer intermediate values and then use the floor (<.) or ceiling (>.)

function to get an integer. There are no solutions given in the 20-39 table which

need only the one function, but quite a few need only two. On the other hand, no

solutions need more than five functions.

40 +:19+*97 1-9-<.-:97 50 -:1+99>.7 1-9-9+*:7

41 1[<.9*ˆ.97 1+9+-:<:9*7 51 1+99-*:7 19++:9+7

42 +:19+9-7 19+9++:7 52 +:1+9+9+7 1+>.99%ˆ.7

43 >.%:19*97 1*<.9*9ˆ.[>:7 53 1*-:99+7 |1+9-9*7

44 -19-9*7 <.%:1997 54 1+-:9+97 -.1+9-9*7

45 >.%:1997 >.ˆ.19[97 55 1-9-9*7 -.1*9-9*7

46 1!-:99-7 19+9+p:7 56 1+-.9-9*7 19+>:9*-:>:7

47 1+-:99-7 1[>.9*ˆ.+:97 57 -:1+99++:7 19*<.9ˆ.[7

48 1+>.*:ˆ.997 -1-9-9-*:7 58 -:19+97 19>.9+*:7

49 *:199<.7 -:1+9>.97 59 1+9+-:>:97 19-9-*:7

VECTOR Vol. 24 N°1

 86

For the 40s and 50s, 9*7 gives 63 to work down from, and -:97 and -:99 gets

into the high 40s, as does *:7. At least one expression is given for each of these

numbers which does not need more than four primitive functions.

60 >.19*o.9>7 1+<.+:%:9*97 70 +:19+9+7 |1-<.9*%:9*7

61 -:199|!>:7 >.%:+:19*97 71 -1-9+9*7 -:>.ˆ.%:19ˆ97

62 19>.<:9*7 -:>:199|!<:7 72 -.1-9+9*7 1*-:9*9+7

63 1>.9*9<.7 -.1-9>.9*7 73 1+9+9*7 19+9*<:7

64 1+9>.9*7 1+9+9*<:7 74 >.19*9ˆ.[7 <.19++:ˆ.9[7

65 199|!7 199|!+:7 75 -:199-*:7 19+9+p:+:7

66 -1-9+9+*:7 1*<.9*%:9*<:7 76 19*%:9+7 19*>.9ˆ.[7

67 19+<.-:97 19+-:<:97 77 >.19*o.9%7 >.+:1+%:99*7

68 19+>.-:97 19+-:>:97 78 -19-97 19+p:9+7

69 >.19*ˆ9%7 19++:9++:7 79 -.19-97 >.19*ˆ.9*>:7

For the 60s and 70s, 9*7 provides a good starting point. Of interest are the two

expressions for 65, which look the same but are interestingly different, and

otherwise only 78 and 79 have expressions with only two primitive functions.

There is plenty of room for improvement here, though only 66 is shown as

needing more than five primitive functions.

80 1-+:9--:97 1*99-p:7 90 >.+:%:1997 19+<.9ˆˆ.7

81 1>.9*9>.7 -.1-9+9*>:7 91 1+99|!7 -1-99-7

82 19+9*7 1+9+9*>:7 92 1!99-7 -.1-99-7

83 >:19+9*7 1++:<.9*ˆ.97 93 1+99-7 1--:>:9-+:97

84 +:+:19+9-7 1+>.+:9*ˆ.97 94 >:1+99-7 1--:<:9-+:97

85 1!99-+:7 <.19*ˆ9%<:7 95 19*>.ˆ.97 19*>:%:9+7

86 <.19*ˆ.97 1+99-+:7 96 -1-9>.97 -:199-7

87 |1+9-97 >.19*ˆ.97 97 19>.97 |1-99-*7

88 -.1+9-97 >.1*9*%:97 98 1+9>.97 -.1-99-*7

89 1-9-97 -:<:199|!>:+:7 99 1>.99>.7 -:199-*7

The 80s and 90s often use 99 or 97 and work down from there. This gives the

quite short expressions shown here for 89 and 97, though 9*7 and 199 find

occasional use.

In this group of numbers there is the one expression with only one primitive

function, seven with two, lots with three, but the improvement to be sought is in

those with five or six primitive functions.

VECTOR Vol. 24 N°1

 87

Further examples

The examples given above can only suggest how arithmetic functions can be used

in a simple to produce a variety of numbers. The reader is urged to consider the

examples above with a J interpreter to hand, to try the examples out, to check

them, and to try to find expressions that are better or in some way more

interesting than those given here. When generating these numbers begins to pall,

the reader perhaps should go on to consider how to generate the three digit

numbers using the same rules. This could start 1+99>.7 then 199-+:*:7.

Alternatively, expressions might be sought for other years. Some years will

present special challenges. The following table gives a start for the year 2000, in

which a choice is made between 0=0, 0!0 and 0ˆ0 to give a 1 largely on aesthetic

grounds.

0 200=0 ˆ.*2000 10 20%+:0=0 20->.o.o.0!0

1 *2000 200ˆ0 11 -:20++:0!0 <.ˆ+:*:200+0

2 2+0-0*0 +:*2000 12 20-<.o.ˆ0=0 +:<.%:%:2000

3 2+0=0+0 2!>.0+ˆ0=0 13 <.+:%:%:2000 p:<.ˆ.200-0

4 2*+:0<0!0 >.ˆ.20+0=0 14 <.%:200+0 <.ˆ.-:*:2000

5 <.ˆ.200+0 20-<.ˆˆ0=0 15 >.%:200-0 <.+:ˆ.2000

6 <.%:%:2000 >.ˆ.200+0 16 >.ˆ.*:2000 20->.o.0=0

7 <.ˆ.2000 >.ˆ.-:2000 17 20->:+:0!0 >.+:ˆ.+:2000

8 2ˆp:0+0[0 2ˆ0]>:+:0=0 18 20-+:0=0 >.!o.%:2000

9 <.-:20-0!0 >.ˆ.p:2000 19 20-0!0 >.ˆ.p:*:2000

Apart from reducing the number of possibilities, having all those nought digits

tends to give unsightly numbers like 00 and 000 which are therefore avoided

here as far as is convenient. Thus, although 2+000 would be technically correct

for 2, the expression 2+0-0*0 is shown, though many similar ones would be just

as satisfactory. Not having a 1 at the front also reduces the possibilities a lot!

Another amusing possibility, though ultimately monotonous because expressions

are restricted to monadic functions, is to try to develop all the numbers from only

a single zero. A start to this is given in the following, and the aesthetic choice is

between !0, ˆ0, >:0, and -.0 to get the initial 1, or p:0 to get an initial 2.

VECTOR Vol. 24 N°1

 88

0 |0 *0 10 >.*:o.!0 >.o.o.>:0

1 !0 ˆ0 11 <.-:ˆo.ˆ0 p:+:p:0

2 +:-.0 p:0 12 -:!+:+:!0 -:>.ˆo.-.0

3 p:-.0 >.ˆˆ0 13 <.*:>:ˆˆ0 p:p:p:0

4 *:+:!0 >.o.>:0 14 +:<.!o.!0 +:<.*:ˆˆ0

5 >:+:+:>:0 p:p:0 15 <.ˆˆˆ0 <:*:*:+:!0

6 !>:+:!0 +:>:+:-.0 16 *:*:>:>:0 *:+:+:-.0

7 <.ˆ+:ˆ0 p:p:ˆ0 17 <.o.+:ˆˆ0 p:+:p:ˆ0

8 <.o.ˆˆ0 >.ˆp:0 18 +:>.o.ˆˆ0 +:*:>:+:!0

9 *:>:+:!0 >.o.ˆˆ0 19 <:<.ˆ>.ˆ[0 p:p:>:p:0

The shortness of some of expressions given here comes often from using the o.

and ˆ functions to bump up values quickly, then using floor (>.) or ceiling (<.)

functions to get integers. Otherwise p: can be used most conveniently. Of course,

where an expression starts with <. the next higher number can be got by

substituting a >. and vice versa, mutatis mutandis.

The expressions given in these last two tables were selected unsystematically

and hastily. The assiduous reader should have an interesting but fruitful time

looking for improved and extended expressions.

VECTOR Vol. 24 N°1

 89

Spice for Beginners
by Dan Baronet

danb@dyalog.com

Spice is a Dyalog development tool introduced with V11 in 2006. It allows you to

execute code independently of the current workspace status. It works in

conjunction with SALT. For those of you familiar with APL+’s User Commands

this will sound familiar: APL+[1] uses the right bracket to invoke a user command

as in

]XYZ

to execute[2] user command XYZ. It brings in all the code necessary, localising it

before running it.

Dyalog does something similar, using an input window above the status line

instead of the] syntax of APL+.

Upon hitting Enter, the content of the window is sent to the Spice processor,

which then identifies the selected command, gets and localises the code to run it,

runs it, then cleans up. Just as APL+ does.

And just like APL+, entering ? displays a list of available commands, and ?XYZ

displays help about command XYZ.

To write a Spice command, a few rules must be followed. You must:

 Write a class containing the code

 Put that class in a file in the Spice folder with a .dyalog extension

VECTOR Vol. 24 N°1

 90

 Define at least the minimum three public shared functions: List, Help and
Run

A Spice class may be host to several (related) commands. Or just one.

Example 1: The TIME command

Here is a very simple example: let’s say we want to create a Spice command that

will show us the current time.

We first create a class that will handle the group of time-related functions:

:Class timefns

 ⎕ML ⎕IO←1 ⍝ always set here to avoid inheriting external values

 ⍷ r←List

 :Access Shared Public

 r←⎕NS¨1⍴⊂''

 r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'

 r[1].Desc←'Time example Script'

 ⍷

 ⍷ r←Run(Cmd Args)

 :Access Shared Public

 r←⎕TS[4 5 6] ⍝ show time

 ⍷

 ⍷ r←Help Cmd

 :Access Shared Public

 r←'Time (no arguments)'

 ⍷

:EndClass

The List function is used to describe the command to Spice. Spice is thus able to

display a minimum of information when you type ? in the Spice command line.

This information is stored in Desc. Three more variables must be set: the

command Name, the Group it belongs to and the Parsing rules. We’ll get to those

rules in a bit.

The Help function is used to report more detailed information when you type

?time in the Spice command line. Since the class may harbour more than one

command the function takes an argument. Here there is only one command and

VECTOR Vol. 24 N°1

 91

the argument will always be time so we ignore it and return some help for the

command time.

The Run function is the one executing your code for the command. It is always

called with two arguments. Here we ignore them as all we do is call ⎕TS. Easy

peasy. We can write this code in a timefns.dyalog file using Notepad and put it

in the SALT\Spice folder or write it in APL and use SALT’s Save command[3] to

put it there.

Once in the Spice folder is it available for use. All we need to do is move the

cursor to the Spice command line and type time. Et voilà! The current time

appears in the session as three numbers[4].

Example 2: Another command in the same class: UTC

We may want to have another command to display the current UTC time instead

of the current local time. Since this new command is related to our first time

command, we could – and should – put the new code in the same class, adding a

new function Zulu[5] and modifying Run, List and Help accordingly. Like this:

:Class timefns

 ⎕ML ⎕IO←1

 ⍷ r←List

 :Access Shared Public

 r←⎕NS¨2⍴⊂''

 r.(Group Parse)←⊂'TimeGrp' ''

 r.Name←'Time' 'UTC'

 r.Desc←'Shown local time' 'Show UTC time'

 ⍷

 ⍷ r←Run(Cmd Args);dt

 :Access Shared Public

 ⎕USING←'System'

 dt←DateTime.Now

 :If 'utc'≡⎕SE.U.lcase Cmd ⋄ dt←Zulu dt ⋄ :EndIf

 r←(r⍳' ')↓r←⍕dt ⍝ remove date

 ⍷

VECTOR Vol. 24 N°1

 92

 ⍷ r←Help Cmd;which

 :Access Shared Public

 which←'time' 'utc'⍳⊂⎕SE.U.lcase Cmd

 r←which⊃'Time (no arguments)' 'UTC (no arguments)'

 ⍷

 ⍷ r←Zulu date

 ⍝ Use .Net to retrieve UTC info

 r←TimeZone.CurrentTimeZone.ToUniversalTime date

 ⍷

:EndClass

The List function now accounts for the UTC command and returns a list of two

namespaces so ? will now return info for both commands. Same for Help which

makes use of a lcase utility in ⎕SE.U, a namespace of short utilities for use by

SALT, Spice or anyone.

The Run function now makes use of the Cmd argument and, if it is utc, calls the

Zulu function. It then returns the data nicely formatted, an improvement over

the previous code.

Example 3: Time in cities around the world

We could then add a new function to tell the time in Paris, another one for

Toronto, etc. Each time we would have to modify the three shared functions

above or we could have a single function that takes an argument (the location)

and computes the time accordingly.[6] Like this:

:Class timefns

 ⎕ML ⎕IO←1

 ⍷ r←List

 :Access Shared Public

 r←⎕NS¨2⍴⊂''

 r.(Group Parse)←⊂'TimeGrp' ''

 r.Name←'Time' 'UTC'

 r.Desc←'Shown local time in a city' 'Show UTC time'

 ⍷

VECTOR Vol. 24 N°1

 93

 ⍷ r←Run(Cmd Args);dt;offset;cities;diff

 :Access Shared Public

 ⎕USING←'System'

 dt←DateTime.Now ⋄ offset←0

 :If 'utc'≡⎕SE.U.lcase Cmd

 cities←'honolulu' 'montreal' 'copenhagen' 'sydney'

 offset←¯10 ¯5 2 10 0[cities⍳⊂⎕SE.U.lcase Args]

 :OrIf ' '∨.≠Args

 dt←Zulu dt

 :EndIf

 diff←⎕NEW TimeSpan(3↑offset)

 r←(r⍳' ')↓r←⍕dt+diff ⍝ remove date

 ⍷

 ⍷ r←Help Cmd;which

 :Access Shared Public

 which←'time' 'utc'⍳⊂⎕SE.U.lcase Cmd

 r←which⊃'Time [city]' 'UTC (no arguments)'

 ⍷

 ⍷ r←Zulu date

 ⍝ Use .Net to retrieve UTC info

 r←TimeZone.CurrentTimeZone.ToUniversalTime date

 ⍷

:EndClass

Here List and Help have been updated to provide more accurate information

but the main changes are in Run which now makes use of the Args argument.

This one is used to determine if we should use the Zulu function and compute

the offset from UTC by looking it up in the list of cities for which we know the

time offset.

The first argument to Run is always the command name (here it is called Cmd)

and the second argument is whatever you entered after the command (here it is

called Args). When there are no special rules this argument will always be a

string.

For example, if we enter in the Spice command line:

time Sydney

Cmd will contain 'time' and Args will contain 'Sydney'.

VECTOR Vol. 24 N°1

 94

Special rules

There are times when it is easier to make a command accept variations than to

write an entirely new command. A command switch (also known as modifier or

flag or option) is an indication that the command should change its default

behaviour.

For example, in SALT, the command list is used to list files in a folder. The

command accepts an argument to restrict the files to list (e.g. a* to list only the

files starting with a) and accepts also some switches (e.g. -versions to list all

the versions). Thus the command list a* -ver will only list the files starting

with a with all their versions instead of listing everything without version, which

is the default.

In Spice the same thing is possible but this time you decide which switches are

acceptable. When no rules are given to Spice via the Parse variable (in the List

function) Arg is a string and you can do whatever you wish with it. If your

command is to accept switch -x then you can look for a -x in the string and make

a decision about that. It can become quite tedious to have to deal with the

handling of switches every time you write a new command. Without getting into

too many details let’s say that Spice takes care of that for you.[7] It handles

switches the same way SALT does.

Let’s have a look at a more complex example.

Example 4: The sample command

Spice comes with a sample command to demonstrate the use of arguments and

switches.

In file aSample.dyalog you will find a class with two commands: one which

does not use the parser, and one that does.

The second command, named sampleB, uses the parser. It is similar to the

time/utc command above: it accepts one and only one argument and one

switch, called TZ, which must be given a value. For example you could write:

Sampleb time -TZ=-5

or, as seen in ‘real life’:

VECTOR Vol. 24 N°1

 95

Spice is unable to validate the contents of the argument but it can determine that

there is only one argument. It can also ensure that TZ, if supplied, is given a value

and that no other unknown switch appears.

The way to tell Spice about this is to set the Parse variable for that command in

List to 1 -TZ=.

The 1, here, means that one and only one argument must be present and -TZ=

means:

use - as the switch delimiter, accept TZ as valid switch for the command, and make

sure a value is supplied (with =) whenever it is used.

Switch names are case-sensitive and must also obey the rules for APL names.

If you don’t specify the number of arguments, Spice won’t check, and you can

have as many or as few arguments as you wish, including none.

When your command is used Spice will check those conditions and if anything

breaks the parsing rules it will complain and abort execution. It all goes well

Spice will package the argument and switch(es) into a namespace and pass it on

to Run in Arg.

Arg will contain Arguments, a list of text vectors (here only one) containing each

one of the arguments and TZ, which will be either the scalar number 0 (if it was

not specified) or the string given as value if it was specified.

Let’s go over that again.

Here’s what the user enters in the Spice command line:

sampleb xyz –TZ=123

Spice will validate this, find it is OK since there is only one argument, xyz, and

that the switch TZ has been given a value, here 123.

VECTOR Vol. 24 N°1

 96

It will then call Run with sampleB and a namespace in which Arguments is

,⊂'xyz' and TZ is '123'. It is then up to the program to determine if this all

makes sense.

Here’s another example:

sampleB x y z

Here three arguments have been supplied: x, y and z and Spice won’t allow it:

[S]: sampleb x y z

Command Execution Failed:

too many arguments

Spice[64] arg←(⎕NEW ⎕SE.Parser rules).Parse arg

 ∧

Another example:

SAMPLEB 'x y z' -TZ

Here there is only one argument, as quotes have been used to delimit the

argument of 5 characters: 'x y z' but the switch TZ has not been given a value

so:

[S]: sampleb 'x y z' -TZ

Command Execution Failed:

value required for switch <TZ>

Spice[64] arg←(⎕NEW ⎕SE.Parser rules).Parse arg

 ∧

One more:

Sampleb zyx -TT=321

Here is one argument, which is OK, but TT is not a recognized switch and:

[S]: sampleb zyx -TT=321

Command Execution Failed:

unknown or ambiguous switch: <TT>

Spice[64] arg←(⎕NEW ⎕SE.Parser rules).Parse arg

 ∧

What if we don’t supply any argument?

Sampleb -T=xx

VECTOR Vol. 24 N°1

 97

[S]: sampleb -T=xx

Command Execution Failed:

too few arguments

Spice[64] arg←(⎕NEW ⎕SE.Parser rules).Parse arg

 ∧

Here we supplied a proper TZ switch (Spice was able to determine that T stood

for TZ) but 0 argument was not enough and therefore it complained.

As you can see Spice can be clever enough to figure out the number of arguments

and which switches have been set and their values. The rules are fairly simple:

 All commands take 0 or more arguments and accept 0 or more switches

 Arguments come first, switches last

 Arguments are separated by spaces

 A special character (delimiter) identifies and precedes a switch

 Switches may be absent or present and may accept a value with the use of
=

 Switches can be entered in any order

 Arguments and switch values may be surrounded by quotes (' or ") to

include spaces and/or switch delimiters.

Spice, after verifying that the rules are being followed correctly, will put all the

arguments (the space delimited tokens) into variable Arguments in a new

namespace. It will also put in there variables of the same name as the switches.

The namespace is then passed as the second argument to Run, which then runs.

There are a few more things the parser can do, but this should cover most cases.

For a complete list, have a look at the documentation for Spice on the Dyalog site.

Notes
1. APL+ refers to the APL/PC, APL/II, APL+Win family

2. This is similar to the way the system recognizes its own commands, i.e. the use of a right

parenthesis, e.g.)CLEAR is a system command whereas]CLEAR would be a user

command.

3. ⎕SE.SALT.Save 'timefns Spice\timefns' will do it

VECTOR Vol. 24 N°1

 98

4. This requires SALT/Spice version 1.3 or more. To see which version you are using type

⎕SE.SALT.Version

5. UTC is sometimes denoted as Z time – Zero-offset zone time – or Zulu time from the

NATO phonetic alphabet.

6. The function does not deal with daylight savings time. An exercise for the reader?

7. If you wish to delve into this subject, have a look at Vector Vol 19.4: “Tools, Part 1.

Basics.”

VECTOR Vol. 24 N°1

 99

IN SESSION

Congratulations not in order?
by Stephen Taylor

sjt@5jt.com

The card popped out of its envelope bearing the single word Congratulations

surrounded by what looked like anagrams of it. This kind of thing preys on one’s

mind. What was my sister thinking? I don’t have time on my birthday to stare at

the phrases and decide whether they really are all anagrams or just look like they

are, or just some of them are. Need to resolve this question quickly and get back

to typesetting Vector.

Let’s see… if we alphabetise… and ignore spaces:

 {⍵[⍋⍵]~' '}

then all that’s left is to compare the results…

 'congratulations'{⊃≡/{⍵[⍋⍵]~' '}¨⍺ ⍵}'iron nuts catalog'

1

Gluing on the left argument gets me a monadic test function.

 test←'congratulations'∘{⊃≡/{⍵[⍋⍵]~' '}¨⍺ ⍵}

 test¨↓⎕←↑ANAGRAMS

nora taunts logic

iron nuts catalog

using cool tartan

caution long star

stout groin canal

so not a garlic nut

ration aunts clog

uncool giant rats

auto girls cannot

tuscan train logo

trust colon again

groan until ascot

snail conga tutor

1 1 1 1 1 1 1 1 1 1 1 1 1

There we go. Anagrams tested, male autism appeased.

VECTOR Vol. 24 N°1

 100

J-OTTINGS 51

Suffer the little children

to bring their homework…
to Norman Thomson

Early articles on APL sometimes speculated on how to do a work-around if one of

the APL function keys was broken. Analogously one of the properties of ‘clock

arithmetic’ as taught in the early stages of primary schools is that division is a

disallowed (broken key!) operation. This reflects the historical fact that the

concepts of division and fractions came relatively late in mankind’s mathematical

development. Despite their arithmetical skills and geometrical sophistication, the

early Greek and Roman mathematicians had only crude notions of division into

parts, and it was not until the invention of place value in the 11th century that

fractions in the sense we know them today became part of the earliest stages of

elementary arithmetic.

J adverbs provide a natural means for realising the concepts of finite arithmetic,

for example the derived verb +mod is addition in modulo arithmetic:

 mod=.1 :'n&|@x.' NB. ‘define modulus’ adverb

 n=.7 NB. set modulus to n

 3+mod 6 NB. add 3 and 6 (mod 7)

2

 3*mod 6 NB. multiply 3 and 6 (mod 7)

4

Graduating from clock arithmetic to ‘clock algebra’ is where some at least of the

little children might begin to suffer, since division in the conventional sense is no

longer an option for solving e.g. 2x=3. This is known in clock arithmetic as a

congruence rather an equation. In modulo 5 arithmetic, it is not too difficult to

spot that x=4 as a solution. However solving 17x=5 in modulo 23 arithmetic is a

little more difficult. If the inverse of 17 were known (that is the solution of

17x=1) then the solution of 17x=5 is simply 5 times 17-1:

VECTOR Vol. 24 N°1

 101

 n=.23 NB. set modulus

 (17*mod i.n)i.1 NB. locate 1 in multiples of 17

19

 5*mod 19 NB. solve 17x=5

3

This is readily confirmed by multiplying 17 times 3 = 51 = 5 in modulo 23

arithmetic. The second line in the above J sequence suggests a general technique

for solving linear equations (congruences) of the form ax + b = 0 by first defining

inverse as

 inv=.4 : '(x.|y.*i.x.)i.1'

 23 inv 17

19

(tacit definition enthusiasts may want to write this as inv=.i.&1@([|]*i.@[),

although arguably the above version is more expressive.) It is easy to confirm

that in modulo p arithmetic (p prime), all integers in 1, … p-1 have an inverse, for

example:

 iota=.>:@i. NB. integers from 1 to y.

 13|t*13 inv&>t=.iota 12

1 1 1 1 1 1 1 1 1 1 1 1

A first try at a solution of the linear equation ax + b = 0 is then

 lsol=.4 : 'x.|(x. inv {.y.)*(-{:y.)'

 23 lsol 17 _5

3

However, inverses exist only for numbers which are relatively prime to the

modulus. In clock arithmetic terms 17x=5 is an invitation to find how many

chunks of 17 steps are needed to arrive at 5, to which the answer is 3. But for

2x=5 in modulo 6 arithmetic no solution exists because 2 and 6 have a common

factor, which means that only some of the clock points are reachable. On the

other hand 2x=4 has two solutions, x=2, the ‘obvious’ one, and also x=2+3=5. To

generalise this, the number of solutions of ax=b in modulo n arithmetic is either

none if b is not a multiple of GCD(a,n), otherwise it is GCD(a,n), in which case

these solutions are found by adding {n/GCD(a,n)} successively GCD(a,n) times to

the solution of ax=b after a, b and the modulus n have all been divided by

GCD(a,n) :

VECTOR Vol. 24 N°1

 102

linsol=.4 : 0 NB. linear equation solver

if.1=gcd=.x.+.{.y. NB. if a and n are co-prime

 do.x.lsol y.

elseif.0=gcd|{:y. NB. if gcd(a,n) divides b ..

 do.(m lsol y.%gcd)+(m=.x.%gcd)*i.gcd

end. NB. otherwise null result

)

 21 linsol 6 _15 NB. solns of 6x=15 in mod 21

6 13 20

The divide symbol % appearing in the long line of linsol reflects the

‘cancellation’ of ax=b to its prime form, and does not conflict with the

disallowance of divide in clock algebra.

ax=b has now been solved with complete generality.

Simultaneous linear congruences

Unlike ordinary simultaneous equations where, barring degeneracies, the

number of equations must exactly equal the number of variables for there to be a

unique solution, there is no limit to the number of simultaneous congruences for

which a solution can be sought. Further, a theorem called the Chinese Remainder

Theorem (so called because such results were known in China from about 100

A.D.) guarantees that provided the various moduli are coprime, then a set of

simultaneous equations such as

x=0 (mod 2), x=1 (mod 5), x=2 (mod 7)

has a solution which is unique modulo the product of moduli.

The algorithm for obtaining such a solution consist of multiplying three lists:

1. a list of the b’s as in ax=b;

2. a list of products of the a’s omitting one at a time; and

3. the inverses of the products in (2) relative to their matching moduli,

and then multiplying the items of the resulting list modulo the product of moduli.

This is described as readily, and certainly more unambiguously, in J with as input

Left arg (x.) a list of moduli – these must be coprime;

VECTOR Vol. 24 N°1

 103

Right arg (y.) a matching list of pairs of coefficients as for linsol.

each=.&.>

simlsol=.4 : 0 NB. simultaneous congruences

r1=.>-@{:each y.

r2=.(%~*/)x.

r3=.>x. linsol each <"1 r2,._1

r=.(*/x.)|+/r1*r2*r3

)

The solution of the above set of congruences is:

 2 5 7 simlsol 1 0;1 _1;1 _2

16

For those who like puzzles simlsol lends itself to solutions of problems such as

1. what is the smallest integer divisible by 7 whose remainders on division

by 2,3,4,5 and 6 are 1,2,3,4 and 5?

2. what is the smallest integer divisible by 7 whose remainders on division

by 2,3,4,5 and 6 are all 1?

 4 3 5 7 simlsol 1 _3;1 _2;1 _4;1 0

119

 4 3 5 7 simlsol 1 _1;1 _1;1 _1;1 0

301

Quadratic congruences

Here the simplest case is x2=a. In ordinary arithmetic the solution is simply ± the

square root of a, and it is useful to picture how finite arithmetics converge

towards normal arithmetic as the modulus increases towards infinity. Represent

say -3 by points on number lines corresponding to arithmetics with successively

larger moduli:

VECTOR Vol. 24 N°1

 104

Eventually the arrow ‘goes off to infinity’ and returns ‘on the other side of zero’

as -3 in the conventional sense:

Returning to the problem of solving x2=a in modulo n arithmetic, Since only

integers are admissible, there can only be solutions if a is one of those integers in

1…n-1 which are squares in modulo n, and since k2 = (-k)2 it is only necessary to

consider the range 1…½(n-1) in order to establish all such squares. These are

called ‘quadratic residues’ in finite arithmetics, and are obtained as:

 qres=.|*:@:(iota@(-:@<:)) NB. quadratic residues

 qres 13 NB. squares modulo 13

1 4 9 3 12 10

 qres 17 NB. squares modulo 17

1 4 9 16 8 2 15 13

 qres 29 NB. squares modulo 29

1 4 9 16 25 7 20 6 23 13 5 28 24 22

so, for example, in modulo 13 arithmetic, the square root pairs of 3, 12 and 10 are

(4,13-4), (5,13-5) and (6,13-6), i.e. (4,9), (5,8) and (6,7) respectively, and a must

be one of the six values qres 13 if the equation x2=a is to have a solution. One

such solution is then 1+(qres n)i.a so, for example one solution of x2=5 in

modulo 29 arithmetic is

 1+(qres 29)i.5

11

and the other is 18, which is confirmed by observing that both 121 and 324 = 5 in

modulo 29 arithmetic. This leads to the following definition of a verb which

delivers a ‘single square root’ verb in finite arithmetic:

 sqrt=.>:@(qres@[i.]) NB. sqrt of y. in modulo x.

 13 sqrt 12

5

This can readily be generalised to find any root:

VECTOR Vol. 24 N°1

 105

 res=.[| iota@(<:@[) ^] NB.generalised residue

 13 res 3 NB.cubes in modulo 13

1 8 1 12 8 8 5 5 1 12 5 12

 iall=.>:@(= # i.@#@[) NB.iota all (origin 1)

 root=.(({.res{:)@[)iall] NB.all kth. roots, e.g. …

 13 3 root 12 NB.cube roots of 12 mod 13

4 10 12

Read the above lines as ‘in modulo 13 arithmetic, the 3-roots (i.e. cube roots) of

12 are 4, 10 and 12’.

The suite of verbs res, iota, iall and root makes qres and sqrt redundant,

and allows the solution of any equation xn=a. Where no solution exists a null

result is returned.

Now turn to the solution of the more general quadratic ax2 + bx + c = 0. In

ordinary arithmetic, the solution is found by the technique of completing the

square to give the standard formula with 2a as the denominator. With division

disallowed, the trick is to multiply the left hand side by 4a to obtain a leading

term (2a)2x2 and factorise 4a(ax2 + bx + c) as (2ax + b)2 – (b2 – 4ac). Then write d

= b2 – 4ac and y = 2ax + b, so that ax2 + bx + c = 0 becomes y2=d which has already

been solved provided that d is one of the quadratic residues. If not, there are no

solutions. So define the verb disc standing for ‘discriminant’ to compute b2 - 4ac

in the ordinary way, so that the discriminant of e.g. 5x2 – 6x + 2 is –4:

 disc =.(*:@(1&{))-4&*@{.*{:

 disc 5 _6 2

_4

disc, like other verbs, can be modified with the adverb mod using the current

modulus n:

 disc mod 5 _6 2 NB. n is currently 13

9

so that the first step in the solution is

 13 2 root disc mod 5 _6 2 NB. sq roots of 9 mod 13

3 10

All that remains is to transform these two solutions in ys back to xs, specifically to

solve 10x – 6 = 3 and 10x – 6 = 10 (the latter being equivalent to 10x – 6 = –3),

VECTOR Vol. 24 N°1

 106

that is the two linear equations 10x – 9 = 0 and 10x – 16 = 0, for which a

technique is already available:

 13 linsol&>10 _9;10 _16

10 12

solutions which are confirmed by

 10 12 #.mod&>< 5 _6 2

0 0

The technique is consolidated in the verb

qsol=.4 : 0 NB. quadratic solver

t=.(n,2)root disc mod y. [n=:{.x.

n linsol&><"1(2 1*}:y.)+"1(0,&>t)

)

 13 qsol 5 _6 2

12 10

and confirmation is obtained by

 (13 qsol 5 _6 2)#.mod&>< 5 _6 2

0 0

Not all quadratics have genuine solutions, and the simplest way to proceed is to

execute qsol regardless but disregard any solutions which fail the confirmation

test above. This leads to a completely general quadratic solver:

quadsol=.4 : 0 NB. general quadratic solver

t=.(n=:x.)qsol y.

if.0 0-:t#.mod&><y.do.t

else. i.0 end.

)

 13 quadsol 5 _6 2

12 10

 13 quadsol 5 6 _2 NB. change of coefficients

(null result)

the results of which can be checked by

 (13 quadsol 5 _6 2)#.mod&>< 5 _6 2

0 0

 (13 quadsol 5 6 _2)#.mod&>< 5 6 _2
(null result)

VECTOR Vol. 24 N°1

 107

Thus a single session of algebra has provided solutions for all linear and

quadratic equations in countless algebras, and all with a quite modest amount of

suffering!

VECTOR Vol. 24 N°1

 108

P R O F I T

VECTOR Vol. 24 N°1

 109

Cauchy curves
by William R. Jones & Cliff Reiter

jonesw@lafayette.edu and reiterc@lafayette.edu

Abstract Cauchy’s Integral theorem guarantees that certain complex integrals along

closed paths are zero. This means that the intermediate values of ‘partial path integrals’

themselves form paths. We explore the marvelous variety of curves that arise this way

using J’s excellent facilities for complex arithmetic and plotting.

[To see the figures in full colour, see the article online. Ed.]

Introduction

A.L. Cauchy (1789-1857) was the founder of complex integration theory. He

made hundreds of contributions to various branches of mathematics and

mathematical physics. A brief biography of Cauchy may be found in [1,2] and a

detailed discussion of his mathematical work on complex functions appears in

[9]. Some modern books on complex analysis include [3,7]

His theorem called the Cauchy Integral Theorem tells us that the integral of a

well-behaved complex function around a well-behaved closed path in the

complex plane is zero. Such integrals are called ‘path integrals’ and we write the

conclusion of the theorem as follows.

A closed path begins and ends at the same point. Here the closed path is well-

behaved if it is a loop around some region in the complex plane and it should be

‘rectifiable’ (have a sense of length). Suffice it to say circles, ellipses, and squares

are well-behaved, but a Koch snowflake [8] is not (it has fractal dimension, not a

finite length). Here well-behaved functions are analytic on and inside of the

closed path. Suffice it to say that polynomials, the sine, cosine and the

exponential are well-behaved (analytic everywhere). Even rational functions are

well-behaved so long as the zeros of their denominators do not appear on or

inside the closed path.

VECTOR Vol. 24 N°1

 110

We consider in this note the set of values assumed by integrals over the course of

the path of integration. In each example we approximate integrals of a given

function over increasingly longer portions of a given path of integration. We plot

the set of values of these ‘partial-path integrals’ and call the result a Cauchy curve.

The Cauchy Integral Theorem assures that these Cauchy curves begin and end at

zero (thus forming closed paths themselves); along the way, however, marvelous

variety can occur.

We feel that the resulting curves are interesting for their complexities, novelties,

and simple beauty. Moreover, these curves give a different way of looking at

analytic functions. This note investigates Cauchy curves using J’s excellent

facilities for complex arithmetic, plots, and adverbs. The inclusion of complex

arithmetic can be seen in the original dictionary of J [4]. There is recent

documentation of J’s complex number operations at [5] and a recent Vector

article includes [10].

First example

For our first example our closed path of integration is the unit circle in the

complex plane. We use the fact that the complex function

runs once around the complex unit circle for 0 ≤t ≤ 2π. Here we look numerically

at stepping around the circle in three steps and then graphically consider 10000

steps.

 require 'plot'

 r=: ^@j.

 r steps 0 2p1 3 NB. sin 2r3p1 is 0.866025

1 _0.5j0.866025 _0.5j_0.866025 1j_2.44929e_16

 $C=: r steps 0 2p1 10000

10001

Since we usually want circles to look round, we define a utility to make plots with

aspect ratio one and we thicken the curves slightly.

 cplot=: 'Aspect 1;pensize 2'&plot

 cplot C

That plot is shown in Figure 1.

VECTOR Vol. 24 N°1

 111

Figure 1. The unit complex circle centered at 0j0.

For our first example of a Cauchy curve, we will let f(z) = 1+3z3 and use the C

defined above for the closed path of integration. The 10001 complex numbers in

C represent the ‘z’ values in the path integral that we are estimating.

We compute dz by taking differences with the verb diff, defined below. We use

the function midpt to find the points between the z values and evaluate f at

those points (the ‘midpoint rule’ for integration gives quite good numerical

approximations). Thus, dz is diff C in J while f(z) is f mdpt C. The integral sign

means ‘limit of sums’, so we approximate it by using a sum as follows in J.

 diff=: }. - }:

 mdpt=: [: -: }. + }:

 f=: 1 + 3 * ^&3

 +/(f mdpt C) * diff C

1.19488e_14j_3.08564e_15

The result should be zero by Cauchy’s theorem; it is near 0 to 13 decimal places.

To get the Cauchy curve in the above situation we just replace the sum +/ with a

list of partial sums +/\ and plot the result.

VECTOR Vol. 24 N°1

 112

 cplot +/\(f mdpt C) * diff C

The result is shown in Figure 2. This is our first Cauchy curve.

Figure 2. Cauchy curve for f(z) = 1+3z3.

We note that in our computational point of view the curve C is given as a numeric

list of points and therefore we find the midpoints numerically as above. The

integrals could be made more accurate by using midpoints from the

parameterization or using higher order integration methods such as Simpson’s

rule. Since our purpose is plotting curves, 13 decimal places of accuracy are

sufficient.

Also, technically we think of paths as beginning and ending at the same point and

the first term in the partial sum is typically not zero, thus we pre-append a 0 to

the list of partial sums to make the result a closed path in our sense. It is

convenient to introduce an adverb chycu to compute these Cauchy curves. Its

adverb argument is the function being integrated, the right argument is the

closed path given as a list of approximating points. The dyad case uses x&u as the

integrand and this will later be used to compute several curves for one plot.

VECTOR Vol. 24 N°1

 113

 chycu=: 1 : 0 NB. CAUchy cuRVE

0,+/\(u mdpt y) * diff y

:

x&u chycu y

)

 cplot f chycu C

The above line duplicates Figure 2.

Cauchy curves and magnitude

If we plot the Cauchy curve for a monomial ^&n the result is a circle. Here, and in

all the examples until the last section, we again use the unit circle around the

origin as our path of integration.

 cplot ^&5 chycu C NB. Cauchy curve is a circle

However, the plot of the Cauchy curve as a circle is misleading since it wraps

around several times. Any guess as to how many times it wraps? Here we define

cmplot which shows the Cauchy curve along with the magnitudes of the points

on the Cauchy curve plotted in the direction of the angle (12 o.) to the

corresponding points on the closed path C.

 cmplot=: 1 : 0

z=. u chycu y

opts=. 'pensize 2;aspect 1;penstyle 0 1'

opts plot z,:(|z)r. 12 o.y

)

 ^&5 cmplot C

 ^&5 cmplot sC=: r steps 0 2p1 100

Figure 3 shows such a plot with the unit circle sC having a small number of

points so that the magnitude curve can be seen in dashed form.

VECTOR Vol. 24 N°1

 114

Figure 3. Cauchy curve and magnitude for f(z) = z5.

In general, ^&n gives a circle that wraps n+1 times. If multiple terms are used (as

in Figure 2) in the polynomial, the results can be quite complicated. For example,

consider the Cauchy path with magnitude for f(z) = 1+9z8, shown in Figure 4.

 (1+9*^&8) cmplot sC

Figure 4. Cauchy curve and magnitude for f(z) = 1+9z8.

VECTOR Vol. 24 N°1

 115

Rational functions

With rational functions we need to be careful. Here we consider the rational

function given by the following.

Notice that the roots of the denominator in the complex plane will be slightly

larger than one in magnitude (about 1.00083), so the unit circle gets near, but

does not reach or encompass the bad points.

 f=:1 0 0 0 0 0 2&p.%1.01+^&12

 lC=:r steps 0 2p1 30000

 cplot f chycu lC

Figure 5. Cauchy curve for a rational function.

That path of integration is so near to bad points that we increased the number of

steps on the unit circle to 30000 to avoid a rough appearance. This creates a

curve with six heart shapes has a cute, simple appearance. This curve is very

sensitive to parameters. What happens if you change the exponent 12 to 11 or

13? What happens if you vary the coefficient of the sixth power away from 2?

These are worthwhile experiments for the reader to try. We offer a gallery of

these variants and more at [6].

VECTOR Vol. 24 N°1

 116

Families of Cauchy curves

Next we consider families of Cauchy curves. The adverb cfplot takes a dyad u as

its verb argument and produces the Cauchy curves for the functions a&u for each

item a of x. Figure 6 shows the Cauchy curves (all circles here) arising from zn for

2 ≤ n ≤12.

 require '~addons/media/image3/prevare.ijs'

 cfplot=: 1 : 0

:

opts=. 'pensize 2;aspect 1;itemcolor '

opts=. opts,":,Hue steps 0 2r3 ,#x

opts plot x u chycu"_1 _ y

)

 (2+i.11) (]^[) cfplot C

Figure 6. Cauchy curves from f(z) = zn.

Next we consider plots of

for exponents a geometrically distributed near 12.

VECTOR Vol. 24 N°1

 117

 fh6=: 1 0 0 0 0 0 2&p.@] % 1.01+]^[

 lC=: r steps 0 2p1 30000

 ({.,{:)a=: 12*1.07^ steps 0 0.36 100

12 12.2959

 a fh6 cfplot lC

Figure 7. Cauchy curves from fh6.

Next we look at the Cauchy curves from the family of functions f(z) = cos(a z2).

The result is shown in Figure 8.

 ({.,{:) a=: 4*0.9^steps 0 1 50

4 3.6

 a cos@:([**:@]) cfplot C

VECTOR Vol. 24 N°1

 118

Figure 8. Cauchy curves from f(z) = cos(a z2).

Several other plots of families of Cauchy curves may be found in the gallery [6]

Alternate closed paths of integration

In this last section we note that we need not restrict ourselves to using the unit

circle C as our closed path for the integration. We consider below examples using

a square and an ellipse. The square has vertices at _1j_1, 1j_1, 1j1 and _1j1.

 pp=: 2 : '(m&*@-.+n&*)@(1&|)'

 ss=: _1j_1 pp 1j_1

 ee=: 1j_1 pp 1j1

 nn=: 1j1 pp _1j1

 ww=: _1j1 pp _1j_1

VECTOR Vol. 24 N°1

 119

 rsq=: ss`ee`nn`ww@.(4|<.)"0

 sq=: rsq steps 0 4 50000

 (2+i.11) (]^[) cfplot sq

Figure 9 gives the Cauchy curves of f(z) = zn with a square as the closed path of

integration. Compare to Figure 6.

Figure 9. Cauchy curves from f(z) = zn on a square.

In Figure 10 we show the result of using a very mild ellipse (the ratio of the axes

is 0.9) as the path of integration for the function fh6. Compare to Figure 7. Notice

the hearts are gone. Cauchy curves are very sensitive to the path of integration.

 $ell=: (cos j. 0.9 * sin) steps 0 2p1 30000

30001

 (12*1.07^ steps 0 0.5 100) fh6 cfplot ell

VECTOR Vol. 24 N°1

 120

Figure 10. Cauchy curves from fh6 on an ellipse..

References
1. E. T. Bell, Men of Mathematics, Simon and Schuster, 1965.

2. David M Burton, The History of Mathematics, 6th ed., McGraw Hill, 2007.

3. John B. Conway, Functions of one complex variable, 2nd ed. Springer-Verlag, c1978 (1995

printing).

4. Ken Iverson, “A Dictionary of J”, Vector 7.2 (1990) 99-117.

5. “Complex Operations”,

www.jsoftware.com/jwiki/Essays/Complex_Operations

6. William R. Jones and Cliff Reiter, Cauchy Curves Auxiliary Gallery,

www.lafayette.edu/~reiterc/mvq/cc/index.html

7. Tristan Needham, Visual complex analysis, Oxford University Press, 1997

8. Cliff Reiter, Fractals, Visualization and J, 3rd ed., Lulu.com, 2007

9. Frank Smithies, Cauchy and the creation of complex function theory, Cambridge

University Press, 1997

10. Norman Thomson, “J-ottings 50: If you think J is complex try j”, Vector 23.4 (2008) 106-

118,

www.vector.org.uk/archive/v234/jot50.htm

VECTOR Vol. 24 N°1

 121

About polynomials
Part 2

by Gianluigi Quario

giangiquario@yahoo.it

This is the second and concluding part of an article dedicated to polynomials.

Evaluation of polynomials. Construction of functions for evaluation. Zero finding

of a polynomial. A stable and accurate function for finding complex zeroes in

polynomials of higher degree.

Introduction

The classical problem of solving an Nth-degree polynomial equation

c[N]×YN + c[N-1]×Y(N-1) + … + c[1]×Y1 + c[0] = 0

has substantially influenced the development of mathematics throughout the

centuries and still has several important applications to the theory and practice

of present-day computing. The name Fundamental Theorem of Algebra itself

evidences that.

The theorem was demonstrated by Gauss in 1799 and says that every polynomial

equation of degree N has exactly N solutions in the complex field. The early

mathematicians tried to express the solutions by means of general formulas

including the coefficients of the polynomial and using just arithmetical

operations and radicals. The cases of degree 3 and 4 were solved by Italian

thinkers during 16th century. Then for more than two centuries mathematicians

tried in vain to find analogous formulas for degree 5.

At the beginning of 19th century Ruffini & Abel demonstrated that it is not

possible to have such general formulas from degree 5 up.

The following interest in the solution of polynomial equations was concerned

with iterative methods to obtain approximate numerical values.

Many algorithms were proposed and realized. Wolfram Mathworld [1]

enumerates the following:

VECTOR Vol. 24 N°1

 122

Bailey’s Method, Bairstow’s Method, Bernoulli’s Method, Bisection, Brent’s Method,

Crout’s Method, False Position Method, Graeffe’s Method, Halley’s Irrational Formula,

Halley’s Method, Halley’s Rational Formula, Horner’s Method, Householder’s Method,

Hutton’s Method, Inverse Quadratic Interpolation, Jenkins-Traub Method, Laguerre’s

Method, Lambert’s Method, Lehmer-Schur Method, Lin’s Method, Maehly’s Procedure,

Muller’s Method, Newton’s Method, Ridders’ Method, Schröder’s Method, Secant

Method, Tangent Hyperbolas Method

There are state-of-art root-finding packages available using multiprecision, such

as MPSolve implemented by Bini et al. [2] and Eigensolve by Fortune [3].

Nevertheless this subject of research is still a current topic.

Certainly one reason is that none of these algorithms can give adequate results in

all realistic circumstances. The inevitable rounding errors generated during the

calculation sometimes obstruct the convergence of the iterations, even when

using extended-precision arithmetic.

The challenge for the present-day research is to develop algorithms of numerical

solutions guaranteed and with reasonable computing time.

I’ll present a Dyalog APL implementation of Aberth’s method, following a Fortran

77 program written by D. Bini [4].

I wish to thank Prof. D.A. Bini sincerely for his agreement to disclose current

work.

Complex numbers

When dealing with polynomials it is convenient to adopt complex numbers.

Complex number c corresponds to a point in a 2-dimensional plane. It can be

represented with a pair of real coordinates (a, b) with the orthogonal real and

imaginary axes forming a basis.

As this work is based upon Dyalog APL, that does not support computation with

complex numbers, we will define a complex number to be a simple 2-element

numeric vector. Each complex number is considered to be a scalar. For example:

 c ← ⊂1 1

is a complex scalar. And

 c← (1 1)(0 2)(1 0)

is a 3-element complex vector.

VECTOR Vol. 24 N°1

 123

Evaluation of real and complex polynomials

The following function returns the real values of a real polynomial using the

Ruffini-Horner method:

ZrPoly←{

 ⍝ values at ⍵ of real polynomial with coefficients ⍺

 ⍝ e.g. : 1 3 3 1 ZrPoly ⍳9

 ⎕IO←0 ⋄ coe pts←⍺ ⍵

 ruffini←{⍺+⍺⍺⍶⍵}

 ⊃pts ruffini/coe

}

And this returns the complex values of a real or complex polynomial:

ZcPoly←{

 ⍝ values at ⍵ of complex polynomial with coefficients ⍺

 ⍝ e.g. : 1 3 3 1 ZcPoly ⍳9

 ⍝ : (1 0)(3 0)(3 0)(1 0) ZcPoly (1 0)(2 0)(3 0)(1 ¯1)(2 2)

 ⎕IO←0 ⋄ coe pts←Zr2c¨⍺ ⍵

 ⍝ ⍺ + ⍺⍺ ⍶ enclose if simple ⍵

 ruffini←{(⊂⍺)+¨⍺⍺{(⍺-.⍶⍵),⍺+.⍶⌽⍵}¨(,∘⊂∘,⍣(1=≡,⍵))⍵}

 ⊃pts ruffini/coe

}

where Zr2c transforms a real into a complex number

Zr2c←{

 ⍝ array of complex from simple array of real numbers

 ⍝ ⍵ is a simple array (or scalar) of real numbers

 2=|≡⍵:⍵ ⍝already complex (the depth of a complex is 2)

 ⍵,¨0

}

Construction of functions for evaluation of polynomials

Let poly be a numerical vector of coefficients of polynomial p(Y),

p(Y) ←→ poly[N]×YN + poly[N-1]×Y(N-1) + … + poly[1]×Y1 + poly[0]

In the first part we have seen that the algebrists tend to study the polynomial

functions as if they were not functions but generic objects. We continue to

represent polynomials by their coefficient vector poly (ascending order). Vector

poly is either a real or a complex vector.

VECTOR Vol. 24 N°1

 124

Given poly it is natural to define the associated functions for its evaluation

poly∘ZrPoly or poly∘ZcPoly.

When poly is real it is possible to define a direct function using only the

primitives + and x. Let us start with a trinomial and consider that it can be

evaluated by means of Ruffini-Horner method:

poly[0] + Y × (poly[1] + Y × poly[2])

The expression poly[1] + Y × poly[2] gives us the function

{(poly[1] ∘+) ∘ (poly[2] ∘⍶) ⍵}

and the expression Y × (poly[1] + Y × poly[2])

{poly[0] ∘+ ⍵} ⍶ {(poly[1] ∘+) ∘ (poly[2] ∘⍶) ⍵}

This is a monadic fork of three functions {f ⍵} ⍶ {g ⍵} and is equivalent to

⍶∘+∘(poly[1]∘+)∘(⍶∘+∘(poly[2]∘⍶)⍨

Now the final evaluation function of the trinomial is

PolyEval←(poly[0]∘+)∘(⍶∘+∘(poly[1]∘+)∘(⍶∘+∘(poly[2]∘⍶)⍨)

In a recursive way we can obtain for a polynomial of degree 3

PolyEval←(poly[0]∘+)∘(⍶∘+∘(poly[1]∘+)∘(⍶∘+∘(poly[2]∘+)∘(poly[3]∘⍶)⍨)⍨)

and similar direct functions for higher degree.

Zero finding of a polynomial

From a functional point of view the zero-finding of polynomial poly is a

straightforward problem. We have the function for polynomial evaluation and

the inverse operator ⍣¯1 [5].

Zero finding should be reached in this way:

 (poly∘ZcPoly⍣¯1) 0

or

 (PolyEval⍣¯1) 0

provided that the inverse operator is applied to a primitive or an expression of

primitive functions combined with primitive operators. We can follow only the

second way.

VECTOR Vol. 24 N°1

 125

Let poly be the trinomial 2 3 1. Then we have

 PolyEval←(2∘+)∘(⍶∘+∘(3∘+)∘(⍶∘+∘(1∘⍶)⍨)

and

 (PolyEval⍣¯1) 0

¯1

This is a genuine root of the trinomial.

I built this kind of function for a degree-99 polynomial. (It’s a very long string:

you can find it in [6].)

 poly ← 100⍴⌽⍳10

and the returned result was

¯1.338591185893

I cannot imagine the hard work done by the interpreter, but I feel admiration for

John Scholes and its implementation. This is also a genuine root of the

polynomial… even if the result has forgotten many companions.

Unfortunately the inverse operator is not so cute as to perceive that the function

PolyEval is not invertible: the inverse operator is able to tell the truth but not

the whole truth. We cannot follow the functional route.

A stable and accurate function for finding complex zeroes in
polynomials of higher degree

J has the primitive monadic function p. [7] which finds roots of a polynomial by

means of a internal iterative algorithm. I think that also the APL programmer

needs such a tool.

Dyalog APL lacks extended-precision numbers and accordingly it is more difficult

to obtain stability (avoid that errors introduced at one time step cannot grow

unboundedly at later times) even with methods equipped with the property of

convergence.

I found a Fortran program [3] implementing the Aberth method in standard

floating-point arithmetic.

VECTOR Vol. 24 N°1

 126

The Aberth method is a root-finding algorithm for simultaneous approximation

of all the complex roots of a univariate real or complex polynomial. It derives

from Newton’s method, but is less susceptible to a failure of convergence.

This algorithm has the advantage of an upper limit to the number of iterations

and that, besides the approximated roots, the output contains the corresponding

error bounds.

An excerpt from its abstract:

X***

X* NUMERICAL COMPUTATION OF THE ROOTS OF A POLYNOMIAL HAVING *

X* COMPLEX COEFFICIENTS, BASED ON ABERTH'S METHOD. *

X* Version 1.4, June 1996 *

X* (D. Bini, Dipartimento di Matematica, Universita' di Pisa) *

X* (bini@dm.unipi.it) *

X***

An algorithm for computing polynomial zeros, based on Aberth's method, is

presented. The starting approximations are chosen by means of a suitable

application of Rouché's theorem. More precisely, an integer q >=1 and a set

of annuli A i for i=1,...,q, in the complex plane, are determined together with

the number k i of zeros of the polynomial contained in each annulus A i. As

starting approximations we choose k i complex numbers lying on a suitable circle

contained in the annulus A i for i=1,...,q. The computation of Newton's

correction is performed in such a way that overflow situations are removed. A

suitable stop condition, based on a rigorous backward rounding error analysis,

guarantees that the computed approximations are the exact zeros of a ‚nearby‛

polynomial. This implies the backward stability of our algorithm. We provide a

Fortran 77 implementation of the algorithm which is robust against overflow and

allows us to deal with polynomials of any degree, not necessarily monic, whose

zeros and coefficients are representable as floating point numbers. In all the

tests performed with more than 1000 polynomials having degrees from 10 up to

25,600 and randomly generated coefficients, the Fortran 77 implementation of our

algorithm computed approximations to all the zeros within the relative precision

allowed by the classical conditioning theorems with 11.1 average iterations. In

the worst case the number of iterations needed has been at most 17.

I translated it in a dynamic function (Dyalog APL v.11), taking some liberties with

respect to iterations/recursions and the calculation of starting values. The

function is named p_ to evoke J’s primitive p.

VECTOR Vol. 24 N°1

 127

⍝###

⍝ ////////// A P L documentation \\\\\\\\\\\

⍝###

⍝

⍝ The right_argument of this APL function is a vector that contains

⍝ the real or complex coefficients of a polynomial.

⍝ The left_argument ⍺:

⍝ when ⍺ is numeric, value of polynomial is calculated at ⍺.

⍝ when ⍺ is NOT numeric:

⍝ * case ⍺ is missing or 0-length vector: default case

⍝ The function returns a 2 elements vector:

⍝ [1] hiCoe scalar is the highest_degree coefficient;

⍝ [2] valueRoots vector of the computed approximations to

⍝ roots

⍝ * case ⍺='x' : extended results

⍝ The function returns a 7 elements vector:

⍝ [1] hiCoe scalar is the highest_degree coefficient;

⍝ [2] valueRoots vector of the computed approximations to

⍝ roots

⍝ [3] boolRoots vector is 1 for successful approx. of

⍝ the i-th root.

⍝ More specifically, the disk of center valueRoots[i] and

⍝ radius radiusRoots[i] ,in the complex plane, contains a root

⍝ of p(x) for i=1,...,n.

⍝ It contains informations about the computed approximations:

⍝ = 1 if the approximation of the i-th root has been

⍝ carried out successfully, i.e., the computed approximation

⍝ can be viewed as the exact root of a slightly perturbed

⍝ polynomial.

⍝ = 0 if more iterations are needed for the i-th root

⍝ or if the corresponding root cannot be represented as

⍝ floating point due to overflow or underflow

⍝ [4] radiusRoots vector is the absolute error bound

⍝ If there exist roots which cannot be represented without

⍝ overflow or underflow, then the corresponding components

⍝ of RadiusRoots are set to -1

⍝ [5] radiusRoots÷Modulus(valueRoots)

⍝ vector is the relative error bound

VECTOR Vol. 24 N°1

 128

⍝ [6] moduRoots vector moduli of computed approximations

⍝ [7] iterNo scalar is the number of iterations

⍝ needed by the algorithm.

⍝ [8] msgs vector segmented string of warning msgs

⍝ (maybe empty)

⍝ * case ⍺='i' : iteration runtime values

⍝ The function returns a 8 elements vector of case 'x' and:

⍝ [9] valueInit vector 2 elements:

⍝ - vector of complex init guesses

⍝ - bool vector of warnings over guesses

⍝ [10] valueIter matrix rows of guesses at each step

⍝ * case ⍺≡'rootcenter' : the function

⍝ returns the root-center(centroid)of the (not computed) roots

⍝ * else : default case

⍝ The right_argument of this APL function can be a 2 elements nested vector

⍝ that contains

⍝ [1] hiCoe scalar is the highest_degree coefficient;

⍝ [2] valueRoots vector the N roots of a N-degree polynomial

⍝ hiCoe and valueRoots can be real or complex

⍝ Then the function returns a (N+1)-elements vector that contains

⍝ the complex coefficients of the polynomial.

Note that all the roots are approximated roots and that they are never rounded.

The roots are always returned as complex numbers. Sometimes a real root is

represented as having a imaginary part, but that is due to approximation of the

real root over the complex plane.

For example the real roots (-1 and -2) of real polynomial

 p_ 2 3 1 ⍝ short result

are returned as

(1 0) ((¯1 ¯1.058791184E¯22) (¯2 1.009741959E¯28))

where (1 0) is the highest degree coefficient.

If we write

 'x' p_ 2 3 1 ⍝ extended result

we get

VECTOR Vol. 24 N°1

 129

(1 0) ((¯1 ¯1.058791184E¯22)(¯2 1.009741959E¯28)) (1 1)

… (7.68274333E¯15 1.110223025E¯14)

… (7.68274333E¯15 5.551115123E¯15) (1 2) 5 ('')

where we can see that the distance of the computed roots from the actual roots is

less than

(7.68274333E¯15 1.110223025E¯14)

and that 5 iterations were made.

The function p_ is tailored in order to solve polynomials of degree until 500 and

1Mb of available workspace is more than sufficient. It is possible to raise the

maximum-allowed degree: you can change the value assigned to local variable

MAXDEG inside p_. I made some rewarding tests with degree 2000.

p_ is self-supported and contains some local functions for complex arithmetics.

When the argument of function p_ is a 2-element nested vector, where the first

element is a scalar and the second is a simple vector, the polynomial is returned

whose roots are the elements of second vector.

For example p_ 1(¯1 ¯2) is the polynomial 2 3 1

The function p_ and its companion p_Display are stored in file PolyRoot.DWS

[6].

 p_Display 'x' p_ ¯1 9 8 7 6 5 4 3 2 1 ⍝ formatted display of extended result

1) valid=Y 8.757084243466E¯1 ¯8.910997943917E¯1 R= 2.E¯14 RR= 2.E¯14 modulus= 1.25E0

2) valid=Y 8.757084243466E¯1 8.910997943917E¯1 R= 4.E¯14 RR= 3.E¯14 modulus= 1.25E0

3) valid=Y 1.277725973022E¯1 1.319267183775E0 R= 4.E¯14 RR= 3.E¯14 modulus= 1.33E0

4) valid=Y 1.277725973022E¯1 ¯1.319267183775E0 R= 4.E¯14 RR= 3.E¯14 modulus= 1.33E0

5) valid=Y 1.011379823900E¯1 9.573914554732E¯19 R= 7.E¯16 RR= 7.E¯15 modulus= 1.01E¯1

6) valid=Y ¯7.418904085081E¯1 ¯1.149403115215E0 R= 6.E¯14 RR= 4.E¯14 modulus= 1.37E0

7) valid=Y ¯7.418904085081E¯1 1.149403115215E0 R= 6.E¯14 RR= 4.E¯14 modulus= 1.37E0

8) valid=Y ¯1.312159604336E0 4.525676361664E¯1 R= 7.E¯14 RR= 5.E¯14 modulus= 1.39E0

9) valid=Y ¯1.312159604336E0 ¯4.525676361664E¯1 R= 9.E¯14 RR= 7.E¯14 modulus= 1.39E0

 Centroid= ¯2.222222222222E¯1 4.440892098501E¯16

The workspace PolyRoot.DWS contains the variable Describe with some test

polynomials.

VECTOR Vol. 24 N°1

 130

References
1. mathworld.wolfram.com/PolynomialRoots.html

2. D.A. Bini and G. Fiorentino, MPSolve: Numerical computation of polynomial roots v. 2.0,

FRISCO report (1998)

3. S. Fortune, “An iterated eigenvalue algorithm for approximating roots of univariate

polynomials”, JSC (2002)

4. D.A. Bini “Numerical computation of polynomial zeros by means of Aberth’s method”,

Numerical Algorithms, 13 (1996)

5. www.dyalog.com/help

6. PolyRoot.dws at tech.groups.yahoo.com/group/dyalogusers/files/Software

7. www.jsoftware.com/jwiki

VECTOR Vol. 24 N°1

 131

Quick calculation of Kendall’s Rank

Correlation Distribution
by Gordon Sutcliffe

gsutcliffe@talk21.com

The nub of the paper is the km2 function with krfd as a user-friendly cover function

for quick calculation of Kendall’s rank correlation frequency distribution. The

remainder is intended to provide a useful, but by no means exhaustive, background.

Introduction

Kendall’s Rank Correlation Distribution provides the statistical probability for

the assertion that two sets of n ranks are significantly different, rather than just

random fluctuations. The cumulative probability used for their solution can be

produced from the integer frequencies calculated here.

Currently the probabilities for n>10 ranks are managed by using approximations

to the normal distribution. However, it is not easy to determine the degree of

approximation.

The problem from the calculation point of view is that Kendall’s original method

takes an enormous amount of computer time to calculate when the number of

ranks is more than 12. On a PC [1] the frequency distribution for n=13 ranks

would take days, with the time increasing as factorial n.

Quick calculation is based on Kendall’s theory, but uses a recurrence relationship

which enables the frequency distribution to be calculated using floating point

arithmetic in a fraction of a second up to n=170. (Factorial 170 is the limit for

standard floating point arithmetic on a PC.)

The integer floating-point frequencies are exact up to n=18, but at higher n,

precision drops to about 13 to 14 significant digits [2]. J extended-integer

arithmetic produces exact frequencies up to n=170 in 2000 seconds, or up to

n=300 in 14 hours on a PC.

VECTOR Vol. 24 N°1

 132

Methods of calculation

Two calculation methods are considered. Method 1 is based on first principles, as

in Kendall’s work. Runtime usually limits calculation to about n=12 ranks at

most. The second method is based on a recurrence relation. It is practical up to

n=170 ranks using floating point arithmetic and can provide exact frequencies to

over n=300 using J extended-integer arithmetic.

Both methods agree with Biometrika Table 45, [3] up to its limit of 10 ranks.

Basic properties of the Kendall’s rank correlation frequency distribution against

Q for n>0 are:

Distribution symmetry about: (max. Q)/2 Q=0 frequencies: 1

Sum of the frequencies: !n Q=1 frequencies: n-1

Number of frequencies, Q: 1+n×(n-1)/2 Q=2 frequencies: (-1)+n×(n-1)/2 [for n>1]

Q and n are discussed further under Method 1.

Method 1: First principles

Taking the case for n=3, the 3 ranks have 6 = 3 × 2 × 1 permutations. Assuming

that a rank order a b c corresponds to perfect correlation, the (minimum)

number of neighbour interchanges required to transform each permutation to

a b c is ascertained:

Permutations for n=3 a b c a c b b a c b c a c a b c b a

Required neighbour interchanges, Q 0 1 1 2 2 3

Frequency total for each unique Q value above 1 — 2 — 2 1

The frequencies for each value of Q = 0, 1, 2, 3 are repeated in the table below in

the row for n=3.

VECTOR Vol. 24 N°1

 133

Table of Frequency Distributions for n=1 to 6 Ranks

The italic figures are temporary additions to aid explanation of the recurrence method

NO.

OF

RANKS

NUMBER OF NEIGHBOUR INTERCHANGES, Q

FOR THE FREQUENCIES IN THE COLUMN BELOW THEM

SUM

OF

FREQS.

COUNT

OF

QS

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 !n
1+n×

(n-1)/2

0
1

(-1)
 1 1

1
1

(-1)
 1 1

2
1 1

-1

(-1)
 2 2

3
1 2 2 1

-1

-2

-2

(-1)
 6 4

4
1 3 5 6 5 3

-1

1

-3

-5

-6

-5

-3

(-1)
 24 7

5
1 4 9 15 20 22 20

-1

15

-4

9

-9

4

-15

1

-20

-22

-20

-15

-9

-4

120

(-1)
11

6 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1 720 16

Method 2: Recurrence relation

Row r+1 is based [4] on the previous row r. Rows are calculated from row n=1

initially. To calculate the frequencies for the next row, first negate a copy of the

current row and insert as shown by the italics at the bottom of the row. The row

is then summed progressively from column 0 to the right to produce the next

row, stopping before the (_1) column, which would otherwise produce an

unwanted zero.

Notes and references
1. PC system specification s/w: Windows XP home ed. 5.1.2600, Service pack 2; J v6.01c;

H/W: Processor: x86 Family 15 Model 2 Stepping 9 GenuineIntel ~2605 MHz; RAM: 512

MB.

2. More precisely the proportional error is in the range: (1 - 6e-15) to (1 + 4.5e-15).

3. E.S. Pearson and H.O. Hartley, ed., Biometrika Tables for Statisticians Volume 1,

2nd Edition, 1958, Table 45, 84-5, 85-6, 88-9

VECTOR Vol. 24 N°1

 134

4. M.G. Kendall & A. Stewart, The Advanced Theory of Statistics, Volume 2, 3rd

Edition, Inference and Relationship, Robust and Distribution-Free Procedures, Ch. 31.25

Eqn (31.34)

Appendix: J code

Summary

Verbs grouped according to their main application: in the last column, n is the

number of ranks, Q the number of interchanges.

KENDALL’S RANK CORRE LATION DIST RIBUTION

km1 Original method km1 n

km2 Recurrence method km2^:(<:n) 1

krfd Cover function for km2, Frequency

Distribution

krfd n

 Kendall’s Rank Probability Distribution (% +/) krfd n

 Kendall’s Rank Cumulative Probabilities;

used for Biometrika [3] check

(] +/\@:% +/) krfd n

PROBABILITY OF RANDO M VARIATION IN TWO SETS OF RANKS

r2q Ranks to Q values A_ranks r2q B_ranks

q2p Q values to Probabilities n q2p Q

q2t Q values to Kendall’s tau n q2t Q

 Single- and double-tail comparison of rank

sets

see Listing

MISCELLANEOUS

dsp Display of results and inline debugging aid … dsp right_arg …

ktcv Kendall’s tau Critical Values n ktcv nominal_probability

VECTOR Vol. 24 N°1

 135

Listing

dsp =: 1!:2&2 NB. Utility monad: display and return argument

n =. 3 NB. n indicates the number of ranks

NB. === Kendall's Rank Correlation Distribution ====================

 NB. Both km1 (Original method) and km2 (Recurrence method) create

 NB. Kendall's Rank Correlation Frequency Distribution for n ranks.

km1 =: [: +/"1 [: = [: +/"1 (i.@! ({. +/@:>])\."1@:A. i.)

 NB. Monad Syntax: km1 n Note: n>10 may fail on memory limit

km2 =: 3 : 0 NB. Monad SYNTAX: km2^:(<:n) y=.1 Note: n>0 ; y=1

 NB. n-1 recurrences update the starting value of y

 n =. +/ _1 x: 2{. y NB. l is the no. of Q values for

 h =. >.-: l=. >: -: (* >:) n NB. the new distribution (n+1)

 (, |.`(|.@}:)@.(2|l)) +/\ (h&{. - [: (-h)&{. (0>.h-n+1)&{.) y

)

krfd =: 3 : 0 NB. Syntax: [initial_distrbn] krfd iterations_reqd.

 1 krfd y NB. Monad default x=1 sets floating point arithmetic.

 NB. x can be a previous result and/or have an 'x'

 NB. suffix for extended integer arithmetic

:

 km2^:(y-1=#x) x NB. Reduce effective y by 1 when x=1 (or 1x)

)

(] % +/) krfd n NB. Probability distribution

(+/\@:% +/) krfd n NB. Cumulative probability

 NB. For Biometrika Table 45 Ref [1] check

NB. === Probability of Random Variations of two sets of ranks ======

r2q =: 3 : 0 NB. Ranks to Q

NB. SYNTAX: [A_ranks] r2q B_ranks Monad assumes y pre-ordered

 if. (] -&# ~.) y do. 'r2q: y ranks indiscrete' return. end.

 Q =. +/ ({. +/@:>])\. y NB. Exit with Q value

:

 if. (] -&# ~.) x do. 'r2q: x ranks indiscrete' return. end.

 r2q (/:x) { y NB. Reorder y as ascending x

)

VECTOR Vol. 24 N°1

 136

 NB. Convert Q to probability in single- or double-tail test

q2p =: 4 : 0 NB. SYNTAX: no._of_ranks qp2 Q_value

 if. -.y e. i.>: l=.-:(* <:) x do. 'q2p: incompat. args' return.

end.

 st =. (!x)%~ +/ (y+1){. d=:krfd x NB. Single-tail probability

 z =. y <. l - y NB. Double-tail: complement y

 dt =. 1 <. +: (!x)%~ +/ (z+1){. d NB. Double-tail probability

 hd =. ' n Q Single-tail Double-tail', LF NB. Headings

 hd, 4 8 10j6 12j6": x, y, st, dt NB. Results

)

 NB. Convert Q to Kendall's tau

q2t =: 1: - 4: *] % (* <:)@[NB. SYNTAX: n q2t Q

 NB. Rank comparison to single-, double-tail probability

'r0 r1 r2' =: 0 1 2 3 4 5 ; 5 4 3 2 1 0 ; 6?.6 NB. Rank data

6 q2p r0 r2q r0 NB. Both results very significant

6 q2p r0 r2q r1 NB. Double-tail result very significant

6 q2p r0 r2q r2 NB. Neither result significant

NB. === Miscellaneous ==

 NB. Critical values of Kendall's tau in cumulative probability

ktcv =: 4 : 0 NB. SYNTAX: n ktcv Nominal_s-tail_signif._prob.

 d =. (+/\@krfd % !) x NB. Cumulative probability

 x q2t (d <: y) i: 1 NB. Critical value of Kendall's tau
)

http://validator.w3.org/check?uri=referer

VECTOR Vol. 24 N°1

 137

Consultants

This directory lists companies and consultants who provide commercial

consulting services in one or more of the APLs.

For vendors of interpreters, please see the Vector web site at vector.org.uk.

If your interest in the APLs is non-commercial, please consider creating a home

page for yourself and your interests on the APL Wiki at aplwiki.com.

Please advise changes or additions to this directory by email to Ray Cannon:

ray_cannon@compuserve.com.

United Kingdom

APL Team Ltd

aplteam.com

Analysis, design and programming

Alastair Kinloch

alastair.kinloch@btinternet.com

Design, analysis and programming for

banking, insurance and pensions,

financial planning and modelling,

corporate performance and legal

reporting

Andrews

ADWilson@kencomp.net

APL programming and analysis,

algorithms, tree processing and design

programs for craft work.

Causeway Graphical Systems Ltd

causeway.co.uk

On-site training for Causeway, RainPro

and NewLeaf. Customisation and

enhancement to meet local needs. Code

review and pre-implementation check

of Causeway applications.

Ellis Morgan

apl@ellismorgan.co.uk

Business Forecasting & APL Systems.

VECTOR Vol. 24 N°1

 138

First Derivative Analytics Ltd

KenChakahwata@compuserve.com

Analysis, design, prototyping,

development & testing of APL

(especially financial) applications:

Sharp, Dyalog APL.

First Derivatives plc

firstderivatives.com

Financial trading software in q, K and

kdb+

General Software Ltd

martin@gsoft.plus.com

Over 20 years experience with every

version of APL, large mainframe

systems and small PC based

programmes.

Graeme Robertson Ltd

GraemeDR@nildram.co.uk

Design and write custom software.

Maintain and upgrade APL systems.

Deliver customized APL training

courses.

HMW Computing

HMW@4xtra.com

System design consultancy,

programming. HMW specialize in

banking and prototyping work. Full

members of DSDM consortium and

Agile Alliance.

Hoekstra Systems Ltd

Bob.Hoekstra@HoekstraSystems.ltd.uk

APL consultancy, programming, etc.

Also UNIX system administration

Michael Hughes

Michael@Hughes.uk.com

APL consultant with 20 years

experience with all versions of APL. I

can create your dynamic Web sites

using the full power of APL working

with Microsoft IIS on Windows NT or

2000.

Optima Systems Ltd

optima-systems.co.uk

APL professionals with many years

experience in pharmaceutical,

industrial and financial systems on

both PC and Mainframe platforms.

Paul Chapman

100343.3210@compuserve.com

24-hour programmer: APL, Smalltalk,

C; Windows front end design a

speciality.

VECTOR Vol. 24 N°1

 139

Phil Last Ltd

phil.last@ntlworld.com

APL Consultancy, Modelling and

Programming.

Ray Cannon

ray_cannon@compuserve.com

APL, C, C++, Assembler, Windows,

Graphics on PC and IBM Mainframe.

Experience in Insurance, Chemical, and

Airline Industries

Stephen Wynn

centre@boltblue.com

Most experience of financial planning &

mathematical areas: operational

research, quality control, experimental

design

Canada

APL Borealis Inc.

aplborealis.com

Hands-on courses in Introductory,

Intermediate, Advanced and Windows

APL. Courses are customized and

flexible, and may be delivered on-site,

with strong emphasis on methods for

efficient and maintainable APL systems

development.

Godin London Incorporated

godin.com

Applications in food manufacturing,

travel agency, airline bookings and

product lease management.

Milinta Inc.

milinta.com

Design, development, maintenance,

conversion, documentation in all APLs,

most APs and some specific Sharp

products (LOGOS, ViewPoint, Retrieve).

Experience in multi-user, multi-task

systems, databases, Windows.

Snake Island Research Inc.

snakeisland.com

APL interpreter and compiler

enhancements, intrinsic functions,

performance consulting. APL parallel

compiler APEX is giving very good

initial performance tests with

convolution faster than FORTRAN.

VECTOR Vol. 24 N°1

 140

Denmark

Insight Systems ApS

insight.dk

We have experience with just about

every APL system and platform in

common use during the last 20 years,

from SHARP APL under MVS or Linux

to APL+Win and in particular Dyalog

APL under Windows 9x, NT or 2000. If

you have decisions to take about

adapting your APL application to take

advantage of emerging technologies, or

would like your strategy reviewed, give

us a call. We have extensive experience

in all areas of APL development, from

legacy systems, up, down and sideways

migrations, to the development and

support of shrink wrapped solutions

based on APL. Even if we don’t have

time to do the work ourselves, we will

know where to find someone who is an

expert in your version of APL and your

application area, on your continent.

Finland

ADVOCORP Oy

rett.fi

APL application conversions, APL

Windows interfaces, APL to API level

interfacing to any system under

Windows, TCP/IP network and

database connectivity, APL based

financial client/server applications,

Cognos Planning and ReportNet

consultancy.

RE Time Tracker Oy

4ts.com

APL application conversions, APL

Windows interfaces, APL to API level

interfacing to any system under

Windows, TCP/IP network and

database connectivity.

VECTOR Vol. 24 N°1

 141

France

Lescasse Consulting

lescasse.com

A range of consultants, experts in

Windows programming with APL+Win

and Dyalog APL/W. More than 100

major APL applications already

developed. We all have additional

expertise in Formula One and Delphi.

Germany

Dittrich & Partner Consulting GmbH

dpc.de

APL programming and analysis; APL

workshops and training on the job

Dr Nussbaum GmbH

nussbaum-gift.de

IT Consultant with a strong focus on

APL.

Skelton Consulting GmbH

skelton.de

K\Q Consultancy

Netherlands

Adfee

adfee@concepts.nl

Development, maintenance,

conversion, migration, documentation,

of APL products in all APL

environments

Oasis b.v.

oasis.nl

Introductory courses in APL. Advanced

courses for different APL versions.

Expertise in APL system design, project

management, conversion, migration,

tuning; for all APL versions. (10+ years

experience)

New Zealand

MasterWork Software Ltd

fraser.jackson@xtra.co.nz

Consulting and J programming for

econometrics and statistics in public

policy, health and food industries.

VECTOR Vol. 24 N°1

 142

Russia

INFOSTROY

infostroy.ru

Broad experience in various APL

platforms. Special skills and knowledge

in developing complex applications for

investment, financial and construction

markets. Implementation of hybrid

solutions based on APL, Delphi, C#,

VBA, SQL servers.

Sweden

Evestic AB

olle.evero@mail.com

Excellent track record from 15+ years

of APL applications in banking,

insurance, and education services. All

dialects, platforms and project phases.

SQL expertise.

RadSys Technologies AB

randolph.schrab@radsys.se

Area of expertise: financial systems,

risk analysis systems, healthcare

systems

United States

APL Solutions Inc.

aplsi@starpower.net

APL systems design, development,

maintenance, documentation, testing

and training. Providing solutions in

APL since 1969.

Omega Computing Inc.

alangraham@mindspring.com

APL consultancy, programming, etc.

Rex Swain

rexswain.com

Independent consultant, 25 years

experience. Custom software

development.

VECTOR Vol. 24 N°1

 143

Shepp & Associates LLC

ashepp@compuserve.com

We do APL applications development

and consulting, especially in the travel

industry, especially on small

computers. 25 years experience in APL

programming.

The Rochester Group Inc.

rochgrp.com

Specialise in MIS using Sharp APL

VECTOR Vol. 24 N°1

 144

Subscribing to Vector

Your Vector subscription includes membership of the British APL Association,

which is open to anyone interested in APL or related languages. The membership

year runs from 1 May to 30 April.

Name __

Address __

 __

Postcode/Zip and country __

Telephone number __

Email address __

UK private membership £20 ____

Overseas private membership £22 ____

+ airmail supplement outside Europe £4 ____

UK corporate membership £100 ____

Overseas corporate membership £110 ____

Sustaining membership £500 ____

Non-voting UK member (student/OAP/unemployed) £10 ____

Payment should be enclosed with your membership as a sterling cheque payable

to British APL Association, or by quoting your Visa, Mastercard or American

Express number:

I authorise you to debit my Visa/American Express/Mastercard (mark which)

account number ___ expiry date ____ / ______

for the membership category indicated above

______ annually, at the prevailing rate, until further notice

______ for one year’s subscription only

Signature __ Date ____________________

Send this completed form to:

BAA, c/o Nicholas Small, 12 Cambridge Road, Waterbeach, Cambridge CB25 9NJ

