
VECTOR  Vol. 24 No.4 

 1 

Contents 

Quick reference diary  2 
Editorial Stephen Taylor 3 
News 
Remembering Eugene McDonnell  Roger Hui 5 
Industry news:  
Dyalog, Kx Systems, Optima, IBM  10 
APL2010 Berlin – several reports  16 
BAA AGM 2010 Anthony Camacho 29 
AGM addendum Paul Grosvenor 32 
BAA AGM 2010 – Chairman’s report Paul Grosvenor 33 
Discover 
The PhraseBook project on the APL Wiki Phil Last 37 
Bring something beautiful Roger Hui 40 
Learn 
Treetables in q Stevan Apter 42 
A commentary on the formulator Neville Holmes  72 
Understanding font embedding Kai Jaeger 83 
Financial math in q: The price of bonds Jan Karman 89 
Punctuation and rank Norman Thomson  96 
Profit 
Backgammon tools in J: 2. Wastage Howard Peelle 106 
Functional calculation: 4. The year 1998 Neville Holmes 110 
Simulating the Enigma Keith Smillie  117 
Subscribing to Vector  128 



VECTOR  Vol. 24 No.4 

 2 

Quick reference diary 
14-15 Mar Cologne, Germany GSE Meeting and APL Germany 

Consultants 
Note that the Consultants page has been transferred to the web: 
http://vector.org.uk/?area=consultants 
That seemed to be the right thing to do in order to make sure that the data 
provided is up-to-date. 

Dates for future issues 
Vector articles are now published online as soon as they are ready. Issues go to 
the printers at the end of each quarter – as near as we can manage! 
If you have an idea for an article, or would like to place an advertisement in the 
printed issue, please write to editor@vector.org.uk.  



VECTOR  Vol. 24 No.4 

 3 

 
 

Eugene McDonnell  
 

 
Stevan Apter 

 

EDITORIAL 

The big event of the autumn was APL2010 in Berlin, another encouraging revival 
of an international conference series.  

Roger Hui delivered a eulogy in Berlin for Eugene 
McDonnell, stalwart of the APL Press, which we are 
pleased to reprint here. Vector readers will know 
Gene for his long-running column “At Play With J”, 
collected and republished by Vector Books, which he 
lived to see run into its second edition. We salute 
Eugene McDonnell’s life and work. 
This issue includes several reports from Berlin, 
including an unapologetically contentious one from 
Graeme Robertson, and a review of 2010 from our 
chairman, Paul Grosvenor. 

Published literature on the q language has been scarcer than hens’ teeth, with 
most practitioners swaddled in corporate non-disclosure agreements. Fittingly, it 
was Jan Karman in the Netherlands who broke the dam last issue with the first of 
his series “Financial math in q”. We have part two in this issue. 
Even more exciting, we start a new occasional column 
“No Stinking Loops” by the legendary Stevan Apter. 
Apter, who works in a cabin deep in the woods of 
upstate New York, is one of the programmers Jeffry 
Borror (author of q for Mortals) dubbed “the q gods”. 
His first article explores some sophisticated 
techniques for handling tree tables. 
We have another rich offering of J material: Thompson’s “J-ottings”, Peelle on 
backgammon, Holmes on functional calculation, Smillie on cryptography and 
John McInturff on odd-order magic squares. Plus news of the BAA polyglot 
Phrasebook project and Kai Jaeger, recipient of this year’s BAA award for 
outstanding contribution to APL, on how to display web pages with APL to 
browsers with no APL fonts installed. 
Stephen Taylor 



VECTOR  Vol. 24 No.4 

 4 

N E W S  



VECTOR  Vol. 24 No.4 

 5 

Remembering Eugene McDonnell 
by Roger Hui 

 

Eugene McDonnell 
1926 – 2010 

Originally presented by Roger Hui at the APL2010 conference in Berlin, 13 
September 2010. 

When I met Eugene McDonnell in 1981, there were traces of humidity behind my 
auricular orifices. 
Since my pronunciation may be a bit off, and since I don’t want you to think that I 
thought of the witticism all by myself, let me show you where it comes from: 

When I met Clark Wiedmann in 1968, there were traces of humidity behind 
his auricular orifices. 

– Eugene McDonnell, 
Minnowbrook APL Workshop 1985, 

APL Quote-Quad, 16.3, 1986-03. 
Recreational APL 

Magic Squares and Permutations 
Spirals and Time 
How Shall I Transpose Thee? Let Me Count the Ways 
The Story of � 
How the Roll Function Works 
The Caret and the Stick Functions 
The Point of No Return 
Sauce for the Gander (or Adding a Vector to a Matrix) 



VECTOR  Vol. 24 No.4 

 6 

Making a Calendar 
1980 Year’s Digits Problem 
Puzzle of the Year 1980 (solution) 
Pyramigram 
Numbering Crossword Squares 
Pyramigram (solution) 

I first knew of Eugene as the “Recreational APL” editor. In those days, on 
receiving an issue of the APL Quote-Quad, I would inevitably and eagerly first 
turn to the “Recreational APL” column. Through these columns I learned that it 
was possible for technical writing to be erudite, educational, and entertaining, 
and through them I learned a lot of APL. Jeffrey Shallit, professor of mathematics 
at the University of Waterloo, recently wrote[1] of his similar experience with 
“Recreational APL”. 

Language Contributions 
circle X�Y 
signum ×Y 
extension of x|y x	y for negative x 

y �y x|y x	y for complex x and y 
extension of x�y xy as GCD and LCM 
0 = 0 ÷ 0 

infinity and infinite arrays 
hook and fork 

Later, I found out that Eugene was also a key contributor to the development of 
APL. I don’t have time here to go into the details of all the language contributions, 
so I’ll just touch on two. 
The Story of � 
x�y x (-x)�y 

(1-y*2)*0.5 0 (1-y*2)*0.5 

sin y 1 arcsin y 

cos y 2 arccos y 

tan y 3 arctan y 

(1+y*2)*0.5 4 (¯1+y*2)*0.5 

sinh y 5 arcsinh y 



VECTOR  Vol. 24 No.4 

 7 

cosh y 6 arccosh y 

tanh y 7 arctanh y 

Anyone who has ever used the circle function probably wondered about the 
numbering of the left argument x . The explanation usually hinges on the fact 
that x�y is an odd or even function depending on whether x is an odd or even 
integer, then goes on to explain what is an odd or even function. But 
the real explanation is as follows. In Eugene’s own words in The Story of  � [2]: 

Actually, 1 and 3 were chosen first, more or less by accident, for the sine and 
tangent, along with 2 for the cosine function, by listing the functions in the 
order in which they were taught me in high school, and then the observation 
was made about sine and tangent being odd functions. The hyperbolic 
functions simply fell into place afterwards. 

 
Extending APL to Infinity – McDonnell and Shallit, APL80. 
• infinity 
• infinite arrays 

The other language contribution that I want to touch on was proposed by Eugene 
and Jeff Shallit in the APL80 paper Extending APL to Infinity. The proposal had 
two parts: infinity as a number, and infinite arrays. 
 NARS2000  J 
    �/ ''           <. / '' 

∞        _ 

    ÷0           %0 

∞        _ 

    2 * 3333           2 $ 3333 

∞        _ 

To date, infinity has been implemented in NARS2000 and J, denoted as a 
‘sideways 8’ (∞) in NARS2000 and as the underscore (_) in J. For example, the 
identity element of minimum is infinity instead of a finite number; the reciprocal 
of 0 is infinity instead of an error; and 2 to a large power is infinity instead of an 
error. 
    i. 4 

 0 1 2 3 



VECTOR  Vol. 24 No.4 

 8 

    i. _ 

 0 1 2 3 4 5 � 

    +/ 3 � - i. _ 

 1.5 

To date, no APL has implemented infinite arrays. When they are implemented, 
you can do the following: The index generator function on n gives the natural 
numbers less than n ; the same function on infinity gives all the natural numbers. 
Having infinite arrays facilitates working with infinite series and limits of 
sequences. 
    p: i. _ 

 2 3 5 7 11 13 ... 

 

    R=: +/ (1 + i. _)�-s 

    E=: */ % 1 - (p: i. _)�-s 

 

    R = E 

 1 

In J, p: is a function and p: n is the n-th prime, therefore p: on the index 
generator on infinity are all the primes. So the Riemann zeta function can be 
computed as 
   R=: +/ (1 + i. _)�-s 

and the Euler product of all the primes can be computed as 
   E=: */ % 1 - (p: i. _)�-s 

That these are equal was shown by Euler in 1737 using high-school mathematics. 
The identity is one of the most beautiful things that humanity has to offer. 
(Suitable for presentation to the Galactic Emperor[3].) 

 

At Play With J 
41 Columns in Vector 
Written between 1993 and 2006 
Published by  in 2009 

 



VECTOR  Vol. 24 No.4 

 9 

Eugene remained active after he retired from paid employment in 1990. He 
wrote 41 At Play with J columns for Vector between 1993 and 2006. These 
columns have been collected together and published as a book. For the duration 
of the conference you can order this book from Lulu[4] at cost, or download the 
electronic version for free. (Thank you British APL Association and Vector Books, 
for this generous offer.) 
   eem=: 1926 10 18 ,: 2010 8 17  

   daynum eem 

46310 76929 

   -2/ daynum eem 

30619 

   kei=: 1920 12 17 ,: 2004 10 19 

   daynum kei 

44179 74801 

   -2/ daynum kei 

30622 

Eugene wrote about calendar calculations in a “Recreational APL”[5] column. 
Using a descendant of those functions, we see that Eugene’s lifespan was 30619 
days. For Ken Iverson, it was 30622 days. So Eugene and Ken, whose careers and 
lives are so interwined, have one more connection. 
I smile in my heart when I think that in heaven, Ken now has an ally in his 
debates with the Almighty on the finer points of language design. I positively 
chuckle at the thought that, in the extremely unlikely event that they are in that 
other, warmer, place, 0-origin indexing now has another advocate against the 
entity in charge. 
References 

1. http://www.jsoftware.com/papers/eem/anecdotes.htm#jos  
2. http://www.jsoftware.com/papers/eem/storyofo.htm 
3. See page 40 or online http://www.vector.org.uk/?vol=24&no=3&art=hui 
4. http://www.lulu.com/product/paperback/at-play-with-j-%5Bedn-

2%5D/6073726 
5. http://www.jsoftware.com/papers/eem/qq101.htm 
6. Papers and Articles: http://www.jsoftware.com/papers/eem 
7. Quotations and Anecdotes: http://www.jsoftware.com/papers/eem/anecdotes 



VECTOR  Vol. 24 No.4 

 10 

Industry News 

Dyalog  
Although we did not manage to get any new releases out the door during this 
calendar year (v12.1 was released in the last quarter of 2009 and v13.0 will be 
out in Q1 of 2011), we have had a very busy year! 
Version 13.0 
Version 13.0 of Dyalog APL will be Beta-testing in January and should be released 
in March 2011. As usual, it will be available in 32- and 64-bit versions under 
Microsoft Windows, AIX and Linux (and for Solaris on demand). V13.0 will break 
significant new ground on a number of fronts: 
First (because it caused us the largest headaches), we have been working on 
adding support for 128-bit decimal floating-point numbers, implemented 
according to the IEEE-745 2008 (DPD) standard – with hardware support on 
recent IBM POWER and ‘z’ processors and software emulation on other 
platforms. The current 64-bit binary floating-point representation 
(corresponding to roughly 16 decimal digits) is sufficient for the vast majority of 
applications, but financial reporting involving multiple currencies can run into 
problems due to the limited precision (16 digits) and the fact that many decimal 
numbers cannot be precisely represented, leading to multiple small errors which 
can become significant if financial portfolios are sufficiently large. Version 13.0 
allows the optional use of 34-digit decimal numbers, which avoid all such 
inaccuracies at the cost of slower calculations. 
If you are willing to spend about $10,000 on memory chips, and have enough 
coffee to get you through the time it takes to )LOAD it from disk, you can now 
have nearly 128Gb of workspace in memory on ordinary hardware. In version 
13.0, most primitive functions are no longer subject to the limit of 2 billion 
elements per simple array that existed in earlier 64-bit versions. In version 13.1, 
we plan to remove the size limits for all primitive functions, upgrade our test 
machine from 32 to 128Gb, and revisit other strategies and limits in the 
interpreter that might come into play when workspaces grow extremely large. 
For technical and educational users, we have added complex numbers, which are 
implemented as a pair of 64-bit binary floating-point numbers (we do not think 
there is much of a market for 2x128-bit decimal complex numbers). Our 



VECTOR  Vol. 24 No.4 

 11 

implementation follows the extended ISO APL standard (ISO/IEC 13751:2001), 
and should be identical to that found in IBM APL2, SHARP APL or J. 
Although APL applications tend to have a numerical focus, APL is also a terrific 
language for connecting things together; massaging, cleaning and redistributing 
data for use by APL code or indeed applications written in other languages. An 
important missing link has been integrated support for regular expressions. 
Regexs have become a tool that most young computer scientists, software 
engineers or hackers pretty much take for granted and miss when they move to 
APL. Version 13.0 contains our first system operators, one for searching and one 
for replacing using regular expressions as implemented by PCRE, one of the most 
widely used regular expression engines available today. 
Version 13.0 also adds a number of good ideas pioneered by other array language 
dialects. Take (4), drop (5) and squad indexing (6) allow short left arguments (you 
only need specify what to select on leading dimensions, as in SHARP APL). We 
have implemented the functions right 7 and left 8. We have also been inspired to 
implement a much simpler yet more powerful application profiling tool, after 
seeing Richard Nabavi demonstrate 9PROFILE in a recent release of APLX. 
The addition of the two new numeric data types mentioned above has forced us 
to revisit a number of algorithms, in particular index of (dyadic Ι), matrix inverse 
(@) and the gamma and beta functions (monadic and dyadic !), with the result 
that they are not only significant faster (for all data types) but often produce 
more accurate results. 
Other projects 
While the production of new releases of Dyalog APL still consumes most of our 
efforts, those of you who visited the successful APL2010 conference in Berlin in 
September will be aware that we have a number of other irons in the fire. The 
two most important ones are APL# (‘APL Sharp’) and RIDE. 
APL# is the name of a new APL Interpreter which will be a native (‘managed 
code’) Microsoft .Net language. We published the first description of this new 
language at APL2010, and are inviting feedback from the entire APL community. 
The .Net framework implements a virtual machine which has significant benefits, 
such as being able to run APL# applications off a web page in the same way that 
Javascript applications can run without first being installed – but also significant 
drawbacks, like making it hard to implement the extremely simple and efficient 
data model that native APL interpreters provide. 



VECTOR  Vol. 24 No.4 

 12 

APL# will not be a replacement for Dyalog APL, but a slightly different APL 
system that will allow APL to be used in ways which are not possible today. We 
hope to make the first prototypes of APL# available for experimentation (as a 
free download) around the middle of 2011, and keep APL# as an experimental 
system for at least a year after that before considering a commercial release. 
The Remote Integrated Development Environment (RIDE) is the name of a new 
front end that we are building to provide an identical graphical development 
environment for APL# and Dyalog APL, on all platforms where either interpreter 
is available. This will allow us to unify the user experience for developers 
running APL or APL# locally – or on remote machines running Windows, UNIX 
and Linux – even when APL is running on servers which would otherwise not be 
accessible for debugging. Early versions of the RIDE will start to appear in the 
late spring or summer of 2011, but general availability is unlikely before the 
second half of the year. 
You can watch John Daintree introduce the RIDE at APL2010 – and a number of 
other interesting presentations which we recorded at that conference – at 
http://video.dyalog.com/APL2010/. 
Manpower 
We have recruited two more developers, and our good fortune in finding 
excellent developers has continued! Jay Foad joined the team in May and is now 
working on the core interpreter, and Liam Flanagan who came on board in 
September is working on .NET, GUI and other interfaces. 2011 will get off to a 
perfect start as we provide a little balance to the newcomers by welcoming an 
array language legend into the team: Roger Hui has been helping us with 
performance enhancements for some years; we are incredibly pleased and proud 
that Roger will be working for Dyalog in an almost full time capacity from 
January – with a little of his time fenced off to continue his work as the chief 
architect and implementer of the J programming language! 
From the middle of November to February of 2011 Ronald Chan, the first winner 
of the Dyalog Programming Competition back in 2009, is braving the (record) 
English winter in order to be an intern at Dyalog during his New Zealand summer 
holidays. Ronald is a wonderful mathematician and C coder; in his first month at 
Dyalog he re-implemented matrix inverse and the beta and gamma distribution 
functions for all our numeric types, resulting in faster and more precise results 
all round! Over Christmas, Ronald has been playing with a model of an interface 
to the R programming language. We will be sorry to see him return to University 
to attack a PhD in February, and hope to see him again in the future! 



VECTOR  Vol. 24 No.4 

 13 

In addition to new employees, we have been very happy to collaborate with a 
growing number of external APL consultants who have helped us develop and 
test code in 2010. Peter-Michael Hager has been applying his combined APL and 
cryptographic skills to help us design a comprehensive Cryptographic Library for 
APL, which will provide cross-platform access to fast algorithms for hashing, 
symmetric and asymmetric encryption using a variety of algorithms. We would 
also like to thank Kai Jaeger, Michael Hughes and Brian Becker, who presented 
recent work that they have done in collaboration with Dyalog on tools for Dyalog 
APL, at APL2010. 
By the time this is in print, we hope to have hired one or two full time APL 
developers in order to be able to accelerate the development of tools and 
interfaces written in APL. Over the next few years, it is our ambition to augment 
the enhancements that we have been putting into the interpreter with a 
comprehensive set of application development tools for APL developers, and to 
work hard on sharing these with the APL community on our own web page, on 
the APL Wiki and other online forums. 
Keep an eye on the Dyalog web page in 2011! If you have not already done so, 
subscribe to the new Dyalog forums at http://forums.dyalog.com – you do not 
need to be a user of Dyalog APL to do so. The Forums are getting livelier all the 
time and have become our primary channel for formal and informal 
announcements including FAQs. In 2011, we also expect to make increasing use 
of our Twitter and Facebook feeds as distribution channels for news. 
Kx Systems 
Kx Systems, the leader in high-performance database and time series analysis, 
today announced that Guosen Securities Co. Ltd, one of China’s top-tier securities 
firms, has signed an OEM license deal for its kdb+ database. The database 
platform will power the investment bank’s algorithmic trading system, which will 
be embedded into Guosen’s offering to its corporate clients. 
kdb+ allows vast amounts of data to be accessed and processed with minimal 
latency. With a single format for both real-time and historical data, kdb+ provides 
performance and flexibility for high-volume, data-intensive analytics and 
applications. 
Hanxi Liu, GM of Guosen Securities’ IT department commented: “Choosing kdb+ 
was an important strategic decision for us. The sophistication of Kx’s 
programming language and the addition of its calculation engine to our new 
algorithmic trading system provide us with a great competitive advantage and 
the optimal balance of speed and simplicity. Kx has made a serious commitment 



VECTOR  Vol. 24 No.4 

 14 

to the Asian market, and its industry knowledge and superior solutions have 
made the company a serious contender in the local arena.” 
Chris Burke, Director of Asia Pacific, added: “We are seeing rising data volumes 
across Asia, growth in algorithmic trading and increasingly stringent, data-
intensive risk management processes. At the same time, companies are looking 
to drive down latency at all levels. The kdb+ platform was designed from the 
outset with this dual challenge in mind, and its combination of speed and 
flexibility has proven to be very compelling. We are delighted to be expanding 
our Chinese client base with such a well-respected name as Guosen Securities.” 
This announcement follows the opening of Kx’s Hong Kong office two years ago 
to support its locally-based international clients, as well as the domestic financial 
community. Kx’s ‘Growth via Partnership’ strategy with First Derivatives and 
Symagon has been extremely successful, resulting in several new relationships 
and the expansion of global clients into the Asian market. 
Optima Systems  
Seems like a very long time since we last communicated and much has happened. 
Firstly our prime customer has, after many years, made us strategic to their 
business. This makes a huge difference to us and places additional 
responsibilities at the same time. So why their change of heart? Well, put simply, 
using APL in the way we all love to use it and by avoiding administration, 
committee meetings and the usual ‘large organisation drag’ we have been able to 
show that systems can be delivered on time and on price and that this 
performance can be relied upon. 
Secondly we have started to build a new software model in APL to deliver time 
series clinical data in new and intuitive ways. Whilst our solution is not pure APL, 
all of the heavy-duty analysis and grunt work certainly is. We are currently 
experimenting with new (to us) technologies to deliver the final user interface 
and hopefully provide the necessary wow factor. I hope to be able to demonstrate 
some of this work in future APL conferences. 
We attended the Berlin APL 2010 conference and enjoyed it very much. It was 
very refreshing to see so many active APLers in one place and, more importantly, 
so many young faces. As always the conversations were fast and furious and I feel 
sure that the world was ‘put to rights’ many times over. 
I remain unsure where 2010 has gone but very much look forward to 2011. Much 
is going on and much more remains to be done. Another busy year beckons. 



VECTOR  Vol. 24 No.4 

 15 

IBM 
The IBM APL Products and Services group is pleased to announce Service Level 
17 for Workstation APL2 for Multiplatforms Version 2.0. This new service level 
was made available on November 11, 2010 for all Workstation APL2 platforms 
(AIX, Linux, Sun Solaris, and Windows.) 
Along with fixes for customer-reported problems, Service Level 17 contains 
several enhancements. 
In the interpreter, the performance of the find primitive is improved for right 
arguments of rank 2 or higher. When running under the Calls to APL2 facility, the 
execution stack is now available to the calling program on error. In the 
DEMOJAVA workspace, the XML2APL function has been updated to support DTD 
addresses, and a new function, JAVA_PRINT, prints APL objects using Java print 
services. 
On Windows, a session manager system option has been added to control the 
workspace size of watch windows, and the line number popup window in the 
object editor has new choices for ‘Trace this line’ and ‘Stop this line’. New key 
shortcuts include Ctrl+Double-Click to mark a token, Ctrl+Shift+Double-Click to 
localise or unlocalise a name, and Alt+PageDown to move the current line to the 
top of the window. 
Further information on the new facilities will be found in the updated APL2 
User’s Guide and on-line help after installing Service Level 17. A complete list of 
fixes included in this level will be found in the updated README (Unix systems) 
or Service Information (Windows systems) file. 
The APL2 Service Level 17 download is available to customers with a Software 
Maintenance contract, through the Support link at the APL2 web site: 
http://www.ibm.com/software/awdtools/apl 



VECTOR  Vol. 24 No.4 

 16 

MEETING 

A personal view of APL2010 
by Graeme Robertson 

How should APL deal with multicore machines? Should a programmer be able to 
assign a thread to a CPU? Or should the interpreter automatically distribute a 
task over a number of CPUs at its own discretion? Or something else? Questions 
like these permeated APL2010. Apart from the main sessions, there were four 
parallel streams and since an individual could not distribute himself over all 
streams, he had to choose. This brief summary of the first day reflects one 
individual’s choice of sessions. 
Roger Hui gave an interesting account of how J deals with the concept of infinity 
and he successfully showed its potential value to APL programmers. 
Dr Scholz argued enthusiastically for the need for programmers to tune their 
applications to make the most efficient use of multicore CPUs and graphics card 
GPGPUs, and he made a related case for functional programming without side 
effects by the removal of imperative programs (read niladic functions) and of 
state data (read global variables). ‘Maximise frames and minimise cells’ in your 
programs is the way to think about extracting the most from parallel processing, 
he suggested. 
Helmut Weber pointed to the fundamental limits of faster chip technology with 
theoretical limits to the number of threads per core and the number of cores per 
die being nearly reached. With paramount future demands being measured by 
performance per milliWatt, he urged multicore and hybrid designs with single 
purpose function elements for high-spec robustness. 
David Liebtag described some recent advances in APL2. As well as the goal to 
produce a workstation with the same functionality as mainframe APL2, he 
outlined new socket technology, the ability to call APL from other languages, new 
data type facilities and a new parallel processing each operator. He ended with a 
comparison of IBM graphics through the years, culminating with JAVA graphics. 
Brian Becker afforded hands-on experience of a Stand Alone Web Service, the 
SAWS framework, written in Dyalog 12.1. It does not require IIS, only an open 
port on the server. One can then communicate very effectively under APL with 
web services on a client machine. 



VECTOR  Vol. 24 No.4 

 17 

Morten Kromberg introduced APL# which is a new functional scripting language 
intended for deployment with Silverlight on a client machine. The language 
incorporates strong data typing, including a rank-zero string data type. Functions 
and operators are written in dynamic programming style with a new type of 
header line and new symbols for current namespace (B), shallow copy (C), new 
namespace (D) and a rank operator (E). The timeframe for releasing APL# is one 
or two years. 
Bob Smith chaired a panel discussion on the target form of APL by 2020. Issues 
discussed included: APL’s lack of visibility, the evident lack of experimentation in 
traditional computer science, promotion of arrays to objects, rationalising APL by 
removing anomalies, and disappearance of the APL character set obstacle. 
And this was just the first day of four fascinating, entertaining and instructive 
days of conference at the Technical University of Berlin, the most fascinating talk 
for me being the account by Professor Zuse of the unquestionably heroic efforts 
of his father, Konrad Zuse, to invent, construct and protect through the war, the 
first automated programmable computer ever. It was a truly amazing story! 
I went to APL2010 because I wanted to meet some of the many friends that I 
have found in the APL world over the years. I also went in order to learn 
something. Not particularly about parallel processing, which I hope will be 
incorporated behind the scenes without too much effort on my part by way of 
some primitive operator such as spawn that will allow us APLers to harness 
multicore hardware effortlessly; not in order to learn some new languages such 
as APL# and WPF and Silverlight that one day might enable us to empower a 
client to talk fruitfully to an APL server; not even to learn about the latest APL 
applications and supportive hardware. None of these. I went with the principal 
purpose of learning how to write an application immediately on the Internet 
platform, using raw ASP.NET if needs be but preferably using a thin cover 
function like 9WC provided by an APL vendor. I didn’t find anything like that. 
The internet browser is now the obvious platform for new applications just as 
the PC was in the 80s. By the early 90s it was possible to access Microsoft 
Windows objects such as Forms and Buttons via 9NA calls to the Windows API 
DLLs. This was difficult without significant knowledge of C programming and 
very few people succeeded until Dyadic and other vendors supplied cover 
functions such as 9WC, whereafter success was manifest and ubiquitous. 
I am pleading for a thin cover over Microsoft .Net that will make it easy to 
program rich APL applications on the cloud, thus making them immediately 



VECTOR  Vol. 24 No.4 

 18 

accessible to any browser in the world. I know it is possible to do this now using 
ASP.NET, but it is far too difficult for me to do well. 
Ken Iverson invented a powerful notation with very few rules and an extensible 
collection of profound functions such as + and profound operators such 
as / whose combination according to two simple rules led all the way to 
consolidated reports on the desks of chief executives of many of the largest 
corporations in the world. This was no coincidence. 
Ken rightly strongly objected to the unnecessary new rules in APL2. When I 
proposed direct function definition at Dyadic in 1995 with constructs such 
as 3(Ω-Α)4 or (Ω[OΩ])1 3 2 it was more or less ignored. No new syntax rules 
were invoked, only a simple interpretation of Α and Ω which had been 
understood for many years in the APL literature. On the other hand, dynamic 
programs as later introduced by Dyadic introduced lots of new rules. 
Every time a new rule is introduced into APL I turn off. APL# introduces new 
rules all over the place and I don’t like what I see. I used to agree with just about 
everything Ken Iverson said, even when he criticised the irrational parts of APL 
itself. I was convinced by his simple argument that APL2 introduces new rules 
unnecessarily and makes APL more difficult. Nowadays so many new rules have 
been introduced that APL is becoming as difficult as any other language and the 
pure elegance and simplicity of the original conception with essentially just two 
or three fundamental rules is being lost. 
Windows Presentation Foundation, well presented by Michael Hughes, is 
interesting but, like APL#, it seems to be a solution for a distant future rather 
than the solution for today that I am begging for. ASP.NET seems to me to be the 
current way forward. Dyalog APL can talk to it, with difficulty. I think that an APL 
vendor could put a cover on this quite easily and give us a way of writing 
applications on the modern application platform, the browser window, but I 
heard nothing encouraging at APL2010, from Dyalog, APL2000 or APL2, nothing 
that gave me confidence that an APL programmer who does not have the time or 
inclination to learn a new language will be able to write serious applications on 
the cloud any time soon. This was exactly the situation with Microsoft APIs and 
Windows before Dyalog introduced the beautiful 9WC solution. 
The beauty of APL is its fundamental simplicity. Without that it risks sliding into 
oblivion with a hundred other corrupted languages that once were used to 
communicate effectively and profoundly between humans or between humans 
and machines. How exactly APL manages to add one matrix to another is not of 
any great interest to most APL programmers because they are thinking at a 



VECTOR  Vol. 24 No.4 

 19 

higher level and ask most of all that the interpreter will free them to think 
abstractly. 
When I suggested rewriting an APL interpreter based on the algebraic foundation 
of GiNaC or the like [see Vector 20.1 (2003) 132-142], the only response from 
Dyadic was that too much had been invested in the current interpreter ever to 
consider starting again from scratch even if it meant getting infinity and many 
other mathematical goodies for free, and yet now we have a proposal to do 
exactly that with APL# – but this time adding all sorts of new rules, getting no 
more (perhaps less) significant functionality, while at the same time abolishing 
canonical forms and even the concept of the workspace. I can’t agree with that. 
 



VECTOR  Vol. 24 No.4 

 20 

Notes from APL2010 
by Devon McCormick 

This report first appeared on the NYCJUG pages at the J Wiki. 

Multi- and many-cores: array programming at the heart of the hype! 
Dr habil. Sven-Bodo Scholz (University of Hertfordshire, UK) gave an enthusiastic 
talk about his work with the functional array-programming language Single 
Assignment C (SAC)[1]. 
The current SAC compiler, called sac2c, is developed and runs on UNIX systems. 
Binary distributions are available for the following platforms: 

Solaris (Sparc, x86) 
Linux (x86 32bit, x86 64bit) 
DEC Alpha 
Mac OS X (ppc,x86), 
netBSD (under preparation) 

Unfortunately for us in the Windows community, these are the only offerings. 
He had a somewhat amusing story to tell about one of his students who had a 
paper rejected by a parallel-programming conference because it was based on 
using an array notation and this was said by one reviewer to be too 
unconventional – a more proper paper would be to have written about 
discovering parallelism within loops. It was considered a kind of ‘cheating’ to 
avoid this problem by using a notation that renders this consideration moot. 
Sven-Bodo’s work on SAC targets numerically-intensive programs, particularly 
those involving multi-dimensional arrays. He claims to get performance 
comparable to that of hand-optimized Fortran. Some of his exciting recent work 
targets GPGPUs[2]. 
Multi-core and hybrid systems – new computing trends 
IBM’s Dr Helmut Weber gave a very thoughtful, informed, and forward-looking 
keynote exploring contemporary trends in performance improvements with the 
current generation of multi-core and hybrid systems. He started by outlining the 
physical limitations driving the new directions of chip architecture, which are: 



VECTOR  Vol. 24 No.4 

 21 

• higher n-way 
• more multi-threading 
• memory access optimization 

 
Fig.1 What does this plateauing graph represent? 

 
He showed a misleading graph without labels and asked us to guess what it 
represents. Of course, most people thought it might show processor performance 
over time. 
Once the labels were revealed, we saw this was not the case. However, Dr Weber 
was making a point about the natural evolution of performance of any technology 
over time – that there will eventually be a plateau after a period of exponential 
growth for a given technology without some fundamental change. 



VECTOR  Vol. 24 No.4 

 22 

 
Fig.2 What the plateauing graph represents 

 
Some of the technology trends he sees coming up are: 

increasing CMOS density – from current 22 nm to 15 nm or better 
more instruction-level parallelism 
more cores per die and threads per core 
perhaps leading to many small cores – microservers 
I/O link bandwidth growing to 100 Gb 
optical links becoming a commodity 

Other trends include power consumption limiting future DRAM performance 
growth and the increasing prevalence of solid-state disks. Further in the future, 
he sees increasing use of “storage-class memory” (large non-volatile memory), 
which could lead to a new memory tier. Some recommendations on how to 
compute more efficiently from a perspective of power consumption: 

• Run many threads more slowly for constant power and peak performance 
• SIMD power benefit proportional to width but diminishes for very wide 
• Data movement management using reduced cache and simpler core design 

with multiple, homogenous processors 
• Add hardwired function specialisation to allow bandwidth targeting 



VECTOR  Vol. 24 No.4 

 23 

He also had some ideas about how software can improve to be better integrated 
with hardware and work within a power budget. Part of this improvement will 
make use of hardware function accelerators, perhaps as part of special purpose 
appliances. A suggested plan for building these appliances includes adding open-
source technology to off-the-shelf hardware and using ‘builder tools’ (e.g. rPath) 
to tailor software stacks to take advantage of this, along with FPGA and ‘IP-cores’  
to improve performance for key functionality. Example appliances include Tivo, 
the IBM SAN volume controller, and the Google Search Appliance. Some 
suggestions to help programming models take advantage of these trends: 

• support efficient parallelism 
• be at higher level of abstraction 
• match the mental model of the programmer 

This leads to the conclusion that the time is ripe for languages to adapt to the 
multicore future. Dr Weber suggests that most of these efforts aim at C 
derivatives, which restricts the number of programmers able to exploit 
parallelism by losing the productivity gains of languages like Java. This prompted 
IBM to develop X10 which is an adaptation of Java for concurrency. 
In addition to the better-known mature parallel models of MPI and OpenMP, he 
mentions OpenCL, which has support for accelerators like GPGPUs. He also 
showed off some new IBM processor technology: a 5.2 GHz Quad-core processor 
with 100 new instructions to provide support for CPU intensive Java and C++ 
applications. It also includes data compression and cryptographic processors on-
chip. 
Awards to winners of the Dyalog Programming Competition 
The talks by two of the winners were refreshing and it was valuable to see how 
novices view their first experiences with the language. One thing that puzzled me 
was that both speakers criticised the lack of type handling in APL – to me, this 
has always seemed to be a positive feature of the language. I don’t understand 
how this kind of restriction provides a benefit that outweighs the limitations it 
imposes. Can anyone explain? Or better yet, provide a short program illustrating 
the desired behaviour and expound on why this would be helpful? 
References 

1. www.sac-home.org 
2. www.sac-home.org/publications/RollSchoJoslStav.pdf 



VECTOR  Vol. 24 No.4 

 24 

APL 2010 – Berlin 
by Mike Hughes 

Berlin is a great city – it was my first visit and I found it light and airy with its 
wide tree-lined streets. The river meanders through the middle and some of the 
architecture is stunning. It proved a good backdrop to what I found was an 
interesting conference, even if the wireless LAN failed to work. 
The conference itself was well attended – I think there were about 150 attendees 
in total. I was very pleased to see more hair colour than grey (or even hair!) than 
I was expecting. There were many young faces in the crowd and they weren’t all 
German students, who were given free admission. A good idea from the 
organisers. 
I felt the whole conference was generally very forward looking, Dyalog, APL2000 
and IBM put on a good show with their various stands in the area where the 
coffee and food were served. There seemed plenty of interest around each stand. 
There were one or two talks on the history but the majority of presentations 
seemed to be looking forward. I sensed a real feeling of renewal and optimism. 
The theme of the conference was parallelism and there were many talks on 
different aspects of this. It really seemed as if APL was poised to take full 
advantage of the new hardware as it becomes available. 
There were presentations from Dyalog that ranged from a new universal IDE to 
interact with any and all Dyalog sessions on any platform. This will solve 
problems such as: not being able to interact with a Dyalog session when running 
it with IIS7; allowing a session to be attached to a remote Dyalog process for 
remote debugging on any platform supporting Dyalog. At one point I think John 
Daintree had a Unix, a Mac and a Windows session alongside each other – it 
looked very exciting from a developer’s point of view. 
Brian Becker gave a workshop talk on SAWS and Web Services. Morten 
Kromberg presented a paper on peach which attempts to look at parallelism at 
the operator rather than function level – so trying to emulate each, outer 
product, rank and namespaces (dot notation) in a cross-processor model. 
APL2000 demonstrated version 10 of APL+Win and showed how WPF and .Net 
worked with APL+Win. I was lucky enough to get a personal demonstration from 
Joe Blaze on the ease with which APL+Win can work with these. 



VECTOR  Vol. 24 No.4 

 25 

It was good to catch up with old friends and to discuss issues with like-minded 
people. I found this, the most useful and enjoyable part of the conference. The 
accessibility of the various suppliers, various developers and ideas arising from 
some of their work. I heard many voices trying to get us to try and fit in better 
with our IT neighbours, perhaps the tide will turn to better cooperation within 
and outside the APL community. 
Paul Grosvenor gave a good insight into the art of selling bacon to a vegetarian, 
using it as an example of thinking on your feet and being prepared, in an 
interesting talk on how best to sell APL and yourself. 
There were language enhancements discussed such as mask and mesh, regular 
expression, unifying Dynamic and Traditional functions and a new dialect APL#. 
Dyalog and APL2000 are clearly both working hard to make APL capable of living 
in the new .Net Object Orientated world without losing the core benefits of APL. 
Overall I found it a good conference, one that gave me hope that APL is not only 
going to survive in the future but that it will also be a great and better recognised 
language in 2020. 



VECTOR  Vol. 24 No.4 

 26 

APL2010 – a brief introspection 
by Brian Becker 

Reprinted from Catherine Lathwell’s blog Chasing Men Who Stare At Arrays [1] 
Having been on the periphery of the APL community for the last several years, I 
found it refreshing to attend an APL conference once again. It was good to see old 
friends and associates and meet new people as well. 
Prominent theme 
Parallel computing… perhaps computing hardware is finally catching up with 
APL. There were at least six sessions and many more informal discussions about 
how APL is natural fit for multi-core, parallel execution and about work and 
research that is actively taking place. It seems there is great potential, but not 
without challenge – for instance, while multiple fast cores are available to 
execute code they are still dependent on relatively slow memory for data. 
Interesting thing in the works 
Dyalog’s APL# – a new, functional, array-oriented scripting language which aims 
to compete with Python, Ruby and JavaScript for technical and computational 
applications, and make it possible to deploy APL code in places where Dyalog 
APL cannot go. (I stole this from Morten Kromberg’s slide because I couldn’t say 
it any better myself.) 

Something cool I plan to use 
WPF (Windows Presentation Foundation) – want a slick user interface? WPF 
seems the way to go. It gives you virtually unlimited control over the look, feel, 
and functionality of your user interface. That’s the good news… the bad? WPF 
books are very thick. Thank you Michael Hughes and Joe Blaze for your WPF 
presentations. 
Something cool I want sooner than later 
Dyalog’s RIDE (Remote Integrated Development Environment)… imagine being 
able to connect to an APL session and debug it from your iPhone. RIDE allows 
you to connect to a Dyalog session from a web browser on almost any client 
platform. Very cool stuff. 



VECTOR  Vol. 24 No.4 

 27 

Most entertaining session 
Dyalog’s Jay Foad’s presentation on juggling patterns augmented by Jay himself 
juggling up to 5 balls. This raises the bar for future presenters… what’s next? 
Unicycles? 

Something I miss from past APL conferences 
Interprocess Systems buttons… they had the most amusing captions like “Greek 
Looks Like APL To Me” and “Another Brilliant Mind Ruined by APL”. Though, Dan 
Baronet’s “Ich Bin Ein APLer” tee-shirt was a welcome sight. 
Interesting banquet 
The banquet was held at Mercedes World at Salzufer. Imagine eating a buffet 
dinner surrounded by every imaginable model of Mercedes Benz. That, plus a 4-
storey climbing wall. Now if they only gave out cars as door prizes… 

Most encouraging aspect 
The first and second place winners of the 2010 International APL Programming 
Contest, Ryan Tarpine and Mstislav Elagin… Both gave thoughtful and candid 
presentations about their experiences and impressions with APL, pointing out 
the aspects that they liked and those they didn’t. They shared a true enthusiasm 
and appreciation for the expressive power of APL. I found it poignant when Ryan 
spoke about the “beauty” of an APL expression, something I felt when I first 
encountered APL 35 years ago. Ryan and Mstislav represent APL’s future and we 
need to reach out to others like them. 
Final impressions 
There is active use and interesting development of APL and array-processing 
technology. 
We need to expand beyond our own community – there were several interesting 
papers and presentations that would play equally well, perhaps even better, at 
non-APL conferences. We need to get the word out that APL is a viable and 
vibrant technology. 

References 
1. http://lathwellproductions.ca/wordpress/2010/09/22/apl2010-a-brief-introspection-

guest-brian/ 



VECTOR  Vol. 24 No.4 

 28 

Best APL2010 conference presentations 
by Vibeke Ulmann 

Reprinted from Catherine Lathwell’s blog Chasing Men Who Stare At Arrays [1] 
Based on those I managed to attend. 
Most laughs 

Prof Dr Ing Horst Zuse, “The origins of the computer” 
Best entertainment value 

Jay Foad (Dyalog), “An Interpreter for Vanilla Siteswap” 
Presentation with highest sex-appeal (I want one of those!): 

John Daintree (Dyalog), “Taking APL for a RIDE” 
Most “wake up we’re moving ahead” presentation 

Morten Kromberg, John Scholes & Jonathan Manktelow (Dyalog), “APL#” 
Most fantastic application presentation 

Lars Wenzel (Fujitsu Sweden), “Volvo application” 
Best up-coming APLers presentation 

Mstislav Elagin & Ryan Tarpine, winners of the programming contes. 
Most intriguing and thought-provoking on parallel/multicore 

Sven-Bodo Scholz (University of Hertfordshire) 
Best selling proposition for APL 

Paul Grosvenor (Optima Systems), “Making Money with APL” 
Most progressive and ‘on the ball’ APL vendor with resources for R&D 

Dyalog Ltd 
Berlin is a nice city and I would like to go back sometime and play tourist. Great 
restaurants and good music venues. Went to A-Trane (Larry Goldings trio) and 
Quasimodo (Blues rock with German 5 piece blues band called ‘five’ & bought their 
CD Five in the Kitchen. Great food at Ottenthal – best pudding I’ve ever had: Poppyseed & 
Lavender Sabayon). 
http://lathwellproductions.ca/wordpress/2010/09/22/apl2010-a-brief-introspection-guest-
brian/Ready to post 



VECTOR  Vol. 24 No.4 

 29 

    BAA Annual General Meeting 2010 
by Anthony Camacho  

secretary@vector.org.uk 

Minutes of the British APL Association AGM 2010 held at The Albion, 3 New Bridge 
Street, London EC4 on Friday 21 May 2010 

 
Minutes of AGM 2009 
The minutes had been published on the web site and were taken as read without 
correction. 
 
Report from the Chairman (Paul Grosvenor) 
Paul said that plans were being made for a possible conference next year. 
The London meetings were going well. An away day is to be held on 23 July. 
We need more people to join the committee and willing to do something to help. 
Three members are standing down from the committee – Anthony Camacho (we 
need a secretary), Ray Cannon (we need an activities officer) and Stephen Taylor. 
Stephen will continue as webmaster but we need someone to edit Vector. Paul 
thanked the three for their work over the years. 
Stephen Taylor is unable to be with us (Paul thinks he is working in Belgrade) 
but there is plenty of material in hand and most of the work is done on the next 
issue of Vector. 
Phil Last later volunteered to take over as Activities Officer. 
 
Report from the Treasurer (Nicholas Small) 
(Including report from membership secretary.) Nicholas said there is not much 
to report since last year. One issue of Vector has been produced and we have 
money for two more before we need to ask for further subscriptions. 
 



VECTOR  Vol. 24 No.4 

 30 

We have 256 paid-up members plus some Japanese members who have not yet 
paid and this compares with about 290 at this stage of 2008 (this comparison 
was not made last year). 
Committee for 2010-2011 
Paul suggested the following should be next year’s committee and Auditor: 
 2009-2010 2010-2011 
Chairman Paul Grosvenor Paul Grosvenor 
Secretary Anthony Camacho (vacant) 
Treasurer Nicholas Small Nicholas Small 
Vector editor Stephen Taylor (vacant) 
Vector Webmaster Stephen Taylor Stephen Taylor 
Activities Ray Cannon Phil Last 
Education Alan Mayer Alan Mayer 
Projects Ian Clark Ian Clark 
Auditor (not on committee) Chris Hogan Chris Hogan 
This was proposed by Ray Cannon and seconded by Mike Hughes and approved 
without objection. 
Questions 
There were no questions to officers. 
Other business 
Outstanding achievement award 
The outstanding achievement award was made to Kai Jaeger for his promotion of 
APL. Kai thanked us and said that the most effective aid to promoting APL he had 
seen in the last 20 years was the video made by John Scholes. 
Catherine Lathwell’s film project 
Paul felt that we couldn’t justify spending the money we had control over on 
Catherine Lathwell’s project, much as we applaud it and wish it well. This was 
clearly agreed by those present. Anyone who can help in any way is urged to get 
in touch with her. 
Our funds with BCS 
Paul circulated a letter from the BCS which was uncompromising. They will pay 
no more bills incurred by us and quote their rules in justification. They are 
holding something like £14,000 of our money. 



VECTOR  Vol. 24 No.4 

 31 

We discussed what could be done to bring pressure on them to return it to us. 
Paul felt that we could not afford to take the legal approach. It was suggested that 
sustaining members write to the BCS at the top level. 
Paul said that the BCS were unable to find anything in writing about the terms on 
which we had joined or even a date. 
Anthony said that we had joined after APL86 had made a large profit. There had 
been a spot of bother because our chairman was Philip Goacher who was also an 
employee in charge of a BCS subsidiary that arranged various events. In that role 
he had underwritten the APL86 conference. Then we discovered (about three 
months before the conference) that he had been fired from that role (although he 
still had a desk at the BCS) and we went to the BCS asking them to confirm the 
underwriting (of which there were no written records). They did so and after the 
conference, almost as a ‘thank you’, the committee was persuaded by Philip to 
join the BCS as a sub-group. 
The rules the BCS quote in their letter were made a good deal later than 1986 so 
they can hardly apply. 
Paul Grosvenor agreed to pursue these suggestions. 
Anthony Camacho, Hon Sec 25 May 2010 
  



VECTOR  Vol. 24 No.4 

 32 

AGM addendum by Paul Grosvenor 
5 October 2010 

by Paul Grosvenor 

Since the AGM was held a number of people have come forward to offer their 
services on our Committee. As a result I proposed a new structure to the 
committee which was seconded by Peter Merritt on 5th October 2010. Apologies 
to all for this rather strange procedure. I am pleased to be able to announce 
therefore that we once again have a full committee for 2010/2011 which is made 
up as follows; 
 2009-2010 2010-2011 
Chairman Paul Grosvenor Paul Grosvenor 
Secretary Anthony Camacho Peter Merritt 
Treasurer Nicholas Small Nicholas Small 
Vector editor Stephen Taylor Stephen Taylor 
Vector Webmaster Stephen Taylor John Jacob 
Vector Production Manager n/a Kai Jaeger 
Activities Ray Cannon Phil Last 
Education Alan Mayer Alan Mayer 
Projects Ian Clark Ian Clark 
Auditor (not on committee) Chris Hogan Chris Hogan 
My sincere thanks go out to all those people who have volunteered to help out, 
old or new. Particular thanks go out once again to Anthony Camacho, Ray Cannon 
and Stephen Taylor for all of their work over the years and the benefits we have 
all enjoyed as a result. n.b. Stephen, you might notice, has not quite got off the 
hook yet! 



VECTOR  Vol. 24 No.4 

 33 

BAA AGM 2010 – Chairman’s report 
by Paul Grosvenor – October 2010 

 
Paul Grosvenor, BAA’s old and new chairman 

 
As I write I detect a very positive momentum beginning to build up once more. 
The vendors seem to have a range of exciting initiatives that are ongoing and the 
market seems to be quite buoyant generally. As always our big challenge is to 
keep on waving the APL flag and making sure that even more people know we 
are here. 
I am thinking about the possibility of another conference next year along similar 
lines to BAPLA09 but this time (you’ve guessed it) BAPLA11. It all rather depends 
on time and sponsorship as this time I would want to get the costs right down 
and try to make it three days not two. Anyhow, watch this space and we shall see 
what comes. 
Our AGM this year at the Albion went well and attracted some 25 or so people. 
Thanks to our sponsors (Dyalog, MicroAPL and Optima Systems) for providing 
the food and drinks. The venue turned out not to be ideal but nevertheless 
allowed us to undertake the formalities of an AGM and have talks from two 
invited speakers afterward. 
This year for the first time in many years we had three long standing members of 
the committee stand down. Anthony Camacho (secretary), Ray Cannon 
(activities) and Stephen Taylor (Webmaster and Editor) all moved aside to allow 
for new blood to move in. I personally cannot remember a time when Anthony 
and Ray were not on the committee and rumour has it that their involvement 
goes back almost to day one! Stephen was a more recent member of the team but 
has invested much time into Vector and our website; time he no longer has. I 



VECTOR  Vol. 24 No.4 

 34 

hope you can all join me in offering our thanks for their combined efforts over 
the (many) years and hope they will keep in touch. Stephen in fact remains on the 
Committee looking after the Vector Editor role. Since our AGM, Peter Merritt, Kai 
Jaeger and Phil Last have joined the team so now we are once again back up to 
full strength. Thank you one and all. Full details of the new Committee can be 
seen elsewhere within this issue of Vector. 
Very little progress has been made with the BCS regarding our withheld funds. 
Some £14,000 remains within their grasp and they still consider it their money. 
As the AGM minutes point out we do not agree with this position and will try 
over the coming months to get our sustaining members to apply pressure on 
them. The decision to break away from the BCS was made in the knowledge that 
this situation was likely to arise but it should be pointed out that even without 
this money our existence is not threatened. 
Since our BAPLA09 conference last year we have been in some lightweight 
conversations with Catherine Lathwell regarding the documentary film she 
wants to make about APL. Our responses to her have not been all that 
satisfactory thus far as without the money from BCS we are not in the position to 
be able to offer her very much towards this project. Nevertheless I do intend to 
keep a dialogue with her going and will report back to the membership as 
matters transpire. 
The BAA London group have managed to keep on track with their meeting each 
month and I hope that this continues on. Phil Last will be announcing each 
meeting through various forums including comp.lang.apl so if you are in the area, 
please feel free to drop in on them. The group held an ‘away-day’ meeting on 
23 July at Dyalog’s new offices in Bramley which was a great success. As always 
discussions were fast and furious (15 APLers, 15 different solutions). 
The Vector production team pulled out all the stops to produce Volume 24 Nos 
2&3 in time for the Berlin APL conference. We now hope to keep the Vector 
production process under control and outputting regular issues throughout 
2011. 
This year we decided to award a new Outstanding Achievement Award. The 
award is designed to acknowledge the efforts of an individual, or organisation, 
within the world of APL where a particularly high level of achievement has been 
made. This year I was very pleased to be able to award it to Kai Jaeger for his 
work promoting APL and in particular for his efforts building the APL Wiki. Kai 
has spent more than just a few hours putting together the Wiki and has tried to 
make it as vendor-independent as possible. Today the Wiki contains a wealth of 



VECTOR  Vol. 24 No.4 

 35 

information and could be an invaluable starting point for the APLer both old and 
new. As always with these developments they rely upon content and so I know 
that Kai would very appreciate anyone who would be prepared to add a page or 
two for him. 
It should be noted at this point that on receiving his award Kai was lost for 
words. An event that I do not think has happened before or since. 
Please go on line and take a look or even better, create an account and add to the 
content at http://aplwiki.com/ 
 

 
Congratulations, Kai! 

 
Thank you once again to all our sponsors for contributing towards the cost of this 
award. We hope to able to make a similar award next year. 
The award reads: 

The Outstanding Achievement Award 
For Services to APL 

Presented to Kai Jaeger 
21st May 2010 

 
Finally, many of us will have just returned from the Berlin APL2010 conference. 
It was an interesting event with loads of good stuff going on. Almost as 
importantly it was refreshing to see 150 plus APLers all in the same place. We 
were reminded that 2016 will be the 50th anniversary of APL so I guess we 
should start planning for something a little bit special. 
 
 



VECTOR  Vol. 24 No.4 

 36 

D I S C O V E R  



VECTOR  Vol. 24 No.4 

 37 

Introduction to the PhraseBook  
project on the APL Wiki 

http://aplwiki.com/PhraseBook 
by Phil Last 

Various collections of APL ‘idioms’ have been published over the years and the 
possibility of a cross-vendor phrasebook has been mooted a number of times. 

About a year ago Dick Bowman suggested to the BAA London group in one of its 
regular monthly meetings that we might consider taking up the mantle of a 
pioneering effort that had been made some twenty years before to produce a 
phrasebook for as many APLs as would cooperate. After gauging initial interest 
Dick brought along an inch-thick sheaf of papers that were the only tangible 
evidence of that other project. 
Chris Hogan scanned the whole lot and placed them on a website, a wiki, 
provided by Kai Jaeger. 
Ellis Morgan then added cross-links and new pages to the wiki where phrases 
within a category were incorporated into a table. Provision was made for each 
phrase to be shown in a different version for a number of different APL 
implementations. 
At a later meeting we made the decision to take a slightly different approach 
using the inbuilt wiki facilities to link individual pages, each of which centres on a 
single phrase. The phrase is accompanied by a full description including 
alternative codings but the main phrase is coded in such a way that it should 
work on as many platforms as possible including the de facto standard of APL2 
and as far as possible the ISO Extended APL Standard[1]. 
A page template assists in the making of a new page. This is complete and flexible 
enough to allow individual contributors to build a new phrase page within a 
short time, that will be published immediately. 
The template includes headings for examples, how not to do it, conforming 
variants, specialities, compatibility and test cases. 



VECTOR  Vol. 24 No.4 

 38 

The author succeeded in creating a new page from scratch well within a half an 
hour albeit without any test cases. He was also able to leave a preformed “Page 
under construction” notice on the page temporarily to excuse this shortcoming. 
The hope is that the standardised headers will enable someone at some time to 
write software to link to the wiki as an extra resource for his or her own training 
material. 
Wiki categories are used to group pages that share some arbitrary feature. A page 
is added to a category simply by naming the category at the bottom of the page. 
Clicking on a category name brings up that page with a list of all pages that name 
it. The phrasebook project has many categories but until there are many more 
phrases the most useful so far is CategoryListAllPhrases to which all phrase 
pages belong. 
The phrasebook project differs in several aspects from its predecessors such as 
the FinnAPL library: 

�IO 
The phrasebook uses 0 as the default value of 9IO. The main reason for this 
decision is that dealing with .NET can be quite confusing otherwise. That does 
not mean that a phrase cannot use 1 but 9IO should then be set explicitly. 

APL2 syntax 
APL2 is considered to be the general standard for modern APLs. However, this is 
of significance only in Dyalog, which is syntactically different by default, at least 
for the time being. One can force Dyalog closer to the APL2-syntax by setting 
its 9ML (Migration Level) to the highest possible value, which is three at the time 
of writing. 

Testcases 
Every phrase in the phrasebook is expected to come with proper test cases. The 
test cases not only ensure a high level of code quality, they also prove useful for 
compatibility reasons. Imagine someone writing a certain phrase in, say, Dyalog 
which you would like to use in, say, APLX: by copying and executing the test cases 
in your interpreter you can make sure that the phrase is doing what it is 
supposed to do. 



VECTOR  Vol. 24 No.4 

 39 

Note that there is a button Execute test cases available on each phrase page. You 
may wonder what’s happening when you press this button. Well, quite a lot: 

1. The link is sent to a particular port on the APL Wiki server where not 
Apache but MildServer[2], a web server written in Dyalog APL, is listening. 

2. MildServer then analyses the page, extracts the code and executes it. The 
rules are explained on the APL Wiki[3]. 

3. MildServer then creates an ordinary HTML page, reporting either success 
or failure, which is then sent back to the client. To some extent this is 
arguably a dangerous thing to do; bad guys can easily write test cases 
which could bring MildServer down, or keep it busy forever. But then there 
are no bad guys in the APL community. (Phew. Ed.) 

Contributions 
If you are tempted to contribute to the project but feel a little depressed after 
looking at the template offered: try to take the test cases as far as you can and 
then save the page. One of the administrators will sooner or later come along and 
fix any problems. By comparing your version with the newer one you can easily 
figure out what was changed. 
The last thing to emphasise is that the project exists and is open for business. So 
far it contains only sixteen phrase-pages, but we hope that will increase rapidly 
with more than the few current contributors. 
We hope many of you will have a go and ‘get stuck in’. You need only an APL wiki 
account and a bit of time. If you have your own favourite phrase that you want to 
leave to posterity, or a whole library of them, all well and good. If not, there is a 
To-Do list that links back to sources for phrases if you just want to help. 
Remember, it is a wiki and so no-one should be too precious about having his or 
her efforts ‘improved’ by others though the “Page under construction” notice will 
hold other contributors off for a while if you have temporarily to leave a page 
unfinished, while a similar “Please will someone improve this page” notice invites 
the vultures immediately. 

References 
1. http://preview.tinyurl.com/62qs9f  
2. http://aplwiki.com/MildServer 
3. http://aplwiki.com/PhraseBook/TestCasesGuidelines 



VECTOR  Vol. 24 No.4 

 40 

Bring something beautiful 
by Roger Hui 

The following e-mail exchange took place on 2010-06-24 during a discussion on numeric 
representation. 
Morten Kromberg: And… I shall fight against adding any form of NaN / Infinity – 
to the death! They will horribly complicate our implementation and don’t help 
users do anything useful. 
Roger Hui: In the year 2033 Earth was discovered by Survey Fleet MCXII of the 
Galactic Empire. The Emperor ordered Earth to send a representative to the 
court, with strict instructions to “bring something beautiful”. 
Emperor 

What beautiful things does Earth have? 
Earth Representative 

Your excellency, our mathematician Euler proved in our year 1737 that 
+/(1+Ι∞)*-s �� ×/÷1-(�Ι∞)*-s 

Emperor 
What is the V symbol? 

Earth Rep. 
Vi is the i-th prime. 

Emperor 
And what is ∞? Does it do anything useful? 

Earth Rep. 
It denotes infinity, your excellency. 

Emperor 
(ponders equation for a minute or two) Respect! 

Emperor 
Neat notation you have there. Tell me more. 

Earth Rep. 
Your excellency, it’s called APL. It was invented by the Canadian Kenneth 
E. Iverson… 



VECTOR  Vol. 24 No.4 

 41 

L E A R N  



VECTOR  Vol. 24 No.4 

 42 

NO STINKING LOOPS 

Treetable: a case-study in q 
by Stevan Apter 

This article is the first in an occasional column, No Stinking Loops. Stevan Apter is one of 
the programmers Jeffry Borror referred to as “the q gods” in his textbook q for Mortals. 
The world of q programming has so far been largely hidden behind corporate non-
disclosure contracts. Vector is glad to see it opening and proud to be publishing this. Ed. 

0. Introduction 
A treetable is a table with four additional properties. 
Firstly, the records of the table are related hierarchically. Thus, a record may 
have one or more child-records, which may in turn have children. If a record has 
a parent, it has exactly one. A record without a parent is called a root record. A 
record without any children is called a leaf record. A record with children is 
called a node record. 
Secondly, it is possible to drill down into a treetable. If a record is a parent, then 
some of its columns may be rollups of its child-records. By drilling down into a 
parent-record, it is possible to inspect the elements which are aggregated in the 
parent. All rollups are performed on the leaves of the tree rather than on the 
immediate children. This means that tree-construction can be ‘lazy’: not all 
intermediate rollups from parent to leaves need exist. 
Thirdly, treetables have state. If the user drills down into the tree along a 
particular path, then closes a node along that path, the records on that path 
become invisible. If the user re-opens that parent, then the nodes along that path 
will become visible if they were visible before the parent was closed. In other 
words, closing an open parent does not destroy the visibility state of its children. 
Fourthly, a treetable is naturally sorted in a way that is an extension of ordinary 
table sort. Intuitively, the sort of a treetable is a structure-preserving sort of the 
‘blocks’ out of which it is composed. The sort is structure-preserving because the 
parent-child relation between records is preserved even though record-order is 
not. I’ve included an explanation of how such a multi-column sort works. 
The treetable is a natural candidate for a control in a non-procedural data-driven 
GUI. K and q have a long tradition of such GUIs, stretching back to A+ and the 



VECTOR  Vol. 24 No.4 

 43 

native K3 GUI. The examples in this paper are abstracted from an 
implementation of a GUI recently developed for q. But the case-study is meant to 
stand alone, as an exercise in pure data design. In a future instalment, I hope to 
show how such designs are smoothly integrated into a data-driven GUI. 
1. Lists, dictionaries, tables, keytables 
This section contains the necessary background on q’s collection data-types. 
A list is a collection indexed by position: 
q)l:10 20 30 

q)l 2 0 

30 10 

q)l?30 10 

2 0 

A dictionary is a collection indexed by a q object: 
q)d:`a`b`c!10 20 30 

q)d`c`a 

30 20 

q)d?30 20 

`c`a 

q)key d 

`a`b`c 

q)value d 

10 20 30 

The q object is usually a symbol (a name) but need not be. For example: 
q)e:(10 20;30 40 50;70 80)!`a`b`c 

q)e(30 40 50;10 20) 

`b`a 

A dictionary is a map from a list of elements (the key) to a list of elements (the 
value). The key and the value must have the same count. Moreover, the key 
should not contain duplicates. Although q does not enforce key-uniqueness, 
dictionaries containing duplicate keys may not behave as you’d expect. 
Atomic functions penetrate both lists and dictionaries: 



VECTOR  Vol. 24 No.4 

 44 

q)l+1 

11 21 31 

q)d+1 

a| 11 

b| 21 

c| 31 

A table is a list of dictionaries, or records, all of which have the same key. For 
example: 
q)t:(d;d+1;d+2;d+3) 

q)t 

a  b  c  

-------- 

10 20 30 

11 21 31 

12 22 32 

13 23 33 

A list of key-dissimilar dictionaries is not a table: 
q)(`a`b!10 20;`b`c`d!30 40 50) 

`a`b!10 20 

`b`c`d!30 40 50 

Since tables are lists, we can index them positionally: 
q)t 1 

a| 11 

b| 21 

c| 31 

The transpose of a table is a dictionary whose values are lists: 
q)flip t 

a| 10 11 12 13 

b| 20 21 22 23 

c| 30 31 32 33 

The flip of a dictionary of equal-length lists is a table: 
q)t2flip flip t 

1b 

q has a compact notation for constructing tables: 



VECTOR  Vol. 24 No.4 

 45 

q)u:([]a:10 11 12 13;b:20 21 22 23;c:30 31 32 33) 

q)t2u 

1b 

A table can therefore be constructed in three ways: 
• as a list of dictionaries 
• as the flip of a dictionary of vectors 
• using table-notation 

A keytable is a dictionary in which the key and the value are both tables. For 
example: 
q)k:([]f:`a`a`b;g:1 2 1) 

q)v:([]a:10 20 30;b:40 50 60;c:70 80 90) 

q)a:k!v 

q)a 

f g| a  b  c  

---| -------- 

a 1| 10 40 70 

a 2| 20 50 80 

b 1| 30 60 90 

Since keytables are dictionaries, they are indexed by key: 
q)a(`a;1) 

a| 10 

b| 40 

c| 70 

q)a((`a;1);(`a;2)) 

a  b  c  

-------- 

10 40 70 

20 50 80 

Since keytables are dictionaries, they can be split into key and value: 
q)key a 

f g 

--- 

a 1 

a 2 

b 1 



VECTOR  Vol. 24 No.4 

 46 

q)value a 

a  b  c  

-------- 

10 40 70 

20 50 80 

30 60 90 

A keytable can also be defined using q table-notation: 
q)a2([f:`a`a`b;g:1 2 1]a:10 20 30;b:40 50 60;c:70 80 90) 

1b 

The data universe of q can be summarised as follows: There are atoms and lists. 
Dictionaries map lists to lists. Tables are lists of dictionaries and keytables are 
dictionaries which map tables to tables. 
2. Trees 
We can represent a tree as a list of paths. For each element of the tree there is a 
corresponding path to that element:  

tree  path 

----  ---- 

A  A 

 B  A B 

  C  A B C 

  D  A B D 

 E  A E 

  F  A E F 

   G  A E F G 

   H  A E F H 

   I  A E F I 

From the path of an element e we can easily compute the parent: the parent of e 
is enlist e if the path is a singleton, else the parent is the drop of the last 
element of the path. 
While the path-list representation is intuitive, it can be clumsy to work with. For 
example, to find the children of A we need to search the path-list for all 2-
element lists which have A as their first element. To find the children of A B we 
need to find all 3-element lists which have A B as their first two elements. 
We can represent the parent-child relation explicitly, as a table PC: 
 



VECTOR  Vol. 24 No.4 

 47 

q)PC:([]parent:`A`A`B`B`A`E`F`F`F;child:`A`B`C`D`E`F`G`H`I) 

parent child 

------ ----- 

A A 

A B 

B C 

B D 

A E 

E F 

F G 

F H 

F  I 

Then: 
q)select child from PC where parent=`A 

child 

----- 

A 

B 

E 

q)select parent from PC where child=`F 

parent 

------ 

E 

We can represent the relation as a parent-vector: 
p:0 0 1 1 0 4 5 5 5 

That is: 
i tree  p 

- ----  - 

0 A  0 

1  B  0 

2   C  1 

3   D  1 

4  E  0 

5   F  4 

6    G  5 

7    H         5 

8    I  5 

p[i] is the index of the parent of the ith element of the tree. 



VECTOR  Vol. 24 No.4 

 48 

To find the children of any element e in the tree, search p for occurrences 
of e’s index: 
q)where p=5 

6 7 8 

To find the root of any element e, repeatedly index p, starting with e: 
q)p 6 

5 

q)p 5 

4 

q)p 4 

0 

q)p 0 

0 

To find the root of e in one step, reduce p over e: 
q)p over 6 

0 

p is applied repeatedly to the previous result until the result is the same twice in 
a row. This is why it is convenient to treat the root as self-parenting. 
To find the path from e to the root in one step, scan p over e: 
q)p scan 6 

6 5 4 0 

To find the paths of all elements of the tree, scan p over each of  
0 � count[p]d1: 

q)i:(p scan)each til count p 

q)i 

,0 

1 0 

2 1 0 

3 1 0 

4 0 

5 4 0 

6 5 4 0 

7 5 4 0 

8 5 4 0 

To find the leaf-elements of the tree, discard every element which is a parent: 



VECTOR  Vol. 24 No.4 

 49 

q)l:til[count p]except p 

q)l 

2 3 6 7 8 

We can use p to aggregate data associated with the tree. For example, suppose 
that the five leaf-elements have the following data: 
q)d:count[p]#0 

q)d[l]:l*10 

q)d 

0 0 20 30 0 0 60 70 80  

Now to sum d to the root, amend a zero-vector with + at i, the effect of which 
is to accumulate sums on all paths: 
q)@[count[d]#0;i;+;d] 

260 50 20 30 210 210 60 70 80 

Think of it this way: where r is the result, r k is sum d i k. In other words, the 
result at each node of the tree is the sum of that node’s descendants. 
 
From the parent-vector representation and a list of elements, we can compute the path-
list: 
q)e:`A`B`C`D`E`F`G`H`I 

q)n:reverse each e i 

q)n 

,`A 

`A`B 

`A`B`C 

`A`B`D 

`A`E 

`A`E`F 

`A`E`F`G 

`A`E`F`H 

`A`E`F`I  

And from the path-list representation we can compute the parent-vector: drop 
the last element of each path whose count is greater than 1 and find each 
truncated path in the path-list: 
q)n?neg[1<count each n]_'n 

0 0 1 1 0 4 5 5 5 

From p and e it is also easy to derive the parent-child table: 



VECTOR  Vol. 24 No.4 

 50 

q)PC:([]parent:e p;child:e) 

q)PC 

parent child 

------------ 

A      A     

A      B     

B      C     

B      D     

A      E     

E      F     

F      G     

F      H     

F      I   

And vice-versa: 
q)e?PC.parent 

0 0 1 1 0 4 5 5 5    

3. Treetables 
One way to think about the treetable is that it is a keytable whose records are 
related by the parent-child relation. 
A record is either a leaf or a parent. A parent record is the rollup of its children. 
A treetable has a single grand-total record, the root of the tree. 
The parent-child relation is constructed from an underlying table T. The records 
of T are precisely the leaf-records of the treetable. Nothing more is required 
of T except that it be a table, but in practice all suitable candidates for T will 
conform to the following condition: T will contain one or more columns which 
are suitable to group by, and one or more columns which are suitable to 
aggregate. 
For example, the following table satisfies that condition: 
A B C v  w 

---------- 

a f n 12 x 

a f o 10 y 

a f p 1  z 

a f q 90 w 

a g n 73 x 

a g o 90 y 

� 



VECTOR  Vol. 24 No.4 

 51 

A, B and C are suitable to group by, and v and w are suitable to aggregate. 
But it is worthwhile emphasising that this distinction is entirely arbitrary, and 
that nothing in the algorithm requires that columns of either type have any 
special properties. It would be silly to group on a column most of whose values 
are different, but the algorithm doesn’t preclude that. And in this example, 
although w is a column of symbols, it can be aggregated as long as its rollup 
function satisfies the condition that it takes list input and returns an atom. 
Let’s look at one possible treetable based on T. The grouping columns are A, B 
and C. Order matters. T grouped by A B C is different from T grouped 
by B A C. The rollup columns are v and w, and the rollup functions for those 
columns are sum, nul (explained below), and count. 
A single column may be aggregated more than once. In the example below, we 
aggregate v with sum and count. 
A treetable based on that scheme is R1: 
n_        | A B C counts v     w 

----------| -------------------- 

`symbol$()|       1000   52015   

,`a       | a     224    12054   

,`b       | b     200    11173   

,`c       | c     192    10290   

,`d       | d     192    8136    

,`e       | e     192    10362   

Here we can see that R1 is a keytable. The key of R1 is the column n_, a path-
list. The first record of R1 is the grand-total of T. We can see that T has 1000 
records and that column v sums to 52015. The aggregations of column w are 
null. 
We can also see by examining the remaining records that R1 contains a single 
level of aggregation based on distinct values of column A. 
We can also see nulls in R1: the A column of the first record, and all of 
column w. In the examples used in this paper, null means cannot aggregate this 
group. 
Now let’s drill down on the record where A=`a, giving us the table R2: 



VECTOR  Vol. 24 No.4 

 52 

n_        | A B C counts v     w 

----------| -------------------- 

`symbol$()|       1000   52015   

,`a       | a     224    12054   

`a`f      | a f   28     791     

`a`g      | a g   28     2072    

`a`h      | a h   28     2058    

`a`i      | a i   28     1967    

`a`j      | a j   28     1078    

`a`k      | a k   28     1645    

`a`l      | a l   28     1484    

`a`m      | a m   28     959     

,`b       | b     200    11173   

,`c       | c     192    10290   

,`d       | d     192    8136    

,`e       | e     192    10362   

One way to think about treetables like R1 and R2 is that they are constructed 
out of sub-tables. These ‘blocks’ are computed independently from T, then 
stitched together in the right order. This is the pattern followed by the algorithm 
described below. 
Let’s begin by identifying the parameters. 
The first parameter is T, the underlying table of unaggregated records. 
The second parameter is a list of the grouping columns: 
q)G:`A`B`C 

The third parameter is a dictionary of rollup functions: 
q)A:`counts`v`w!((sum;`n);(sum;`v);(nul;`w)) 

q)A 

counts| count                                 `v 

v     | sum                                   `v 

w     | {first$[1=count distinct x,();x;0#x]} `w 

The key of A is a list of names of the aggregated columns in the treetable. The 
value of A is a list of pairs of the form (f;c), where f is an aggregator 
and c is a column in T. 
count and sum are primitive aggregators of q: sum is +/ and count returns 
the number of elements in a list. nul serves as our general default aggregator: 



VECTOR  Vol. 24 No.4 

 53 

given a list x, return the first element of x if x is all duplicates, else return the null 
of x. Nulls in treetables are always the result of aggregation by nul. 
The fourth and final parameter is a package of information which represents the 
“drill-down state” of the treetable to be computed. For R1, this state is the 
keytable P1: 
n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

and for R2 it is the keytable P2: 
n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

(,`A)!,`a              | 1 

The state is a keytable where the key n is a list of dictionaries, each of which 
functions as an instruction to the algorithm to compute a specific sub-table block 
of the treetable. The meaning of v is described below in the section on state. 
For example, the grand-total block is arbitrarily represented by the unique empty 
dictionary: 
(`symbol$())!`symbol$() 

whose key and value both consist of the empty symbol list. This dictionary will be 
interpreted as the instruction to select all records from the underlying 
table T and aggregate them by distinct values of the first element of G, which in 
this example is `A. 
The R2 block of aggregated A=`a values consists of the dictionary: 
A| a 

This will be interpreted as the instruction to select records from T where A=`a 
and aggregate them by distinct values of the second element G, which in this 
example is `B. 
Finally, let’s look at a treetable R4 which has been drilled down to the leaves 
along one of the paths: 



VECTOR  Vol. 24 No.4 

 54 

n_        | A B C counts v      w 

----------| --------------------- 

`symbol$()|       1000   479131   

,`a       | a     224    106670   

`a`f      | a f   28     13952    

`a`f`n    | a f n 7      2867   x 

`a`f`n`0  | a f n 908    908    x 

`a`f`n`1  | a f n 256    256    x 

`a`f`n`2  | a f n 401    401    x 

`a`f`n`3  | a f n 288    288    x 

`a`f`n`4  | a f n 543    543    x 

`a`f`n`5  | a f n 258    258    x 

`a`f`n`6  | a f n 213    213    x 

`a`f`o    | a f o 7      3707   y 

`a`f`p    | a f p 7      3640   z 

`a`f`q    | a f q 7      3738   w 

`a`g      | a g   28     14948    

`a`h      | a h   28     12190    

`a`i      | a i   28     13535    

`a`j      | a j   28     13835    

`a`k      | a k   28     12945    

`a`l      | a l   28     13643    

� 

We append a unique identifier to the key of each leaf. This preserves n_ as a 
valid key. 
The instruction table for R4 is P4: 
n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

(,`A)!,`a              | 1 

`A`B!`a`f              | 1 

`A`B`C!`a`f`n          | 1 

R4 has the following blocks as constituents: 

• the grand-total block (root) 
• the A=`a block 
• the A=`a, B=`f block 
• the A=`a, B=`f, C=`n block (leaves) 



VECTOR  Vol. 24 No.4 

 55 

Concentrating just on the value parts of the blocks, let’s see how we would 
generate those using the native query language of q. 
To compute the grand-total block: 
q)flip enlist each exec nul A,nul B,nul C,count v,sum v,nul w from T 

A B C v    v1     w 

------------------- 

   1000 479131   

To compute the first subtotal level: 
q)0!select nul B,nul C,counts:count v,sum v,nul w by A from T 

A B C counts v      w 

--------------------- 

a     224    106670   

b     200    100048   

c     192    90541    

d     192    92853    

e     192    89019  

To compute the A=`a block: 
q)0!select nul C,counts:count v,sum v,nul w by A,B from T where A=`a 

A B C counts v     w 

-------------------- 

a f   28     13952   

a g   28     14948   

a h   28     12190   

a i   28     13535   

a j   28     13835   

a k   28     12945   

a l   28     13643   

a m   28     11622  

To compute the A=`a, B=`f block: 
q)0!select counts:count v,sum v,nul w by A,B,C from T where A=`a,B=`f 

A B C counts v    w 

------------------- 

a f n 7      2867 x 

a f o 7      3707 y 

a f p 7      3640 z 

a f q 7      3738 w 

And finally, to compute the block containing the leaves: 



VECTOR  Vol. 24 No.4 

 56 

q)0!select A,B,C,counts:1,v,w from T where A=`a,B=`f,C=`n 

A B C counts v   w 

------------------ 

a f n 1      908 x 

a f n 1      256 x 

a f n 1      401 x 

a f n 1      288 x 

a f n 1      543 x 

a f n 1      258 x 

a f n 1      213 x 

4. Construction 
Now we know what a treetable is, and have an intuitive grasp of what its parts 
are, how they are related, and how those parts are computed. The next step is to 
explain the q code which implements those ideas. My advice is that the reader get 
a q session, load the associated script[1], and experiment by reading along and 
executing (and varying!) bits of code. All the examples used in this paper are 
defined in that script. 
Rather than write a line-by-line commentary on the implementation, I’ve chosen 
to focus on the concepts which drive that implementation, and on a few of the 
knottier parts of the code. 
An indispensable companion in this (the reader’s) task is Jeffry Borror’s splendid 
book, q for Mortals. There are a few ‘dangerous curves’ ahead. In particular, I 
recommend close study of the chapter in Jeffrey’s book on Functional Forms. 
The four parameters of treetable construction are: 
T the underlying table 
G a list of group columns 
P the path table 
A the rollup dictionary 
The construction function takes T, G, P, and A and returns R, the treetable: 
construct:{[t;g;p;a]1!`n_ xasc root[t;g;a]block[t;g;a]/visible p} 

construct uses three subfunctions: 
visible determine which paths are visible 
root construct the root block 
block construct non-root blocks 



VECTOR  Vol. 24 No.4 

 57 

The form of the construct function is: 
  � r0 f/s 

r0 is the initial state and s is a list of arguments to the dyadic function f. Note 
that the block function takes five arguments, but in this context is applied as a 
dyad. In q, we say that block is projected on its first three arguments t, g 
and a. The first three arguments are fixed and the remaining two argument 
positions are open. So block[t;g;a] is a dyad. 
Suppose s has n elements. Then: 
r1:f[r0;s 0] 

r2:f[r1;s 1] 

� 

rn:f[rn-1;s n-1] 

In this case, r0 is the root block of the treetable and s is the result of applying 
visible to the path table p. For now, all we need to know is that this result is a 
list of instructions, for example: 
(`symbol$())!`symbol$() 

(,`A)!,`a 

`A`B!`a`f 

So in this example, the block function f will be applied three times: first to the 
root block and the first instruction; then to the result of that application and the 
second instruction; and finally to the result of that application and the third 
instruction. 
The result is a table with the structure: 
root block 

A=`a block 

A=`a, B=`f block 

The construct function then up-sorts the result by n_ and makes it the key: 
1!`n_ xasc � 

This is necessary because the blocks have to be recursively interleaved. For 
example, the A=`a, B=`f block must appear in the treetable immediately after 
the record in the A=`a block where B=`f : 



VECTOR  Vol. 24 No.4 

 58 

n_        | A B C counts v      w 

----------| --------------------- 

`symbol$()|       1000   479131   

,`a       | a     224    106670   

`a`f      | a f   28     13952  

`a`f`n    | a f n 7      2867   x 

`a`f`o    | a f o 7      3707   y 

`a`f`p    | a f p 7      3640   z 

`a`f`q    | a f q 7      3738   w 

`a`g      | a g   28     14948    

`a`h      | a h   28     12190    

� 

Sorting on n_ is a fast non-recursive method for interleaving records from the 
different blocks. 
construct uses over to produce a single table, where successive blocks are 
appended to the initial root table. This method destroys structural information 
about the blocks. That is, we have a single table as the result rather than a list of 
blocks. 
There is an alternative method which constructs the blocks in parallel using 
peach instead of over. Assume q is started with slaves (e.g. q -s 4). Then: 
pconstruct:{[t;g;p;a] 

 1!`n_ xasc root[t;g;a], 

 raze pblock[t;g;a]peach visible p} 

pblock:{[t;g;a;p] 

 f:$[g2key p;leaf;node g(`,g)?last key p]; 

 (`n_,g)xcols f[t;g;a;p]} 

We’ll now look more closely at the root and block functions. The visible function 
is discussed in section 5 below. A few auxiliary functions mentioned in the text 
are not discussed. 
The root function is: 
root:{[t;g;a] 

 a[g]:nul,'g; 

 (`n_,g)xcols node_[g]flip enlist each?[t;();();a]} 



VECTOR  Vol. 24 No.4 

 59 

Recall from the previous section that the root block is computed with the 
expression: 
flip enlist each exec nul A, nul B, nul C, counts:count v, sum v, nul w from T 

We can use q’s native parsing primitive to see the underlying functional form of 
the query part of this expression: 
q)parse "exec nul A, nul B, nul C, counts:count v, sum v, nul w from T" 

? 

`T 

() 

() 

`A`B`C`counts`v`w!((`nul;`A);(`nul;`B);(`nul;`C);(#:;`v);(sum;`v);(`nul;`w)) 

The functional form of exec is: 
?[t;();();a] 

where a is the rollup dictionary constructed in the first two lines of the root 
function. In the case where every element of a is a rollup, this expression 
returns a dictionary of atoms. To get our one-record table, we therefore enlist 
each atom and flip the result. This table is now passed to the node_ function, 
which adds the n_ column which will become the key of our root block. The 
result is reordered to put n_ and the grouping columns at the front. 
The block function doesn’t do much: it calls the leaf function if the key of the 
instruction contains all the grouping columns, else it calls the node function 
with by-clause b = the next grouping column: 
block:{[t;g;a;r;p] 

 f:$[g2key p;leaf;node g(`,g)?last key p]; 

 r,(`n_,g)xcols f[t;g;a;p]} 

As the final step, it pushes the key and the grouping columns out to the front of 
the query result and appends this to the treetable r computed to this point. 
The node function is: 
node:{[b;t;g;a;p] 

 c:constraint p; 

 a[h]:first,'h:(i:g?b)#g; 

 a[h]:nul,'h:(1+i)_g; 

 node_[g]0!?[t;c;enlist[b]!enlist b;a]} 



VECTOR  Vol. 24 No.4 

 60 

Recall again from the previous section how we compute a block which is neither 
a leaf nor a root: 
select nul C, counts:count v, sum v, nul w by A,B from T where A=`a 

The functional form of this query is: 
? 

`T 

,,(=;`A;,`a) 

`A`B!`A`B 

`C`counts`v`w!((`nul;`C);(#:;`v);(sum;`v);(`nul;`w)) 

In an expression of the form: 
?[t;c;b;a] 

c is the constraint, or ‘where’ clause (where A=`a), b is the grouping, or ‘by’ 
clause (by A,B), and a is the rollup dictionary. 
The first line of the function constructs the ‘where’ clause c from the 
instruction p: 
constraint:{[p]flip(=;key p;flip enlist value p)} 

For example, 
q)p 

A | a 

B | f 

C | n 

 

q)constraint p 

= `A ,`a 

= `B ,`f 

= `C ,`n 

The next two lines construct the ‘by’ clause from A and the group column 
vector g. 
In the last line, the constructed query is evaluated, de-keyed, and passed through 
the node_ function, which adds the n_ column to the table. The columns are re-
ordered in the block function, which calls leaf and node. 



VECTOR  Vol. 24 No.4 

 61 

The leaf function has a similar form: 
leaf:{[t;g;a;p] 

 c:constraint p; 

 a:last each a; 

 a[g]:g; 

 leaf_[g]0!?[t;c;0b;a]} 

Again, the first three lines construct the arguments to the functional form of the 
leaf query, and the resulting table is de-keyed and passed through the leaf_ 
function, which adds the n_ column to the result. 
5. State 
The treetable is intended for interactive use as the data-structure backing a GUI 
control. The user of the control clicks on a record to open or close that record. 
Opening a record r in the control reveals the records which are children of r. 
Closing r conceals the children of r. 
If a child c of r is open, and then r is closed and re-opened, then c’s state 
must be restored. Therefore we must keep track of the state of the treetable. We 
do this by associating the instruction for a block with a boolean value. The value 
is 1b if the parent of the block is open, else 0b if it is closed. 
The state of a treetable is contained in the path table P. For example, here is the 
state P4 of the table R4: 
n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

(,`A)!,`a              | 1 

`A`B!`a`f              | 1 

`A`B`C!`a`f`n          | 1 

The visible function takes a path table and returns only those instructions 
which compute blocks which lie along visible paths: 
q)visible P4 

(`symbol$())!`symbol$() 

(,`A)!,`a 

`A`B!`a`f 

`A`B`C!`a`f`n 



VECTOR  Vol. 24 No.4 

 62 

Let’s simulate closing R4 at A=`a. The result R5 should match R1, the initial, 
minimal treetable: 
q)P5:closeat[P4;G;`a] 

q)P5 

n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

(,`A)!,`a              | 0 ← closed at A=`a 
`A`B!`a`f              | 1 

`A`B`C!`a`f`n          | 1 

q)visible P5 

(`symbol$())!`symbol$() 

q)R5:construct[T;G;P5;A] 

q)R52R1 

1b 

Now we'll reopen R5 at A=`a. P6 should match P4 and the resulting treetable 
R6 should match R4: 
q)P6:openat[P5;G;`a] 

q)P62P4 

1b 

q)R6:construct[T;G;P6;A] 

q)R62R4 

1b 

openat and closeat are projections of the underlying function at: 
at:{[b;p;g;n]p,([n:enlist(count[n]#g)!n,()]v:enlist b)} 

openat:at 1b 

closeat:at 0b 

at relies on the fact that catenation to a dictionary is upsert: append if the key is 
new, else update. For example: 
q)d:`a`b`c!10 20 30 

q)d,`c`d!40 50 

a| 10 

b| 20 

c| 40 

d| 50 



VECTOR  Vol. 24 No.4 

 63 

at is trivial: flip the visibility bit for an instruction in the path table. The heavy lifting is 
performed by the visible function: 
visible:{[p] 

 q:parent exec n from p; 

 k:(reverse q scan)each til count q; 

 n where all each(exec v from p)k} 

The first line computes the parent-vector q from the key of the path 
table p (see section 2 above). Line 2 computes the list of paths from the root to 
all nodes. Line 3 performs a running logical-and scan (q keyword: all down the 
boolean states of each path. 
Here is a transcript of the console for an example run: 
q)P5 

n                      | v 

-----------------------| - 

(`symbol$())!`symbol$()| 1 

(,`A)!,`a              | 0 

`A`B!`a`f              | 1 

`A`B`C!`a`f`n          | 1 

q)p:P5 

q)q:parent exec n from p 

q)q 

0 0 1 2 

q)k:(reverse q scan)each til count q 

q)k 

,0 

0 1 

0 1 2 

0 1 2 3 

q)exec v from p 

1011b 

q)(exec v from p)k 

,1b 

10b 

101b 

1011b 

q)all each(exec v from p)k 

1000b 

 



VECTOR  Vol. 24 No.4 

 64 

q)where all each(exec v from p)k 

,0 

q)n where all each(exec v from p)k 

(`symbol$())!`symbol$() 

There are good reasons for breaking out the state in this way. 
In our example, the underlying table T has 1000 records, and the treetable in its 
fully opened state, in which all leaves of T and all aggregations are constructed, 
has 1206 records. The state-table therefore has 206 instructions, each of which 
corresponds to a complete scan of T. (See Q2 and S2 in [1].) Clearly, this can 
get expensive. For example, where the underlying table contains millions of 
records and hundreds of aggregated columns, and the tree-structure is deep and 
bushy. Moreover, we cannot rule out the possibility that the underlying table is 
the target of frequent updates; for example, if it is connected to a real-time data-
source. In that case, we cannot even be confident that the structure of the tree 
won’t change. (See the valid function in [1].) 
For these reasons, the design is deliberately lazy: we compute only as much of 
the tree as the path-table directs. 
6. Sort 
The APL sorting primitives grade-up and grade-down appear in q as the 
keywords iasc and idesc. 
We can use over to do multi-column sorts: 
msort:{x y z x} 

msort is a function of three arguments: x, an index vector; y, a permutation 
function; and z, a list.Thus: x permuted by the result of 
applying y to z permuted by x. 
Let v be a list of two vectors: 
q)v 

0 2 4 4 3 0 4 3 0 3 

0 3 1 4 1 3 1 3 1 2 

Sort v 0 descending within v 1 ascending: 
q)i:msort/[til count first v;(idesc;iasc);v] 

q)i 

0 2 6 4 8 9 7 1 5 3 



VECTOR  Vol. 24 No.4 

 65 

q)v@\:i 

0 4 4 3 0 3 3 2 0 4 

0 1 1 1 1 2 3 3 3 4 

msort/ repeatedly permutes x by the result of applying y to z permuted 
by x. 
msort can be used to sort dictionaries of vectors: 
q)d:`a`b!v 

q)d 

a| 0 2 4 4 3 0 4 3 0 3 

b| 0 3 1 4 1 3 1 3 1 2 

q)d@\:msort/[til count first d;(idesc;iasc);d] 

a| 0 4 4 3 0 3 3 2 0 4 

b| 0 1 1 1 1 2 3 3 3 4 

and tables: 
q)t:flip d 

q)t 

a b 

--- 

0 0 

2 3 

4 1 

4 4 

3 1 

0 3 

4 1 

3 3 

0 1 

3 2 

q)t msort/[til count t;(idesc;iasc);flip t] 

a b 

--- 

0 0 

4 1 

4 1 

3 1 

 



VECTOR  Vol. 24 No.4 

 66 

0 1 

3 2 

3 3 

2 3 

0 3 

4 4 

Our problem is to adapt msort to apply recursively to the hierarchically-related 
blocks of a treetable. 
In our example, R4 has 25 records and blocks at four levels: 
n_        | A B C counts v      w 

----------| --------------------- 

`symbol$()|       1000   479131   

,`a       | a     224    106670   

`a`f      | a f   28     13952    

`a`f`n    | a f n 7      2867   x 

`a`f`n`0  | a f n 908    908    x 

`a`f`n`1  | a f n 256    256    x 

`a`f`n`2  | a f n 401    401    x 

`a`f`n`3  | a f n 288    288    x 

`a`f`n`4  | a f n 543    543    x 

`a`f`n`5  | a f n 258    258    x 

`a`f`n`6  | a f n 213    213    x 

`a`f`o    | a f o 7      3707   y 

`a`f`p    | a f p 7      3640   z 

`a`f`q    | a f q 7      3738   w 

`a`g      | a g   28     14948    

`a`h      | a h   28     12190    

`a`i      | a i   28     13535    

`a`j      | a j   28     13835    

`a`k      | a k   28     12945    

`a`l      | a l   28     13643    

`a`m      | a m   28     11622    

,`b       | b     200    100048   

,`c       | c     192    90541    

,`d       | d     192    92853    

,`e       | e     192    89019    

R4 is implicitly hierarchical. The typical approach to operating on such structures 
is to apply a ‘flat’ algorithm like msort recursively. The deprecated function 
rsort in [1] exemplifies this approach. 



VECTOR  Vol. 24 No.4 

 67 

But there is a better way. We want an ‘array solution’ where the iteration is 
handled covertly by primitives. And we have one. Our solution will (i) convert the 
parent-vector into a list of child-vectors; (ii) use the child-list to partition the 
treetable into child-blocks; (iii) sort each child-block; (iv) use the key of the 
treetable to reassemble the sorted blocks into a treetable. 
Let’s step through it using R4. 
First, de-key R4: 
q)t:0!R4 

Next, compute the parent-vector of t from column n_, the path-list: 
q)parent:{[n]n?-1_'n} 

 

q)n:exec n_ from t 

q)p:parent n 

q)p 

0 0 1 2 3 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 0 0 0 0 

Next, compute the child-list from p: 
q)children:{[p]@[(2+max p)#enlist();first[p],1+1_p;,;til count p]} 

q)i:children p 

q)i 

,0 

1 21 22 23 24 

2 14 15 16 17 18 19 20 

3 11 12 13 

4 5 6 7 8 9 10 

i is a list of indices into t such that t i is a list of the subtable blocks of t: 
q)t i 

+`n_̀ A B̀`C̀ counts`v̀ w!(, s̀ymbol$();, ;̀, ;̀,̀ ;,1000;,479131;,`) 

+`n_̀ A B̀`C̀ counts`v̀ w!((,̀ a;,`b;, c̀;,̀ d;, è); à`b̀ c d̀`e;``̀ ` ;̀`̀ `` ;̀224 200 1� 

+`n_̀ A B̀`C̀ counts`v̀ w!(( à`f;`à g;̀ a h̀; à ì;`à j;̀ a k̀; à`l;`à m);`à a à`à a à� 

+`n_̀ A B̀`C̀ counts`v̀ w!(( à`f̀ n;̀ a f̀`o;`à f̀ p; à`f̀ q);`à a à`a; f̀`f f̀`f;`ǹ o p̀� 

+`n_̀ A B̀`C̀ counts`v̀ w!(( à`f̀ n 0̀; à`f̀ n 1̀;̀ a`f̀ n 2̀; à`f̀ n 3̀; à f̀`n 4̀; à`f̀ n 5̀� 



VECTOR  Vol. 24 No.4 

 68 

For example, block 1 is: 
q)t i 1 

n_ A B C counts v      w 

------------------------ 

a  a     224    106670   

b  b     200    100048   

c  c     192    90541    

d  d     192    92853    

e  e     192    89019    

Suppose we have a single sorting operation o and a single column c: 
q)c:enlist`v 

q)o:enlist iasc 

Sort each block: 
q)j:msort[t;c;o]each i 

q)j 

,0 

24 22 23 21 1 

20 15 18 16 19 17 2 14 

3 12 11 13 

10 5 9 7 6 8 4 

We now have the permutations we need to sort each block of t: 
q)t j 1 

n_ A B C counts v      w 

------------------------ 

e  e     192    89019    

c  c     192    90541    

d  d     192    92853    

b  b     200    100048   

a  a     224    106670   

Our adaptation of msort for treetables is: 
msort:{[t;c;o;i]i{x y z x}/[til count i;o;flip[t i]c]} 

As the last step, we need to mesh the permutations to give us the single 
permutation vector v/ such that t v is t in sorted order. 



VECTOR  Vol. 24 No.4 

 69 

To do that, we first compute the reordered keys of the blocks: 
q)m:n j 

q)m 

,`symbol$() 

(,`e;,`c;,`d;,`b;,`a) 

(`a`m;`a`h;`a`k;`a`i;`a`l;`a`j;`a`f;`a`g) 

(`a`f`n;`a`f`p;`a`f`o;`a`f`q) 

(`a`f`n`6;`a`f`n`1;`a`f`n`5;`a`f`n`3;`a`f`n`2;`a`f`n`4;`a`f`n`0) 

Then, to mesh the keys we insert each path-list into the appropriate slot of the 
mesh of the previous path-lists. This is our function pmesh: 
pmesh:{i:1+x?-1_first y;(i#x),y,i _ x;()} 

We apply it over m to give us the permuted path-list of the sorted table: 
q)k:pmesh over m 

q)k 

`symbol$() 

,`e 

,`c 

,`d 

,`b 

,`a 

`a`m 

`a`h 

`a`k 

`a`i 

`a`l 

`a`j 

`a`f 

`a`f`n 

`a`f`n`6 

`a`f`n`1 

`a`f`n`5 

`a`f`n`3 

`a`f`n`2 

`a`f`n`4 

`a`f`n`0 

`a`f`p 

`a`f`o 

`a`f`q 

`a`g 



VECTOR  Vol. 24 No.4 

 70 

Finally, we look up k in n, which gives us the index-vector v which permutes 
n into k: 
q)v:n?k 

q)v 

0 24 22 23 21 1 20 15 18 16 19 17 2 3 10 5 9 7 6 8 4 12 11 13 14 

and hence t into t upsorted by v: 
q)t v 

n_         A B C counts v      w 

-------------------------------- 

`symbol$()       1000   479131   

,`e        e     192    89019    

,`c        c     192    90541    

,`d        d     192    92853    

,`b        b     200    100048   

,`a        a     224    106670   

`a`m       a m   28     11622    

`a`h       a h   28     12190    

`a`k       a k   28     12945    

`a`i       a i   28     13535    

`a`l       a l   28     13643    

`a`j       a j   28     13835    

`a`f       a f   28     13952    

`a`f`n     a f n 7      2867   x 

`a`f`n`6   a f n 213    213    x 

`a`f`n`1   a f n 256    256    x 

`a`f`n`5   a f n 258    258    x 

`a`f`n`3   a f n 288    288    x 

`a`f`n`2   a f n 401    401    x 

`a`f`n`4   a f n 543    543    x 

`a`f`n`0   a f n 908    908    x 

`a`f`p     a f p 7      3640   z 

`a`f`o     a f o 7      3707   y 

`a`f`q     a f q 7      3738   w 

`a`g       a g   28     14948    

Assembling the steps: 
 tsort:{[t;c;o] 

  n:exec n_ from t; 

  i:children[parent n]except enlist(); 

  j:msort[0!t;c;o]i; 

  n?pmesh over n j} 



VECTOR  Vol. 24 No.4 

 71 

7. Conclusion 
q is a language of lists and dictionaries. By adding tables (lists of dictionaries) 
and keytables (dictionaries of tables), q inverts the traditional relationship 
between database and programming language. 
In the familiar model, tables live in a database. Programs extract data from tables 
in the database, and insert data into them. Other programs, usually written in 
some special database-y language, can be attached to database tables as ‘triggers’ 
If you’re used to this sort of thing it doesn’t seem so onerous. If you’re not, it feels 
like sorting rice-grains while wearing mittens. 
In q, tables and keytables are first-class entities whose parts are first-class. You 
assign them, transform them, bust them apart, stick them in lists, and pass them 
into and out of functions, just the way you do with lists and dictionaries. And 
that’s because they are lists and dictionaries. 
In most applications, the built-in SQL-like syntax of q is perfectly adequate: 
select/exec/update/delete � by � from � where � 

But as the treetable example shows, it may be necessary to drop down to the 
functional level where the SQL keywords give way to the primitives ? and ! 
and the content of the queries is carried as q-object arguments to those 
primitives. 
Acknowledgements. 
Thanks to Attila Vrabecz for corrections and several black-belt one-liners. 
References 

1. http://www.nsl.com/q/treetable.q 



VECTOR  Vol. 24 No.4 

 72 

A commentary on the formulator 
by Neville Holmes  

neville.holmes@utas.edu.au 
 

University of Tasmania 
School of Computing and Information Systems 

Launceston 7250,  
Australia 

A design for a commodity device called a formulator was outlined in a recently 
published essay[1]. Just as the calculator extended the abacus beyond basic arithmetic, 
the formulator is designed to extend commodity computation beyond arithmetic to 
algebra. 

This article examines aspects of the proposed formulator in more detail than 
given in the essay, and relates its capabilities to those of APL/J interpreters[2]. 
The formulator 
Calculators are widely familiar devices that are used to do basic arithmetic. They 
come in various forms but the simplest, the commodity calculator, is very cheap 
and apparently simple and reliable. The commodity calculator is also emulated 
on other handheld devices. 
One of the potentially most important uses of calculators is in the teaching of 
arithmetic in early schooling. They are commonly used for simple quantitative 
problem solving but could also be adapted easily to teaching basic arithmetic 
skills. 
What is there that goes a bit beyond calculator technology, either in daily life or 
in later education? Well, there are spreadsheets, but they are more a data 
management tool than a mathematical tool[3]. 
Interpreters like those for APL varieties are of course genuinely and ardently 
mathematical tools, but they go way beyond what is needed for everyday or 
school use. This makes them daunting for beginners and dabblers. 



VECTOR  Vol. 24 No.4 

 73 

What is needed is an intermediary capability, one that combines versatility and 
simplicity. The formulator[1] has these properties and also has enough in 
common with APLs that it would make it easier for users to move up. 
The exact calculator 
The first step in developing a formulator design is to fix the problems of the 
commodity calculator. After all, these problems are arguably the reason behind 
the banning of calculators from primary schooling in countries such as Japan. 
There are several significant problems, and these and fixes for them are given in 
my essay “Truth and Clarity in Arithmetic”[4] in more detail than is appropriate 
here. 
The source of falsehood in the commodity calculator is the adoption of inexact 
arithmetic pretending to be exact. Exact arithmetic is the cure. 
Two measures underpin exactitude: computation with variable length numbers 
and the use of fractions with a non-decimal denominator. 
To make variable length numbers practical, control over the entry and display of 
such numbers is necessary. For example, scaling is needed on numbers both 
being keyed in and being displayed. Very long numbers need to be able to 
abbreviated, but their inexactitude must be clearly shown when this is done[5]. 
To make fractions of all kinds practical, numbers with non-decimal denominators 
must be distinctively represented through use of both a decimal point and a 
fraction point[6]. 
To complete the design of an exact calculator, a variety of very simple functions 
needs to be added to the miserly ‘normal’ quota. At the very least, quotient and 
remainder functions are absolutely necessary, both for practical and educational 
use. 
At the same time, inexact values such as multiples of π and inexact functions such 
as fractional powers need to be excluded, though there are ways that π could be 
handled symbolically. Simple multiples of π and roots of integers, however, can 
be approximated by fractions[7]. 
One important source of obscurity in the commodity calculator is the 
disappearance of the numbers being used. 
Calculators work on more than one number at a time. Typically there are three 
numbers immediately relevant to the user of a calculator: two arguments and a 



VECTOR  Vol. 24 No.4 

 74 

result, not to mention the symbol of the function yielding the result. All should be 
displayed to the user, who should also be able to manipulate them[8]. 
Towards the formulator 
The commodity calculator is used to fiddle with numbers one at a time, 
constructing them by editing and by applying the basic functions provided. 
The commodity formulator is designed to be used to fiddle also with functions, 
constructing them by editing and substitution. Of course the functions are used 
for numeric calculation, but the focus is on manipulating the functions, that is, on 
algebraic calculation. 
The formulator is necessarily more complex than the calculator. It needs a richer 
keyboard and character set and more powerful basic functions. 
The exact calculator serves as a very appropriate starting point. The published 
design assumed a conventional numeric keyboard with a sign symbol on either 
side of the zero key, and a column of four function keys[4]. The signs were used 
as prefixes to the function keys to modify the four straight functions. 
With the larger keyboard needed for the formulator, the function keys could be 
completely independent of the numeric keys, so that better symbolism could be 
used[9]. 
It is not appropriate here to consider in any detail just what the formulator 
keyboard should be like, just what basic functions should be provided, and just 
what symbols should be used. Rather the skeletal structure of the formulator is 
the focus. However, Ken Iverson’s Turing Award essay[10] is an excellent guide 
for designers of notation, and the original mathematical symbols should be 
practical by now. 
Truth and inexact arithmetic 
Overtly putting inexact arithmetic onto the exact calculator has two aspects; the 
use of numbers and the use of functions. 
The numbers are entered, edited, and displayed. 
The user needs to be able to key numbers in as inexact and, in case of need, to 
specify just how inexact. Similarly, the user needs to easily see whether the 
number is exact as shown, or exact but shown inexactly, or inexact with all of the 
exact part shown, or inexact with the exact part going beyond the end of the 
number shown[11]. 



VECTOR  Vol. 24 No.4 

 75 

The functions are selected, modified, and applied. 
The basic traditional arithmetic function symbols, such as the saltire × and the 
obelus ÷, are used, as they are in APL[12]. Variations on those functions are 
denoted by diacritics (though not shown thus here as it seems such diacritics are 
not provided by HTML/Unicode[13]), for example the tilde signifies argument 
commutation: ~÷ for divide into. Numbers – positive, zero, or negative – are used 
as diacritics or superscripts of a function to have it repeatedly applied, or 
ignored, or repeatedly inverted[14]. 
With inexact arithmetic come various basic functions, such as the trigonometric 
ones, that normally yield inexact results. Inversion functions, like the square root, 
even yield more than one result, and, even though it’s popular to ignore all but 
one, it’s more strict and informative, especially in mathematical education, to 
produce them all as a set of results[15]. The root function also produces complex 
numbers, so they need to be handled alongside other kinds of value[16]. 
Breadth and list processing 
Adding inexact to exact arithmetic broadens the calculator without changing its 
basic nature as a calculator that applies functions one at a time to one or two 
arguments. But it does make it rather lopsided with a richness of calculation that 
involves producing one value from at most two values. The only argument 
widening described so far is the ability to use a set of numbers as a single value. 
The logical next step is therefore to allow lists of values as arguments and 
results[17]. Again this step has two aspects: handling list arguments and 
providing structural functions to derive values from such arguments. 
A list argument is simply a sequence of numbers separated by spaces[18]. Each 
item in the list, and each number in a set item, has its exactitude independent of 
other items or numbers in the list or set. 
Because a numeric display of a list could be lengthy, the list calculator offers a 
variety of ways to view a list as a graph[19]. List arguments can be produced by 
editing – selecting, joining, truncating, or otherwise fiddling with lists already in 
the argument stack. 
Dyadic functions handle argument lengths as in APL/J, except that a single item 
list is treated as a scalar. However, a diacritical diple (< or >) can be used to point 
to the argument whose items are to be dribbled in so that items of the result are 
sets of the result from the entire other argument. Used monadically, a function 
with a diple is reflexive so that the result is the same whichever diple is used. 



VECTOR  Vol. 24 No.4 

 76 

Much of what is done structurally by functions in APL/J can be done by editing 
commands in a commodity list calculator[20]. Quite otherwise are those 
functions that do arithmetic dyadically within the list, collapsing subsequences to 
single items in various ways. The operators of APL/J are used here as the 
diacritical modifiers acute ´ and grave `, corresponding to the two solidi / 

and \ [21]. 
Clarity and formulae 
The list calculator couples a richness of arithmetic with provision for its 
application to lists of numbers. The arithmetic functions can be applied by the 
user to the extent needed and understood, and the lists can be entered, inspected, 
changed and selected as needed. 
The richness has merely been suggested here, with some discussion in the 
appended notes. Users of APL/J will not be at a loss to fill in the detail in various 
ways. 
However, the design is still of a calculator. The functions are applied one at a 
time. The next two stages are very simple, but they are the essence of the 
formulator and the basis for algebraic clarity. 
The formulator has a function stack in addition to, and separate from, the 
argument stack. Just as for the calculator, one or two arguments are set up for the 
next function to use. The next function is either keyed into the bottom slot in the 
stack or chosen from the function stack and possibly edited before being used. 
A function in the stack can be either a basic function, with or without modifiers, 
or a composite of such functions, or a train of functions. 
A simple composite function is like an integer – notationally juxtaposed functions 
that build their results up progressively from right to left, from least significant to 
most significant. Thus only the rightmost function has a choice of being used 
monadically or dyadically; the others are all monadic since they get their 
argument from the function to their right. So ÷- is the reciprocal of either the 
negation (monadic) or the difference (dyadic) of the argument(s). 
However, a composite function can also have a dyadic point just like the decimal 
point of a number. Dyadically, the basic functions to the right of the dyadic point 
are applied monadically to each argument and the two results become the 
arguments for the functions to the left. Monadically, the basic functions to the 
right are applied similarly to produce the second argument at the dyadic point, 
while the original argument becomes the first argument at the point. So -∆÷ is 



VECTOR  Vol. 24 No.4 

 77 

the difference of either the reciprocal of two arguments or of the single argument 
and its reciprocal[22]. 
A train of functions is like a list of numbers – a sequence of basic or composite 
functions separated by spaces. A train serves to repeatedly use its argument(s) 
while passing results from right to left along the train and combining those 
results arithmetically with the original argument(s) on the way. 
The first, third, and so on functions from the right in a train of odd length are fed 
the argument(s) of the train as a whole and their results are fed to the 
intervening dyadic function. A train of even length is in effect made of odd length 
by prefixing an identity function, +0 say[23]. 
Parentheses may be used within formulae for various effects. For example, 
modifiers can be applied to an enclosing parenthesis to affect the enclosed 
function, and a train within parentheses can be used within a composite function. 
Depth and algebra 
Composing formulae is the basic level of algebra. The ability to work with 
patterns of formulae is the next level, and is needed to give depth to the 
formulator. 
A formula pattern or metaformula or template is a functional expression with 
place holders for substitution of meta-arguments. Templates are keyed in or 
edited in a template stack alongside the argument and formula stacks[24]. 
Once a template is selected for use, functions are selected in the function stack or 
are keyed in and they replace corresponding place holders in the template 
wherever they occur and as a single function[25]. When replacement is complete 
the resulting function is placed in the function stack whence it can be used on 
selected arguments. 
Rationale 
The formulator is not intended to compete with programming systems such the 
APL/J family. Indeed it is purposefully and drastically simpler, and not only 
because of the absence of name assignment and the restriction to list 
arguments[26]. 
Rather, the formulator is intended for everyday general use in work and in 
education – even in the home. In education it opens a wide field beyond simple 
arithmetic, the arithmetic that the commodity calculator has so badly betrayed, 



VECTOR  Vol. 24 No.4 

 78 

so that it has the potential to support teachers in greatly improving the 
development of numeracy in their students. 
The design of the formulator embodies a contrast between computation and 
programming, a contrast I pointed out in a published essay on APL of more than 
thirty years ago[27]. The formulator uses the symbolism of APL in rejecting use 
of the Roman alphabet, but ideas like trains come from J. 
Advanced programming systems like the APL/J family present a forbidding 
prospect to anyone simply wanting to do some particular ad-hoc calculation. 
Arguably, this prospect explains why spreadsheets became so much more 
popular than APL. 
Adoption of the formulator would provide an intermediate step between school 
arithmetic and APL/J systems that would make it easier for people to shift 
up[28]. Implementation of the formulator should be a relatively easy adaptation 
of an APL/J interpreter, and it could find prompt use on various handheld digital 
devices[29]. 
The APL/J community would be well placed to produce for teachers and students 
the material needed for teaching and learning the use of the 
formulator[30]. Properly done, and with conversion packages that bring 
formulator stacks into APL/J systems, these could lead to the much wider use of 
the programming systems favoured by the readers of Vector. 

Notes and references 
1. Holmes, W.N. (2009) “Truth and Breadth, Clarity and Depth in Algebra”, Computer, 

42(11), 112, 110-111 (PDF in archive: eprints.utas.edu.au/9474) 
2. This article is named a commentary. Its body is meant to be a fairly straightforward 

description of the design of the formulator slanted to readers familiar with the APL 
family of systems. Citations and further comments are relegated to this trailing section 
so that a first reading need not be distracted by comments, speculations and other kinds 
of rant. The hyperlinks are also in this section for convenience of use in the online 
version of this article. Any reader who thinks my use of footnotes excessive should for 
perspective read Anthony Grafton’s delightful book, The Footnote: A Curious History, 
(Harvard University Press, 1997, ISBN 13: 978-0-674-90215-
2;see www.hup.harvard.edu/catalog/grafoo.html). 

3. A spreadsheet program I used through an IBM 2741 typewriter terminal in the early 70s 
was written in APL\360. The author told me that he did it for an insurance firm in New 
England (USA, not NSW) and that spreadsheets were very widely used in the insurance 
industry, though many actuaries in Australia used APL bare. Interestingly, this was well 
before VisiCalc (bricklin.com/history/saiidea.htm). 



VECTOR  Vol. 24 No.4 

 79 

4. Holmes, W.N. (2003) “Truth and Clarity in Arithmetic”, Computer, 36(2), 108, 106-107 
(PDF in archive: eprints.utas.edu.au/1573) 

5. Numbers need to be shown in their shortest form, for example by choosing between a 
decimal and a vulgar fraction. Long numbers can be shortened on display by scaling, 
using an italic scale to show that an exact value is available to the user. Also, it might be 
worthwhile to use the traditional integer superscript to enter and display exact powers, 
at least as an option. 

6. The so-called decimal point separating the integral part of a number from its fractional 
part needs to be keyed in even for vulgar fractional parts like two thirds. However, 
simple fractional parts could be displayed with a solidus and without the decimal point, 
for example: 2¾. 

7. Better still, exact functions that do for exponentiation what quotient and remainder do 
for division would be a very interesting capability that would allow exact 
approximations for inexact roots and powers to be investigated. Two pairs of functions 
would be needed. With, say, 2 and 12 as arguments, one pair would yield 3 and 1½ as 
results, the other 2 and 11/3. (Why, oh why, doesn’t HTML/Unicode provide &frac13;?) 

8. The three numbers on display straight after tapping a function key would best be 
displayed like 
  12 

× 34 

 ddd  

 408 

 === 
9. which is the traditional format used in teaching elementary arithmetic. This is in effect a 

stack and the user would key in the next number as the second argument for a dyadic 
function. The stack could be extensive so that the user can select numbers previously 
stacked for editing and use as a new argument. 

10. Using the two special point symbols as basic function modifiers in the exact commodity 
calculator was motivated by the idea of imitating the ordinary commodity calculator. 
Otherwise, clarity is greatest if the numeric symbols are all distinct from the function 
symbols. A shift key to switch between the two sets, for instance with a touch pad on a 
screen, would keep the keyboard simple. 

11. Iverson, K.E. (1980) “Notation as a Tool of Thought”, CACM, 23(8), 444-465 (HTML in 
the Web: jsoftware.com/papers/tot.htm) 

12. While the distinctions can be made typographically, the user needs control over display 
of the number so that the entirety of a long number is accessible. 

13. For clarity, all simple or primitive functions should have a distinct non-alphabetic 
symbol in the spirit of “Notation as a Tool of Thought”, though Greek letters are used in 
mathematics and engineering as though they aren’t alphabetic. 



VECTOR  Vol. 24 No.4 

 80 

14. Tragically, present day typographical encoding doesn’t allow the freedom to put 
diacritics over any character of choice, a trivial matter in Donald Knuth’s old-time TEX 
(see tug.org). For rants on this topic, see my archived essays on general 
(eprints.utas.edu.au/2005) and sortemic (eprints.utas.edu.au/1564) text encoding, on 
Unicode (eprints.utas.edu.au/1527), and more recently on cultural theft 
(eprints.utas.edu.au/1806). In the original essay on the formulator, getting the 
production artist to put the diacritics above the function symbols was so protracted that 
changes I would have liked to make to the draft essay went by the board. For example, I 
was interested in the effect of using special encoding for the non-decimal values of dates, 
times, and angles (a date can be added to a time but not to anything else) though the 
examples were both distracting and inconsistent. 

15. In the calculator with both exact and inexact arithmetic, literal numbers can be used as 
superscripts also to numbers, typically as a short way of representing a longish number. 
However, since in neither the calculator nor the formulator are arguments specified 
symbolically, such superscripts aren’t seen as specifying calculation, merely 
representation. In function modification, an interesting notational simplification is to 
use a numeric subscript to mean the same as its negated superscript. A subscript of one 
then signifies inversion. A zero superscript can be for the identity function for its left or 
only argument, and a zero subscript for its right or only subscript. 

16. A set of values is clearly and conveniently represented as such by enclosing them, 
systematically sequenced and without duplication, within parentheses. The empty 
set ( ) is particularly useful for missing values in a sequence. In respect of inexact values, 
this idea raises the question of whether intervals, which are sets and are also what 
inexact values strictly are, should be the way inexact values are handled within a 
formulator. See wikipedia.org/wiki/interval_arithmetic . 

17. The representation of complex values presents quite a challenge, especially since each 
component can independently have the different kinds of exactitude and inexactitude. 
The traditional mathematical convention of expressing a complex value as a sum is 
clearly flawed and confusing to learners. An imaginary point like the decimal and 
fraction points is needed, but using j as in J is inconsistent. The best prefix point for the 
imaginary part of a complex number is surely the $ symbol. Another aspect of roots in 
inexact arithmetic is the problem of representation of multiple determinate or even 
indeterminate angles but determinate magnitude, which implies that, at least as an 
alternative, a polar representation using the traditional ∠	symbol	should	be	provided. 

18. It might be argued that tables of values and value arrays of higher rank should be 
introduced in the same step. However, for ad-hoc calculation or algebration this goes 
much too far. Apart from the problem of displaying and editing such arrays on a small 
screen, the extra basic functions needed for dealing with them are a severe complication. 
In any case, much of what is needed of tables can be handled by using a list of sets. 

19. A notational abbreviation for simple sequences would be useful for both entry and 
display of arithmetic progressions. For example, 5[6]78 would go up from 5 in steps 
of 6 but not go beyond 78. 



VECTOR  Vol. 24 No.4 

 81 

20. The graph of a list would usually show the value or values of each item vertically in item 
sequence along the horizontal axis. If complex values are involved, options are given to 
graph the real or imaginary part, the magnitude or the angle, or the values plotted on the 
complex plane and connected by lines showing their sequence. 

21. For an ad-hoc or learner user, it’s easier and clearer for joins, merging, sequencing, 
rotations, reflections, substitutions, and the like to be done by editing within the 
argument stack because they don’t involve any arithmetic. Keeping such functions 
separate also simplifies the function set by keeping it for those that do work on values. 

22. Clearly the formulator needs a keyboard that provides directly and systematically for 
the kind of typographical versatility that traditional mathematical notation has exploited 
to great effect. The American Mathematical Society has built its own mathematical text 
formatter, AMS-LaTeX (ams.org/tex/amslatex.html), on top of Donald Knuth’s TEX, but 
the formulator doesn’t need to be so sophisticated. Nonetheless, the shortcomings of 
HTML/Unicode present a most unfortunate barrier. 

23. This monadic use of a pointed composite function was not described in the original 
formulator essay, but it adds a very simple and useful capability, in particular that of 
using more than one dyadic point in a composite function. 

24. Functionally, this is just the same as the trains of J, but in the formulator the items of the 
train must be spaced out with blanks. 

25. In the original formulator essay[1] the templates were described as sharing the formula 
stack. Second thoughts suggest that it would be simpler in operation to keep templates 
separated from formulae. 

26. Having two distinct place holders is simple and consistent. However, it is appropriate 
not to handle templates in quite the same manner as functions in their stack, because 
replacement needs to be done either from the function stack or directly from the 
keyboard. Note also that a place holder in a template stands for a single function, so that 
selecting a train for placing into a template will in effect enclose it in parentheses. 
Furthermore, a number could be used as a function within a template, or for giving to a 
place holder, by using a diacritic to convert it to a function that returns the value itself 
regardless of any arguments it might be given during evaluation of the resulting 
function. 

27. Of course, it might be useful to be able to name a trio of stacks when saving them for 
later restoration or for use in documents, but it would be better to use a generated name 
that could be changed outside the host formulator. This would keep the alphabet out of 
the way. 

28. Holmes, W.N. (1978) “Is APL a Programming Language?”, The Computer Journal, 21(2), 
128-131 (PDF in the Web: comjnl.oxfordjournals.org/cgi/content/abstract/21/2/128) 

29. An important aspect of the formulator, in particular in easing transition to the APL/J 
family, is the restriction of formulae to compositions and trains. This inculcates the idea 
of results passing from right to left between functions, and postpones any questions 



VECTOR  Vol. 24 No.4 

 82 

about the traditional function precedence as seen in expressions like 2×3+4, but given 
up in APL/J. 

30. In a tacit programming thread on a J programming forum it was suggested that the 
‘WolframAlpha computational knowledge engine’ (wolframalpha.com) would provide a 
formulator. However, I had a look at it and it seemed to be very complex and in a 
completely contrasting style to the formulator described here. 

31. J users will have noticed that I use the traditional APL terminology, viz., 
function/argument and operator/operand, rather than J’s noun, verb, &c. I find it 
simpler. However, for teaching simplicity there is in the formulator a J-like possibility 
that would call basic function symbols letters, compositions words, and trains phrases. 
This linking of numeracy and literacy could help teachers. 



VECTOR  Vol. 24 No.4 

 83 

Understanding font embedding 
by Kai Jaeger 

kai@aplteam.com 

Explains how to embed the APL385 Unicode font into a web page. Adapted from an 
article in the APL Wiki.  

At the BAA London meeting in February 2010 my friend Stephen Taylor showed 
me his latest gadget, a brand-new iPhone. It’s a fascinating piece of hardware. I 
tried this and that and finally told it to go to the FinnApl Idiom Library on the 
APL Wiki. [1]  
I got so excited about what I saw that a fellow APLer asked me what was wrong. I 
told him that nothing was wrong at all: I was simply thrilled that the iPhone not 
only showed the web site properly with APL characters, it actually used the 
APL385 Unicode [2] font for this. “Well, it’s Unicode, so what?” was all my 
colleague had to say.  
True, the APL Wiki is a Unicode web site, but that does not explain why the 
iPhone used the APL385 Unicode font. One thing is certain: that font is not 
installed on an iPhone by default. The magic that makes this work is called Font 
Embedding, and that’s what this article is about. I expected all modern browsers 
to support font embedding – but not an iPhone!  
Font embedding means that when a web site is in need of a particular font to 
display a particular piece of text then this font is downloaded and installed 
temporarily by the browser in the background. This technology was demanded 
by web designers who want full control over their page layouts, but as APLers we 
are benefitting from this as well. It’s a chance to display APL code correctly on 
any machine even if that machine does not have an APL Unicode font installed. 
This article provides background information about this exciting technique as 
well as hints and tips regarding the usual obstacles. You need a basic 
understanding of HTML [3] and CSS3 font rules [4] in order to take advantage of 
this.  



VECTOR  Vol. 24 No.4 

 84 

History 
Font embedding was introduced by Microsoft with Internet Explorer 4 a long 
time ago. This was never adapted by other browsers, and there was a reason for 
that: IE accepts only Embedded Open Type (EOT) fonts.  
Now this format, although it has its merits, was owned by Microsoft, and 
Microsoft never even tried to make it a standard. For that reason other browser 
vendors kept away from this format. They had to.  
In 2009, two things changed. Firstly, almost all other browsers started to 
implement font embedding, although in a different way. Secondly, Microsoft 
made the EOT-format public and at the same time started to make it a W3C-
accepted standard.  
That’s good news, although for the time being it means that one has to write 
different CSS rules for IE and all the other browsers.  

IE and Embedded Open Type fonts 
EOT addresses two important issues:  

• The font file can be compressed, meaning that it contains not all but only 
those characters of a particular font used on a particular web site.  

• It can be bound to a particular URL. In other words, only when the font is 
downloaded from a URL contained in the EOT file itself will IE make use of 
it. This approach was taken to address licensing issues.  

The way Microsoft has implemented it in terms of CSS rules is unfortunately 
different from all the other browsers. You cannot use local to avoid a download 
when a suitable font is installed locally, nor the format hint to restrict a rule to a 
specific font format.  

TrueType fonts 
TrueType fonts (TTF) are used by the rest of the world for embedding fonts. 
Unfortunately there is no way to address licensing issues. This is bad news 
because it means that, strictly speaking, one may embed only free TTFs. The good 
news is that thanks to Adrian Smith, the owner and originator of APL385 
Unicode, everybody may distribute the APL385 Unicode TTF freely, so we don’t 
have licence issues.  



VECTOR  Vol. 24 No.4 

 85 

Converting a TTF font into EOT 
In order to use the APL385 Unicode font for font embedding with IE we need to 
convert it into the EOT format.  
If you are interested in how to do this, details are available on the APL Wiki. [5]  
But you don’t have to. Instead you can download a zipped version of the EOT 
file[6]. 

The CSS 
For the time being one needs write special CSS rules in order to make font 
embedding work with all modern browsers. Since this is likely to change over 
time, it is not covered in this article. For details see the APL Wiki [5]. In this 
article I am going to discuss the CSS on a general level.  
Note that the link http://misc.aplteam.com/apl385.eot used in the 
examples is a real one but of course you should not use it in your own CSS files.  
@font-face { 

  font-family: "APLFont"; 

  src: url("http://misc.aplteam.com/apl385.ttf"); 

} 

Now APLFont can be used in the same way as any other font-family in CSS. An 
example:  
pre { 

  font-family: APLFont, monospace; 

} 

This tells the browser to use APLFont for any pre tags. If that fails for any reason 
(eg if the URL produces a 404 Not Found error), then the browser will use a local 
monospaced font instead.  



VECTOR  Vol. 24 No.4 

 86 

A second example:  
@font-face { 

  font-family: "APLFont2"; 

  src: 

    local("APL385 Unicode"), 

    local("APLX Upright"), 

    local("Courier APL2 Unicode"), 

    local("SImPL"), 

    local("SiMPL medium"), 

    url("http://misc.aplteam.com/apl385.ttf") format("truetype"); 

} 

This example uses local and format as well. These are defined by the CSS3 
standard, but not implemented by IE. (IE9 is expected to implement it fully.)  
Note that in this example the browser is told to use a locally installed font, 
APL385 Unicode. Only if this fails will the browser continue to the next 
statement. If none of the specified fonts is actually available on the current 
system, it finally will download the APL385 Unicode font and try to use it as a 
TrueType font according to the format specification.  
The advantage is that the font is downloaded only when no local font is found. It 
simply saves time.  

Who will take advantage? 
Under Windows, these browsers are fine:  

Chrome 4.0 and better  
Firefox 3.4 and better 
Internet Explorer 6, 7 & 8 
Opera 10.0 and better  
Safari 4.0 and better 

Note that using NoScript[7] with Firefox stops font embedding from working. 
Reason is that downloading anything is potentially a dangerous operation, so by 
default NoScript blocks the CSS font-face rule. This can be changed on the 
Embeddings tab in the Options dialogue of NoScript: untick the ‘Forbid 
@font-face’ box and it will work. 



VECTOR  Vol. 24 No.4 

 87 

However, if you declare, say, http://aplwiki.com as to be trusted, which is 
probably a good idea anyway, then not only JavaScript but also font-embedding 
will work. 
This is new stuff, so make sure that you always use the latest version of your 
preferred browser.  

Strange effects 
Browsers use different strategies to display a page which comes with embedded 
fonts. Safari, for example, does not show anything until it is absolutely clear how 
the page is going to look. As a result some people complain that the browser is 
slow. That’s not exactly true, because it’s a strategic decision made by Apple.  
Firefox on the other hand tries to display something as soon as possible, even if 
the final layout might be different. Therefore Firefox comes up with something 
quite fast. However, for an embedded font Firefox uses one that is locally 
available. As a result the page changes more or less dramatically when the 
embedded font finally becomes available. Some people criticise this as 
distracting. Again this is a strategic decision.  
Since APL glyphs might be completely unreadable with any font chosen by 
chance I prefer Safari’s approach, although Firefox is my preferred browser.  

Help! It still does not work for me!! 
The way forward is to install a piece of software on your preferred browser that 
allows you to check the HTTP headers. Chrome, IE and Firefox all have tools 
available. They will tell you exactly what the browser is requesting and what the 
server is delivering.  
It might be helpful to see a working example [8] – an HTML page with some 
background information. It makes use of font embedding by referring to this style 
sheet file[9].  
To test font embedding you need either a machine which never saw an installed 
APL font or a Virtual Machine with the same property. De-installing all APL fonts 
might not work: sometimes strange caching effects take place by both the 
underlying Operating System and the browser(s).  



VECTOR  Vol. 24 No.4 

 88 

The future 
We can expect that  

• Internet Explorer 9 will process both local and format.  
• EOT will become a W3C-recognized standard and sooner or later all other 

browsers will accept EOT fonts as well.  
Mozilla has proposed WOFF (Web Open Font Format) which will be supported by 
Firefox 3.6. This new format addresses licensing issues and compresses fonts 
heavily. For details see hacks.mozilla.org/2009/10/woff/ [10]  
The future is bright.  
Latest updates, working CSS files and technical details are to be found on the APL 
wiki[11] . 

References 
1. Example page on the APL wiki with APL chars 

http://aplwiki.com/FinnAplIdiomLibrary  
2. APL385 Unicode font file 

http://www.vector.org.uk/resource/apl385.ttf  
3. HTML http://www.w3.org/html/  
4. CSS3 font rules http://www.w3.org/TR/css3-fonts/  
5. Converting a TTF font into EOT 

http://aplwiki.com/UnderstandingFontEmbedding 
#Converting_a_TTF_font_into_EOT  

6. APL385 Unicode in EOT format 
http://aplwiki.com/UnderstandingFontEmbedding 
?action=AttachFile&do=view&target=apl385.eot.zip  

7. FireFox Add-on NoScript:  http://noscript.net/ 
8. Sample UTF-8 web site 

http://misc.aplteam.com/APLCharTestUnicode.html  
9. CSS file illustrating font embedding 

http://misc.aplteam.com/fontface.css  
10. Web Open Font Format 

http://hacks.mozilla.org/2009/10/woff/  
11. Latest updates, working CSS files and technical details: 

http://aplwiki.com/UnderstandingFontEmbedding  



VECTOR  Vol. 24 No.4 

 89 

FINANCIAL MATH IN Q 

2: The price of bonds 
or: APL is not for programmers 

by Jan Karman  
jkarman@planet.nl 

Valuation of bond prices is a big thing at Wall Street and at investment departments of 
every institutional investor, like insurance companies, pension funds, etc. Buying bonds 
entitles one to receiving the principal at a given date, plus the contractual interest 
payments, i.e. coupons. This, being called the cashflow, has a value that depends on 
several parameters. These include the principal, the contractual interest rate, frequency 
of coupons (usually 2), redemption scheme (at once, linear, annuity, etc), date of 
closure, date of (starting) redemption and maturity date. Hundreds, even thousands, of 
institutions deal in bonds and equities: national governments states and provinces; even 
communities, larger corporations, polder-boards, utility companies, hospitals, schools 
and many others. Most of those institutions are served by their banks for technical 
details, but even banks fall back on estimates rather than mathematically exact 
calculations, because of lack of the relevant knowledge. 

Introduction 
Financial transactions invariably involve numerical calculations, and, depending 
on their complexity, may require detailed mathematical formulations. It is 
therefore important to establish fundamental principles upon which these 
numerical calculations and mathematical formulations are based.  
(Samuel A. Broverman, Mathematics of Investment) 
We will focus for a while on those mathematics. 
Given: 
x the required price, i.e. the exchange rate 
i the nominal interest rate 
r the current revenue on the capital market (yield) 
 the present value of the redemptions per unit of capital 
L the present value of the amounts on which interest is to be paid 
then we may formulate the price of any loan as follows: (1) 
 x = H + rL   



VECTOR  Vol. 24 No.4 

 90 

If the nominal interest equals the current interest then the exchange rate is at 
par, thus 
 1 = H + rL 
and it follows, by definition, that in that case 
 H = 1 – rL 
We could substitute this value of H in (1) getting (2) 
 x = 1 – (r–i).L  
It follows immediately that, when r = i, par shows up. 
From the same expression, L is defined by 

L = 

1 

(1 – H) — 

r 
and this value substituted in (2) produces (3) 

x = 

i 

+ (1 – 

i  
 
).H — — 

r r 
 
(1), (2) and (3) may be considered as the three general formulas for determining 
the price of bonds. This trinity forms a ‘closed algebra’ for the entire theory of 
mathematics of finance. The reasoning of those formulas requires some not too 
difficult considerations. Further we may choose the appropriate formula for a 
particular type of a loan, the one which suits best, with one apparent exception: 
the annuity loan. The price of this type of loan is simply: 

x= a(r) / a(i) 
or, the quotient of an annuity (a) based on r and the same one based on i. 
Although the reasoning of this form of loan is obvious, expressing this one in any 
of the three types is an exercise for the final exam, and far beyond the purpose of 



VECTOR  Vol. 24 No.4 

 91 

this article (just note the development of the redemption components of an 
annuity loan). 
From (2) and (3) it is clear, that, in general, the price of a (financial) commodity is 
decreasing when the price of money is increasing, and the other way around. 
Finally, from formula (3) it is easy to see that the price of a non-redeemable loan 
equals to 

i / r 
since H = 0. 
The general formulas can be considered from different view points: 
• sum of present values of redemption and interest (1) 
• price as deviation from par, i.e. the present value of the difference between 

yield and interest rate (2) 
• price related to a non-repayable loan; here the formula will always show 

up as: i/r +…, since i/r is the price of a non-repayable loan (3) 
Type (3) is the most practical one for calculations, since it only needs flat 
annuities, rather than incremental or decremental ones, which are needed in 
Type (1) and (2). Therefore I used Type (3) for the functions in the programming. 
Justification of the subtitle At this point the average programmer turns off, 
drops out, gets his coat and leaves the building, heading for mom and the kids. 
We, on the other hand, will continue. 
The Portfolio Let us take for an example the bond portfolio of government or 
private bonds, being hold by a pension fund. The data is neatly being stored in a 
computer file like this: 

No Principal 
Interest 

% 
Nr. of 

coupons 
Redemp 
scheme 

Date of 
closure 

Redemp 
date 

Maturity 
date 

1234 20000000 5.00 2 1 19990901 20090901 20090901 

1235 10000000 4.25 2 2 19990401 20040401 20100401 

Note that the first loan is redeemable at once at maturity date and the second one 
in 10 equal parts starting at 1 April 2004. Also keep in mind that there may be 
more characteristics, like changing the interest rate halfway, or changing the 



VECTOR  Vol. 24 No.4 

 92 

number of coupons, and that it can become quite complicated. I hope this 
example will do for our purpose. 
Suppose that for the yearly report (or for other reasons, e.g. a quarterly pooling 
of the data with a statistical institute like WM-Company) we need to calculate the 
value of the entire portfolio, then estimates are of no harm and may be allowed. 
If we, on the other hand, want to watch the performance of the portfolio, entirely 
or parts of it, under volatile movements of the yields on the capital market, or 
that another institution is interested in buying a particular fund or bundle of 
funds, or that the debtor wants to convert his loan or to redeem it at once, life is 
not that easy. In those cases the price needs to be established exactly, according 
to the principles as described in the textbooks in the References. But even in 
those cases banks often make no bones about estimating (the famous ‘wet 
finger’). 
Only two categories of experts are at our disposal: actuaries and, to some extent, 
econometrists. 
The K-script 
It is impossible to expose the entire script here. A few topics will be selected. 
First, there will be a frequent use for basic functions like present value, annuity, 
etc. So, we might design special auxiliary functions for those (decreasing annuity 
just for curiosity). 
v:{[r;n](1+r)�-n}         / present value  

an:{[r;n](1-v[r;n])%r}    / annuity 

Dan:{[r;n](n-an[r;n])%r}  / decreasing annuity 

Also we may design functions beforehand for the different loan types: 
a:{i%x}                            / non-repayable 

b:{[i;x;n](i%x)+(1-i%x)*v[x;n]}    / repayable after n years at 

once 

c:{[i;x;n](i%x)+(%n)*(1-i%x)*an[x;n]} / repayable yearly 1/nth 

d:{[i;x;n]an[x;n]%an[i;n]}            / annuity 

Date conversion: 
aymds:{+-1_ ,/(0 4 6 _+$x),'"-"}    / "yyyymmdd" to "yyyy-mm-dd" 

The data on the file is in flat ASCII, delimited by HT, so we need a splitter: 
frd:{pos:&(*q:0:x)=_ci 9     

  +:'(0,pos-!#pos) _ +q _dv'"\t"}   



VECTOR  Vol. 24 No.4 

 93 

We will need a function for the appropriate handling of the data (making known 
the variable names, reading the data and formatting them): 
conv:{[x;y;z]      / x y z being var nms, data, formats 

  t:.+(x;0$y;.,(`e;0)) 

  .[t;(2x;`f);:;z]} 

Finally we come to the main function, in which all the work is done: 
p:{[cr;cp;y;id;md;rd;sc] 

  j:-1+(1+cr%100000*cp)�cp 

  m:(%360)*0|(ds'aymds rd@&2sc)-__t%86400 

  n0:(%360)*(-/(ds''aymds' (,md),,rd))@&2sc 

  n1:(%360)*(ds'aymds md@&sc)-__t%86400 

  a:.+(`e`f;(0;8.5$)) 

  t:+(`_n;&#cr;a)           / courtesy Arthur 

  x0:(j@&2sc)*an[y;m]       / deferral of red. 

  x1:v[y;m]*c[j@&2sc;y;n0]  / type c 

  x2:b[j@&sc;y;n1]          / type b 

  .[t;();:;((x0+x1),x2)[<<sc]]} 

 

  / watch that little gem at the end of the bottom line! 

  / it's meshing catenated strings when final order is known 

The meshing function, x[<<sc], is used because the loans of types b and c were 
split and processed separately. Afterwards they need to be catenated in the order 
we started in and we saved. The original function comes from Stephen 
Jaffe, Topics for a Second Course in APL (Manchester 1986). 
There is only one control: that for the current yield. 
\d .k.Y 

yld:0.06;yld..l:"";yld..f:8.4$100* 

yldi:"yld+:%800";yldd:"yld-:%800" 

yldi..c:yldd..c:`button 

yldi..l:"+";yldd..l:"-" 

.k.Y..l:"Yield %" 

.k.Y..a:(`yld;`yldi`yldd) 



VECTOR  Vol. 24 No.4 

 94 

 
Picture 

 
Fig. 1 – There is only one control: the current yield; the exactness is 1/8%. The prices of the loans are being displayed in the 

rightmost column and adjusted timelessly on every click on yield. Note the little scroll button top-right. 
 

 



VECTOR  Vol. 24 No.4 

 95 

Show 
This picture is the result of 
/ *** The show 

\d � 

.k..l:"Investments" 

.k..a:(`D;(`Comment;`Y)) 

/ .k.D.[`y]: 13 

`show$`.k    

Online 
The entire application is online available and can be downloaded freely from my 
website[4]. 
References 

1. Broverman, Samuel A. Mathematics of Investment and Credit 1991, 1996, ACTEX 
Publications, Inc. Toronto 

2. Haaften, Dr M. van Leerboek der interestrekening 1929, P. Noordhoff N.V. Groningen 
3. Hage, Joh. Koersberekening 1941, P. Noordhoff N.V. Groningen 
4. http://www.ganuenta.com/index-bonds.htm 



VECTOR  Vol. 24 No.4 

 96 

J-OTTINGS 53 

Punctuation and rank 
by Norman Thomson 

Lynne Trusse created a best-selling book on the art of punctuation, famously drawing its 
title from the story of the panda which, after visiting a restaurant “eats shoots, and 
leaves”, a plausible option allowing for a touch of anthropomorphism, and one which 
might not cause too great a disturbance to other diners. If on the other hand the panda 
“eats, shoots, and leaves” the effect is likely to be very different.  

Much has been made of the manner in which the constructs of J were inspired by 
and derived from the parts of speech of ordinary language grammar, nouns, 
verbs and so on, despite which little reference is made to punctuation. While 
analogies should not be pushed too far – e.g. unlike shoots, there can never be any 
verb/noun ambiguity for primitive J objects – the concepts of explicit 
punctuation as provided in J by parentheses and space, and implicit punctuation 
through the two verb forms hook and fork, can be helpful in interpreting 
expressions.  
It can be tempting to think of conjunctions such as @ (atop) as punctuators as in 
e.g.  
   ((i.#)t);(i.@#)t=.'abcde' 

+-+---------+ 

|5|0 1 2 3 4| 

+-+---------+ 

However the role of @ in the above is that of a neologiser, that is, it constructs a 
new compound verb, call it ‘index-tally’, operating in scalar fashion on the items 
of the object t to its right. The operational details of such verbs lead naturally to 
consideration of the most subtle of all J concepts, namely rank.  
Consider three compound verbs which differ only in ‘punctuation’.  
v1=.>:@i.@# 

v2=.>:@(i.@#) 

v3=.(>:@i.)@# 

The effect of all three verbs is the same, that is they are semantically equivalent as 
demonstrated by  



VECTOR  Vol. 24 No.4 

 97 

   (v1 t);(v2 t);(v3 t=.'abcde') 

+---------+---------+---------+ 

|1 2 3 4 5|1 2 3 4 5|1 2 3 4 5| 

+---------+---------+---------+ 

More general questions are:  

1. For any verbs a b c, to which (if either) of the two forms a@(b@c) and 
(a@b)@c is v1 necessarily equivalent?  

2. Is v2 equivalent to v3, or, in mathematical terms, is the conjunction @ 
associative?  

Intuitively it should not be, for the same sort of reason that eats, shoots and leaves 
has a different meaning from eats shoots, and leaves. The scope rule for 
conjunctions is that they bind closely on the right, which means that it is v3 
which is equivalent to v1, and this of course is guaranteed by the J interpreter. 
Using conjunctions is equivalent to coining new verb-names from old in English, 
so that the meaning of v2 is ‘increment-(index-tally)’ as opposed to v3 which is 
‘(increment-index)-tally’.  
In learning J it takes a degree of mental adaptation to grasp the idea of a 
compound verb such as ‘index-tally’ let alone triple compounds like v2 and v3, 
and also to appreciate that the meaning of ‘index-tally’ is not index then tally. This 
difference can be demonstrated by:  
   (|.@*:)t=.1 2 2 3  NB. rotate-square 

1 4 4 9 

   (|.@:*:)t          NB. rotate-following-square 

9 4 4 1 

which suggests that the J terminologies ‘a atop b’ and ‘a at b’ are rendered more 
comprehensibly in pseudo-English as ‘a-b’ and ‘a-following-b’. The compound 
verb ‘rotate-square’ has rank zero because it takes on the rank of its rightmost 
component, a property which, for obvious reasons, is called rank inheritance. 
However, in ‘rotate-following-square’ the colon in @: can be thought of as 
signalling a pause in which rank is readjusted before the left hand verb is 
executed.  
The nature of the arguments which can be presented to a conjunctionally 
compounded verb depend on the arguments presented to its rightmost verb, and 
so returning to v1, v2 and v3, all of these require an argument acceptable to tally. 
This can be any J object since all J objects are fundamentally lists and so can be 
tallied at their topmost level. Also since the three verbs are to be executed in 



VECTOR  Vol. 24 No.4 

 98 

right to left succession it would seem, superficially at least, to make no difference 
how they are parenthesised as the transformed data is ‘passed down the line’ 
from right to left. However, as ‘rotate-square’ shows, rank inheritance has to be 
taken into account in the general case.  

Rank lists 
Verbs can be categorised according to their rank properties in a manner 
comparable to conjugation in classical language grammar (see the appendix). 
Every verb has a rank list, viz.  

monadic rank   left rank   right rank 
which can always be explicitly obtained by applying the basic characteristics 
adverb b. and using 0 as right argument of the resulting verb. Rank can be 
infinite, and most verbs of infinite rank are structural, meaning that, like box, they 
are designed to operate on their argument or arguments as a whole, that is, they 
do not ‘penetrate’ the outer shells of objects. Grade-up is a useful illustration of 
the notion of ‘infinite rank’ because however large the rank of its argument, it 
orders objects at the next lowest rank level, thus  
   /:i.2 10 20 30 40  NB. gradeup two 4 dimnl objects 

0 1 

   /:i.5 10 20 30 40  NB. gradeup five 4 dimnl objects 

0 1 2 3 4 

Infinite is the default verb rank, which is also the rank of all but the simplest user-
defined verbs, since the interpreter could potentially be forced to perform 
exhaustive and unproductive effort to work out the de-facto rank, and so it makes 
the ‘safe’ assumption of infinite. However the rank conjunction allows rank to be 
used flexibly as in  
   mean=.+/ % # 

   mean0=.(+/%#)"0     NB. scalarised mean 

   (mean i.5);(mean0 i.5) 

+-+---------+ 

|2|0 1 2 3 4| 

+-+---------+ 



VECTOR  Vol. 24 No.4 

 99 

Here are the relevant rank lists:  
   (mean b.0);(mean0 b.0) 

+-----+-----+ 

|_ _ _|0 0 0| 

+-----+-----+ 

Rank inheritance 
Returning to ‘rotate-square’ whose rank list is 0 0 0, although rotate is a rank-1 
verb, rank inheritance forces rotation at rank 0 (that is, equivalent to an explicit 
"0) and so it inherits a list of rank-0 objects (scalars) each of which has to be 
treated as a list, with the result that it does nothing. However, if rank is not 
inherited as with |.@:*:, then rotation applies to the list of squares as a single 
entity of rank 1.  
The equivalence of a@(b@c) and (a@b)@c (i.e. associativity) depends on the rank 
of the inheriting verb being no greater than that of the giving verb, something 
which will certainly take place if a, b and c are all rank-0 verbs, but which has to 
be examined in terms of verb rank properties when this is not the case. Rank 
inheritance from higher to equal or lower creates no problems as in  
   (>:@i.)6       NB. rank 0 inherits rank 1 

1 2 3 4 5 6 

However, compare  
   (/:@>:)7 3 5   NB. rank infinite inherits rank 0 

0 

0 

in which each of the three incremented values is upgraded separately, with  
   (>:@/:)7 3 5   NB. rank 0 inherits rank infinite 

2 3 1 

The next two examples involve verbs of equal ranks, again there is no inheritance 
issue, although changing the order of the verbs gives a different result because 
the grade-up of a transposed matrix is not the same as the transpose of a grade-
up of the original matrix.  
   (/:@|:)i.2 3   NB. both ranks infinite .. 

0 1 2 



VECTOR  Vol. 24 No.4 

 100 

   (|:@/:)i.2 3   NB. .. but the result is different 

0 1 

Mood, transitivity and commutativity 
J verbs are restricted to the imperative mood apart from the verb ‘to be’ (copula). 
Mood is independent of transitivity, meaning that a verb is either monadic 
(intransitive) or dyadic (transitive). For transitive verbs the arithmetic 
commutativity of say + means that 2 + 3 is in every respect equal to 3 + 2. 
However when a computer does addition it is impossible for both arguments to 
be fetched simultaneously, and so, analogously with transitive verbs in English 
for which the subject is in some sense ‘stronger’ than the object, the left 
argument of dyadic verbs binds more strongly than the right. This becomes 
apparent when repetition is invoked by the power adverb. Thus 2+$:(2)3 
means add 2 twice to 3 (answer 7), as opposed to add 3 twice to 2 (answer 8).  

Conjugations 
Returning to the conjugations, scalar verbs which have rank 0 are the ‘most 
penetrating’, meaning that unless otherwise modified by the rank conjunction 
they operate at the lowest cell levels. The ordinary arithmetic verbs are thus all 
of rank 0. Second-conjugation verbs are all monadic and operate at the level of 
lists, such as i. (index generator) and #: (base 2). The conjugations range from 
the most penetrating in the first conjugation through to those of the 4th and 5th 
conjugations which handle objects at a macro level. In between at the third 
conjugation are a set of verbs which are the counterpart of irregular verbs in 
natural-language grammars.  

Pseudo-punctuation 
Returning to punctuation, there are three verbs, all of infinite rank, which can be 
thought of as providing a ‘pseudo-punctuator’ role. These are , ; and ,.  
In each of the examples below the pseudo-punctuator is the middle tine of a fork, 
and the sum and difference of a list can be ‘punctuated’ in the following ways:  
   5 4(+,-)2 0      NB. sums, then differences 

7 4 3 4 



VECTOR  Vol. 24 No.4 

 101 

   5 4(+;-)2 0      NB. boxed sums, boxed differences 

+---+---+ 

|7 4|3 4| 

+---+---+ 

    5 4 (+,.-)2 0   NB. sums, diffs as separate dimensions 

7 3 

4 4 

The verb [ , also of infinite rank, provides pseudo-punctuation in the form of a 
statement separator:  
   a=.2 [ b=.3 

   a,b 

2 3 

which works because the above line is effectively  
   a=.2[3 

7 

Square brackets can sometimes give rise to what looks orthographically like 
‘verb parentheses’ as in  
   2(*:@[+])3 

7 

although arguably the above phrase would have been written with more clarity 
as  
   2((*:@[) + ])3 

Redundant punctuation 
As the above example shows, redundant parentheses can be invaluable in 
clarifying the meanings of tacit definitions, although, like all good things, it can be 
overdone, and too many parentheses can sometimes be just as confusing as too 
few. Once a string of J symbols exceeds about seven characters even an expert 
reader’s eyes begin to glaze over. Consider for example:  
   lens=.<"1 @:,.3&":@:i.&' '"1 

An example of using lens might help to clear the fog :  
   lens >'Florida';'California';'Alaska' 



VECTOR  Vol. 24 No.4 

 102 

+-------------+-------------+-------------+ 

|Florida     7|California 10|Alaska      6| 

+-------------+-------------+-------------+ 

Things become clearer still if lens is rewritten with some parentheses and an 
explicit space for the hook :  
   lens1=.<"1 @: (,. ((3&":)@:(i.&' ')"1)) 

But following the seven-character rule it would have been even better to 
articulate some of the bits by giving meaningful names to verbs along the 
following lines :  
   boxrows=.<"1 

   format=.3&":          NB. width = 3 characters 

   length=.(i.&' ')"1    NB. gives length of string 

   lens2=.boxrows@(,.(format@length)) 

Interestingly, although the above four lines appear at first sight to have only a 
few primitive symbols, all such symbols in lens are faithfully reproduced. 
Arguably it would have been better to write lens this way in the first place as 
this helps to contrast the @:s which define compound verbs, with the implicit 
punctuation in the hook ,.(format@length).  
Thoughtful punctuation can often help documentation. As a further example, 
most readers would find that on first sight the following verb definition conveys 
little of its purpose:  
   verb=.(+/@:*:@:-+/%#)%<:@# 

With some redundant parenthesising and renaming, and use of space to 
emphasise the fork, things become a little clearer:  
   sdest=.(+/@:(*:@:(-+/%#))) % (<:@#) 

and with a little more renaming of the parts  
   sum=.+/ 

   mean=.+/%# 

   mdev=.-mean       NB. mean deviation 

   nminus1=.<:@#     NB. n minus 1 

   sdest1=.sum@:(*:@mdev)%nminus1 

the objective of providing the usual form of standard deviation estimate from a 
sample should become reasonably apparent.  



VECTOR  Vol. 24 No.4 

 103 

Cap 
When cap ([:) was introduced it was argued that it allowed indefinitely long 
trains of verbs to be written without parentheses, thereby implying that 
parentheses were inherently undesirable. The analogy in English is to favour long 
strings of words without punctuation, which may not be to everyone’s reading 
taste. Forks and hooks work well because the human mind assimilates readily 
twosomes and threesomes, but thereafter the reverse is true, that is a b c d e 
wrongly suggests a then b then c then … whereas a b(c d e) gives a natural 
visual picture of the correct meaning. Continuing in the vein of the previous 
example *:-+/%# does not at first sight reveal its meaning whereas *:-(+/%#) 
says with reasonable clarity subtract the mean from the squares.  

Space 
A first step in the parser of most compilers and interpreters is to remove 
redundant spaces which are often highly desirable at the orthographic level, for 
example to underline the fact that three primitive verbs form a fork. Successive 
digraphs can lead the reader through an unnecessary initial step of 
disentanglement as, for example, in verb above which, even without the 
suggested parenthesising and breaking down into smaller verbs, would be easier 
to interpret if written  
   verb=.(+/ @: *: @: d +/%#) % <: @ # 

that is, (add following square following mean-adjust) divide by decrement-tally.  
On the other hand spaces are probably best omitted between verbs and their 
objects, e.g. i. 5 is probably less clear than i.5, although it is best not to be too 
dogmatic.  

Appendix 
1st Conjugation, rank vector = 0 0 0 
Logicals (monadic) 

-. (dyadic) = =: < <: > >: +: *:  
Arithmetics (monadic and dyadic) 

+ ? * % $ $. <. >. | ! %: +. *.  
Arithmetics (monadic) 

-. 



VECTOR  Vol. 24 No.4 

 104 

Algorithmics (monadic) 
p: (ith. prime)  

Algorithmics (dyadic) 
? j. o. r. q:  

2nd Conjugation, monadic, list oriented 
i. { ;: #. ". #: p. (polynomial)  
A. (Anagram Index) C. (Cycle)  
3rd Conjugation, irregular 
monadic 

%. (rank 2)  
dyadic 

#:(1 0) p.(1 0) {(0 _) A.(0 _) %.(_ 2) C.(1 _)  
4th Conjugation, dyadics with left rank=1, right rank=infinite 
$ |. |: # {. }. ": {:: (fetch)  
5th Conjugation, all ranks infinite 
monadic 

= < =. =: {: }: #: $ |. |: # {. }. ":  
L. (Level) {:: (match)  

dyadic 
-. -: i. ". E.(Member of Interval)  

monadic and dyadic 
, ,. ,: /: \: ; e. $. $: [ ] 
s: (symbol) u: (unicode) x: (extended precision)  

constant functions 
that is 9:, _8:, … , 0:, 1:, 2:, … 9:, also _: (infinity)  
 



VECTOR  Vol. 24 No.4 

 105 

P R O F I T  



VECTOR  Vol. 24 No.4 

 106 

BACKGAMMON TOOLS IN J 

2. Wastage 
by Howard A. Peelle  

hapeelle@educ.umass.edu 

J programs are presented as analytical tools for expert backgammon. Part 2 here 
develops a program to compute the number of pips expected to be wasted while bearing 
off pieces in one inner board (without contact).  

The inner board is represented as a list of six integers. For example, 0 pieces on 
the 1, 2, and 3 points, 2 on the 4-point, 3 on the 5, and 4 on the 6:  
   board =: 0 0 0 2 3 4   

To count pips for bearing off, sum the board times a list of the point numbers:  
   ,pips =:  +/ board * 1 2 3 4 5 6   

47   

Use program N (from [1]) to compute expected number of rolls to bear off:  
   ,n =: N board   

6.56681   

Expected number of pips to bear off is the expected number of rolls n times the 
average number of pips per roll (8 1/6):  
   n * 8+1%6   

53.6289   

Wastage is this expected number of pips minus the pipcount.  
   ,wastage =: (n * 8+1%6) - pips   

6.62895   

Define a program to compute wastage for any inner board:  
   Wastage =: (N * 8:+1:%6:) - Pips   

      Pips =: +/ . * Points   

         Points =: 1: + i.@6:   



VECTOR  Vol. 24 No.4 

 107 

For the example above:  
   Wastage 0 0 0 2 3 4   

6.62895   

Wastage for all possible full distributions (with all 15 pieces) in the inner board 
follows:  
   all =: (6#16) #: i.16�6 

   boards =: (15 = +/"1 all) # all 

(See Appendix for an alternative way to generate these boards using partitions.)  

Wastages for all full inner boards are: 
   wastages =: Wastage"1 boards   

The minimum wastage is: 
   <./wastages   

7.06895   

The board with minimal wastage is:  
 boards #2 wastages = <./wastages   

0 0 0 3 5 7   

Other distributions can be searched similarly:  
# Pieces  #Boards Minimum Wastage  Best board 

 15 15504 7.06895  0 0 0 3 5 7 

14 11628 7.02941  0 0 0 3 5 6 

13 8568 6.98028  0 0 0 3 4 6 

12 6188 6.90551  0 0 0 2 4 6 

11 4368 6.82085  0 0 0 2 4 5 

10 3003 6.75322  0 0 0 2 3 5 

 9 2002 6.62895  0 0 0 2 3 4 

 8 1287 6.51014  0 0 0 1 3 4 

 7 792 6.36102  0 0 0 1 3 3 

 6 462 6.14734  0 0 0 1 2 3 

 5 252 5.88967  0 0 0 1 2 2 

 4 126 5.52802  0 0 0 1 1 2 

 3 56 5.30579  0 0 0 1 1 1 

 2 21 4.62037  1 0 1 0 0 0 

 1 6 4.20833  0 0 0 0 0 1 



VECTOR  Vol. 24 No.4 

 108 

Reference 
1. Peelle, Howard A. “Backgammon Tools in J: 1. Bearoff Expected Rolls”, Vector, Vol.24, 

N°2  

Appendix 
Program to compute wastage: 
Wastage =: (N * 8:+1:%6:) d (+/ . * 1: + i.@6:) 

See [1] for script with definition of N to compute expected number of rolls to 
bear off.  
Co-recursive program to compute all partitions of an integer x into y parts:  
   ELSE =: ` 

   WHEN =: @. 

Partitions  =: ;@AllParts 

   AllParts =: <@Parts"0 >:@i. 

      Parts =: Ps ELSE (,.@[) WHEN (]=1:) 

         Ps =: Add1 ELSE (#1:) WHEN = 

            Add1 =: 1: + ] {."1 d Partitions - <. ] 

For example: 
   8 Partitions 3 

8 0 0 

7 1 0 

6 2 0 

5 3 0 

4 4 0 

6 1 1 

5 2 1 

4 3 1 

4 2 2 

3 3 2 

Program to produce a table of permutations: 
Perms =: i.@! A. i. 

All full distributions of 15 pieces on 6 points in an inner board: 
   boards =: 2. ,/ (Perms 6) {"1/ 15 Partitions 6 



VECTOR  Vol. 24 No.4 

 109 

Number of full inner boards: 
   #boards 

15504 

All wastages: 
   wastages =. Wastage"1 boards 

Average wastage: 
   Average =: +/ % # 

   Average wastage 

15.7857 

Minimal wastage: 
   <./wastages 

7.06895 

Board with minimal wastage: 
   boards #2 wastages = <./wastages 

0 0 0 3 5 7 

Top ten minimal boards: 
   10 {. boards /: wastages 

0 0 0 3 5 7 

0 0 1 2 5 7 

0 0 1 3 5 6 

0 0 0 2 5 8 

0 0 1 3 4 7 

0 0 0 2 6 7 

0 0 0 3 6 6 

0 0 0 4 5 6 

0 0 0 3 4 8 

0 0 1 2 6 6 



VECTOR  Vol. 24 No.4 

 110 

FUNCTIONAL CALCULATION  

4: The year 1998 
by Neville Holmes 

neville.holmes@utas.edu.au 

Functional calculation does with operations applied to functions and numbers what 
numerical calculation does with functions applied to numbers. In preceding articles an 
introduction was given to what could be done with one commonly available tool for 
functional calculation, using a notation called J, then details were given of simple 
numerical calculation, and then simple structural calculation. This article is intended to 
allow the reader to consider how simple structural calculation can be done in J by 
showing numeric expressions to produce whole numbers below 100 starting from the 
enlisted digits of the number 1998.  

Calculation 
Preceding articles have been introducing numerical calculation and structural 
calculation using the interpreter for the J notation. This article reverts to the 
pattern of the third one, showing how the whole numbers from 0 to 99 can be 
constructed from the digits of a year ‒ the year 1998. This time, however, digits 
are to be used in lists or in a list, so that the structural functions reviewed in the 
previous articles can be used.  
Of course, the scalar functions used in the previous exercises can also be used 
here, but the following structural functions are to be preferred. The first table 
shows structural functions used for building lists. These are a fairly mixed bunch, 
and indeed the shape and tally functions are not actually used for building but for 
reporting what has been built.  



VECTOR  Vol. 24 No.4 

 111 

$ shape reshape  
# tally copy  #. unbits undigits #: bits digits  
? deal  
< box  
      +. cartesian 
        ": format format  
> unbox  
   *. polar    
           ;: words  
; raze link  
   i. integers    
        q: factors  
The second table shows structural functions used for extracting or rearranging 
the values in a list. Again, these functions are a mixed bunch and not all will be 
found useful in the task of generating numbers.  
    |. reverse rotate |: transpose transpose  
, ravel append ,. knit stitch ,: itemise laminate  
       /: sort up  
       \: sort down  
{ from    {. head take  {: tail  
    }. behead drop  }: curtail  
    =.nub  
The third table shows some miscellaneous functions which extract data about 
their arguments.  
  %. invert project  
= classify  
     -: match  
  e. raze in member  
     =: sieve  
    i. index  
     /: grade up  
     \: grade down  
Finally, there are two operations which are so useful for working with structures 
that it would be masochistic to ignore them. Both these operations, whose 
symbols are = and /, are monadic, which means that they suffix a function which 
is the target of their operation. The resulting function may be used monadically 
or dyadically.  



VECTOR  Vol. 24 No.4 

 112 

For example, 2%23 will divide 2 into 3 rather than by 3 (its arguments are 
reversed), while w23 raises 3 to the power 3 (its left argument is copied from its 
right argument).  
Further, +/i.100 will add up the first hundred integers, 2 3+/4 5 6 will give 
a table with two rows and three columns containing the sum of each of 2 3 with 
each and every 4 5 6, and */2i.12 will give a ‘times’ table for the first twelve 
integers, or rather */2>:i.12 will give the more familiar table.  

Making 1998 give 0 to 19 
The four digits of 1998 may be used as a single list, that is, as 1 9 9 8, 19 9 8, 
1 99 8, 19 9 8, 199 8, 19 98, or 1 998. Otherwise two lists may be used, that 
is, the two lists 1 9 and 9 8, or a scalar and a list, such as 1 and the list 9 98 
or as the list 1 9 9 and the scalar 8.  
The task is to combine them in as short and simple an expression as possible, to 
yield each of the numbers between 0 and 19 (here, 99 later), and to yield them as 
scalars.  
As a matter of aesthetics, parentheses are avoided as far as possible. Also as a 
matter of style, the negative sign is avoided and subtraction or negation is used to 
similar effect.  
To save listing space, in the following it will be assumed that  
   x =: 1 9 9 8  

has been issued. Expressions that use x are preferred as using the simplest but 
most extensive list of integers.  
0 |/x =/19 98 10 {.1 9+9 8 #1 9":9 8 

1 1[9 9 8 <./x 11 --=/x +/*:i.=x 

2 1 9 i.98 #1 9;9 8 12 -.-=/x +/19 9-8 

3 1 9 9 i.8 #=.x 13 <.+/-:x >.>./M.!x 

4 #x +/*x 14 >.*/M.19 9 8 +/>:19 9-8 

5 +/i.=x >.{:!%:x 15 #.*x 19|*/9 8 

6 +//:x >./!%:x 16 #./:x +/19 9|8 

7 -/|.x #":x 17 +/1 9]9 8 >.%/19 9 8 

8 {:x %%/x 18 +/=.x -/19 9 8 

9 >./x 1{9 9 8 19 +/}:x {.19 9 8 



VECTOR  Vol. 24 No.4 

 113 

Two expressions are given in the table for each number. Note carefully that at 
least one of the arguments in each expression is a list.  

Making 1998 give 20 to 99 
Making numbers beyond 19 follows a similar pattern, and it’s convenient here to 
take them twenty at a time.  
20 --2/19 9 8 #.<:-:x 30 #.2.x +/1,>:9 8 

21 19+#9 8 <.+/|1 9 j.9 8 31 #.}:x +/>:x 

22 #.\:x +/,2>:#.x 32 -:*/19 9|8 */<.+:%1 o.9 9 8 

23 +/<:x p:{:x 33 +/<:19 9 8 #":*:*:,2x 

24 #.1 9 9|8 !-:{:x 34 <.!%:+:>/x +/,2}.19 9 8 

25 --2/|.x <.*/%:x 35 +/,q:19 98 #.-:x 

26 <.#.%:19 9 8 1#.9 9 8 36 +/19 9 8 </*/%:19 9 8 

27 +/x 19+{:9 8 37 >.*/%:19 9 8 #.1 9+9 8 

28 {.+/1 9+/9 8 +//:,2x 38 {.+:19 9 8 +/19>>.9 8 

29 >./p:x +/1+9 9 8 39 +/>:19 9 8 -:->:-/19 98 

Once into the twenties, the integer 19 becomes very useful, though it was also 
handy in the teens.  
40 <.*/-:x +/-:<:p:x 50 <.+:%:*/x #.>:-:x 

41 <.!%:{.19 9 8 -/1 9,-:98 51 #.-:19 9 8 -:1+99+#,28 

42 +/#.|:+:#:x +/-:p:x 52 +/+:}.x <.+/!%:19 9 8 

43 <:+/+:+/q:>:x +/1 9 9+8 53 >./>.!-:x 1{+/+/29 9 8 

44 +/1 9,,29 8 +/19 9+8 54 <.w#x +/+:x 

45 #.#.=x */>.%:19 9 8 55 +/19+9 8 #.<:x 

46 +:p:{:x +/}:,2x 56 <.o.-/19 9 8 +/,2}:19 9 8 

47 <.*/+:%1 o.9 9 8 p:+:#":x 57 1+*./<:9 9 8 +/19+>:9 8 

48 */#.=x #.<.-:19 9 8 58 +/>:+:x <:#.}:|.x 

49 -:{:1 9 98 -/*:1-9 9 8 59 -:>:+/19 98 +/1 9,-:98 

From the forties on, the integer 98 comes into play more often.  
60 -:#.1 9 98 >.o.{19 9 8 70 #.x <:p:>:-/19 9 8 

61 #.1 C.9 9 8 +/p:}:x 71 +/1 9#<:9 8 p:{.19 9 8 

62 1*#.9 9 8 #.}.x 72 *./x >./1 9*9 8 

63 -/*:|.x -/p:<:19 9 8 73 1+*./9 9 8 p:19+##9 8 

64 |/*:19 9 8 -.-/*:x 74 +/#.|:+:>:#:2.x  
65 +/*:1 9-9 8 -/p:19 9 8 75 19+*/<:9 8 #.,21 9-29 8 

66 +/+:<:19 9 8 #.19 _9 8 76 +/1 9 9#-:8 +/1 9 9*-:8 



VECTOR  Vol. 24 No.4 

 114 

67 p:-/19 9 8 #.-:>:|.x 77 |-/*:>:x +/,1 9$9 8 

68 -:#.19 98 +/,1 9$<:9 8 78 -.-/*:>:x +:+/>:19 9 8 

69 #.|.19 9 8 #.1+9 9 8 79 -2/19 98 1 9#.<:9 8 
In the sixties and seventies, squaring (*:) becomes useful.  
80 */<:+/>:|:=x -.-/19 98 90 -/1 9 98 *./>:x 

81 1 9#.|.9 8 +/1 9#9 8 91 -/1+99 8 19+*/9 8 

82  +/1 9,*/9 8 92 -/>:-:1 99 8 +/<:p:>:x 

83 +/<:#.>:#:x #.<:#.+:=x 93 -.-2/1 99 8 */p:1 9!>:9 8 

84 %:*/+:1 9 98 +/p:x 94  gt;.-/%-.1 o.9 9 8 

85 #.>:x -:+/,1 9*/9 8 95 <:*/>.%:>:x .<:19 9 8 

86  /,1 9$>:9 8 96 -:>:-/199 8 *./#.*:+:=x 

87  /#.>:#:x 97 <:1 9]98 #.>:#.+:=x 

88 <.+/>:o.x +/>:p:x 98 {:1 9 98 +/,1 9*./9 8 

89 1 9#.9 8 -/1-9 98 99 1{.99 8 1 9#.>:9 8 
Once in eighties, simpler expressions become possible because integers like 98, 
99, and 199 can be brought into play.  

Further examples 
The examples given above can only suggest how arithmetic functions can be used 
in a simple way to produce a variety of numbers. The reader is urged to consider 
the examples above with a J interpreter to hand, to try the examples out, to check 
them, and to try to find expressions that are better or in some way more 
interesting than those given here. When generating these numbers begins to pall, 
the reader perhaps should go on to consider how to generate the three digit 
numbers using the same rules. This could start +/}:1 99 8 then +/1 99,*8.  
Alternatively, expressions might be sought for other years. Some years will 
present special challenges. The following table gives a start for the year 2000, in 
which a choice is made between 0=0, 0!0 and 0w0 to give a 1 largely on aesthetic 
grounds.  
In the following table it has been assumed that  
   x =: 2 0 0 0  

has been issued.  



VECTOR  Vol. 24 No.4 

 115 

0 <./x */x 10 */*:>:2.x 20%#0 0 

1 |./x 2 0 0 i.0 11 >.+/wx #.2 0 0>.-.0 

2 +/x -/x 12 +/*:>:x +/,>:=x 

3 >:{.x */>:x 13 >.+/o.>:x 20-<.w+/>:0 0 

4 #x +/*:x 14 #.2+0 0 0 20-<.o.+/>:0 0 

5 2+#0 0 0 2++/>:0 0 0 15 +/<.o.>:}:x #.=2x 

6 +/>:x +/2+0 0 0 16 #.x w/2>.0 0 0 

7 2#.-.0 0 0 +/*:2,>:0 0 0 17 <.-/w>:2.x >.2*+/w>:0 0 0 

8 #.,#:2.x -/*:>>x 18 20-#0 0 +/<.o.2+0 0 0 

9 */*:>:x +/2+>:0 0 0 19 20-=/0 0 >.+/o.2+0 0 0 
Another amusing possibility, though ultimately monotonous because expressions 
are restricted to monadic functions, is to try to develop all the numbers from four 
zeroes in at least one list and at most one scalar.  
In the following table it has been assumed that  
   z =: 0 0 0 0  

has been issued.  
0 2.z 0{0 0 0 10 +/!/:z >.+/o.0=0 0 0 

1 =/z 0 e.0 0 0 11 #./:z >.+/w-.z 

2 --//:z +/0 0=0 0 12 +/+:/:z */!//:z 

3 {:/:z +/0=0 0 0 13 +/>:+:#:}:/:z >.+/o.-.z 

4 #z +/<.w0 0=0 0 14 +/*:/:z #.>:0=0 0 0 

5 -.-/+:/:z <.+/w0 0=0 0 15 #.-.z +/>.!w0=0 0 0 

6 +//:z +/<.o.0 0=0 0 16 +/<.!w-.z >.w/w0 0=0 0 

7 #.0=0 0 0 -.-/*:/:z 17 +/}.>.}.o./:z <.*/>:o.0 0=0 0 

8 >.-.-/o./:z +/+:-.z 18 +:*:{./:z +/<.o./:z 

9 *:{:/:z *:+/0=0 0 0 19 >.+/o./:z <:+/,2!/:z 

Postscript 
This series of instructional essays were the course material used by the author 
over several years for teaching tacit use of J, as described in “Tacit J and I”[1]).  
The particular nature of the essay above was to illustrate the functions explained 
in the preceding essay “Structural Ingredients”[2] and to explain the students’ 
assigned task for the following week.  
This weekly task, which counted substantially towards a student’s overall mark, 
was to do for their student identification numbers what the text of this essay 
shows for the year 1998. They were expected to provide 200 expressions, and 



VECTOR  Vol. 24 No.4 

 116 

their mark depended on the richness and brevity of the code in their work, which 
was submitted as a J file and analysed by J code.  
References 

1. Holmes, N., “Tacit J and I”, Vector, Vol.23, No.3, pp.52-56  
http:/vector.org.uk/?vol=23&no=3&art=holmes 

2. Holmes, N., “Structural Ingredients”, Vector, Vol.24, Nos.2&3, pp.114-121  
http:/vector.org.uk/?vol=24&no=2&art=holmes   



VECTOR  Vol. 24 No.4 

 117 

Simulating the Enigma 
by Keith Smillie 

smillie@cs.ualberta.ca 

The Enigma was the electromechanical cipher machine used by all branches of the 
German armed forces during the Second World War. Enigma messages which were 
intercepted by the British and then deciphered at the Government Code and Cypher 
School at Bletchley Park provided intelligence that has been estimated to have 
shortened the war by one or two years. The present paper, which begins with some 
introductory remarks on cryptography, describes the Enigma in general terms and then 
gives a more detailed discussion of a somewhat simplified version and its 
implementation in J.  

Cryptography 
Cryptography is the science and art of both concealing the meaning of a message 
by enciphering it according to some given algorithm and also deciphering an 
enciphered message to recover its original meaning. The two main ciphering 
methods are the substitution cipher in which each letter of a message is replaced 
by another character but retains its position in the message and the transposition 
cipher in which each letter remains unchanged but changes its position. For 
example the phrase The University of Alberta may be enciphered either by 
substitution to UIFVOJWFSTJUZPGBMCFSUB in which each letter is replaced by the 
letter one place ahead of it in the alphabet or by transposition to 
NHTEUEISVRTOFYILRABEEAHTT in which each group of five letters is randomly 
permuted. The original message is referred to as the plaintext and the enciphered 
message as the ciphertext. In the following we shall consider only substitution 
ciphers.  
One of the earliest examples of a substitution cipher is attributed to Julius Caesar 
and is therefore known as the Caesar cipher. In this cipher each letter in a 
message is replaced by the letter which occurs three places ahead of it in the 
alphabet. Therefore the cipher may be summarized in the following table:  
a b c d e f g h i j k l m n o p q r s t u v w x y z  

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C  

The plaintext phrase The University of Alberta of the previous paragraph 
when enciphered in this manner becomes WKHXQLYHUVLWBRIDOEHUWD. The shift 



VECTOR  Vol. 24 No.4 

 118 

need not be limited to 3 places, and may be any value between 1 and 26 where a 
shift of 26 leaves the message unchanged. The example of the substitution cipher 
in the previous paragraph is a Caesar cipher with a shift of 1.  
Caesar ciphers are relatively easy to break since there are only 26 of them and 
each may be tried in turn on a portion of the enciphered message until the 
correct one is found and then applied to the entire message. If there is a 
sufficiently long message a frequency analysis of the text may assist in the 
decipherment making use of the relative frequencies of the letters in English text 
with e being the most common letter, followed by t, then a, and so on. (Also an 
analysis of the frequency of the 26 × 26 pairs of letters can be very helpful since, 
for example, certain pairs such as qq and zz never occur and other pairs occur 
usually in one order but not the other.) A considerably more complicated 
substitution cipher is obtained by using a random permutation of the cipher 
alphabet so that, for example, each letter of the plaintext in the first row would be 
enciphered by the letter below it in the second row in the following table:  
a b c d e f g h i j k l m n o p q r s t u v w x y z  

I O H C F P T V M G D A Z J Y U W K X R L N Q S B E  

Even though the total number of such ciphers is 26! which is equal to  
403,291,461,126,605,635,584,000,000  

such ciphers can still be broken by frequency analysis.  
The Caesar ciphers of the previous paragraph are known as monoalphabetic 
substitution ciphers since only one cipher alphabet is used in a given message. 
However it is possible to define polyalphabetic substitution ciphers in which 
more than one cipher alphabet is used in a message according to a rule called the 
key which indicates which cipher alphabet is applied to each letter. The best 
known of these polyalphabetic ciphers is the Vigenère cipher named after the 
16th century French diplomat Blaise de Vigenère who further developed and 
promoted a method of encipherment which had been suggested during the 
previous century by the Italian architect Leon Alberti. In the Vigenère cipher 
there are 26 cipher alphabets corresponding to Caesar shift alphabets with shifts 
of 1, 2, … 26 letters. These may be conveniently arranged as shown in part in the 
table labelled “Vigenère Square” below.  
As an example of the use of the Vigenère cipher let us again encipher the phrase 
The University of Alberta using as a key the word VECTOR. Write the plaintext 
with the keyword above it and repeated sufficiently often so that each letter of 
the plaintext has an associated keyword letter:  



VECTOR  Vol. 24 No.4 

 119 

V E C T O R V E C T O R V E C T O R V E C T  

t h e u n i v e r s i t y o f a l b e r t a  

To encipher the first letter t of the plaintext find the letter V of the keyword 
appearing above it and then select from the column headed t the letter O which 
appears below it in the row labelled with a V on the left. The second letter h of the 
plaintext is enciphered with L which appears below it in the row which begins 
with E. Similarly the third letter e of the plaintext is enciphered with G which 
appears below it in the row which begins with C. Continuing in this manner – if 
we had the complete Vigenère square – we may determine that the ciphertext is 
OLGNBZQITLWKTSHTZSZVVT  
Vigenère square  

 abcdefghijklmnopqrstuvwxyz  

A  ABCDEFGHIJKLMNOPQRSTUVWXYZ  

B  BCDEFGHIJKLMNOPQRSTUVWXYZA  

C  CDEFGHIJKLMNOPQRSTUVWXYZAB  

D  DEFGHIJKLMNOPQRSTUVWXYZABC  

E  EFGHIJKLMNOPQRSTUVWXYZABCD  

F  FGHIJKLMNOPQRSTUVWXYZABCDE  

G  GHIJKLMNOPQRSTUVWXYZABCDEF  

H  HIJKLMNOPQRSTUVWXYZABCDEFG  

�   

T  TUVWXYZABCDEFGHIJKLMNOPQRS  

U  UVWXYZABCDEFGHIJKLMNOPQRST  

V  VWXYZABCDEFGHIJKLMNOPQRSTU  

W  WXYZABCDEFGHIJKLMNOPQRSTUV  

X  XYZABCDEFGHIJKLMNOPQRSTUVW  

Y  YZABCDEFGHIJKLMNOPQRSTUVWX  

Z  ZABCDEFGHIJKLMNOPQRSTUVWXY  

The Vigenère cipher is equivalent to enciphering text with a several Caesar 
ciphers with different shifts applied in an orderly manner by use of a given 
keyword which may be selected from an almost infinite number of keywords. For 
many years the Vigenère cipher was considered unbreakable, and indeed was 
known as le chiffre indéchiffrable. However, a method of breaking it was found in 
the middle of the 19th century independently by Charles Babbage, honoured in 
the history of computing as the ‘father of computing’ for his Difference and 
Analytical Engines, and by Friedrich Wilhelm Kasiski, a retired Prussian army 
officer. At the end of the First World War an American Army officer proposed a 
method of making the Vigenère cipher unbreakable by having for each message a 
random key as long as the message. However, these ‘onetime pad’ ciphers, as 



VECTOR  Vol. 24 No.4 

 120 

they were called, never became popular due to the problems of generating and 
distributing in a secure manner the random keys.  
The first attempts to mechanize enciphering and deciphering were made in the 
fifteenth century by Leon Alberti who was mentioned above as the originator of 
the Vigenère cipher. He had two copper disks, one slightly larger than the other 
and mounted concentrically, each with the alphabet inscribed about its 
circumference. By rotating the disks so that, for example, A on the outer disc was 
opposite D on the inner disk, the alignment of the letters would facilitate the 
enciphering or deciphering of a message with a Caesar shift of 3. These cipher 
disks remained in use as late as the American Civil War, and indeed well into the 
20th century as a children’s toy. The next development in the mechanization of 
cryptography is the Enigma which we will discuss in the next section.  

The Enigma 
The Enigma was designed and built by the German engineer Arthur Scherbius 
and was intended as a simple method of mechanically enciphering and 
deciphering messages with a very large number of polyalphabetic substitution 
ciphers. He took out his first patent in 1918 for a machine about the size and 
weight of a typewriter which cost approximately $30,000 at today’s prices. 
Although it was promoted widely – for example, it was shown at the 1923 
Congress of the International Postal Union in Bern, Switzerland – it initially 
attracted little interest because of the cost and the belief that the degree of 
security it offered was unnecessary. However in the mid-1920s the German 
military became interested and Scherbius started mass producing Enigmas and 
eventually supplied over 30,000 machines to the German armed services.  
The Enigma consisted of three parts: a typewriter keyboard for input, a 
‘scrambler’ mechanism for applying a continually changing polyalphabetic cipher 
to each letter of the message, and for output a set of 26 lamps marked with the 
letters of the alphabet indicating the encipherment of each letter as it was input. 
The enciphered message was written down on paper and then transmitted either 
by telegraph or wireless to the intended recipient who would then use his 
Enigma which would be configured in the same way as was the sender’s Enigma 
to decipher the message.  
The main part of the scrambler was a set of three rotating discs or rotors about 4 
inches in diameter and mounted in the machine on a removable axle. Each rotor 
had a circle of 26 electrical contacts near the edge of each face with the contacts 
on one face being connected to those on the other face in a random order. 



VECTOR  Vol. 24 No.4 

 121 

Different random connections were used for each of the rotors. Depressing any 
key on the input typewriter would send an electrical current first to one of 26 
contacts on a fixed input disc to the right of the three rotors. (The keyboard was 
connected to the fixed disc in simple alphabetical order with A on the keyboard 
connected to the first position on the disc, B to the second position, and so on.) 
The current would then pass to a contact on the right face of the right-hand rotor 
and then to the randomly connected contact on the left face of the rotor, through 
contacts on the right and left faces of the middle rotor, and then through the right 
and left faces of the left-hand rotor. From the left-hand face of the left rotor the 
current would pass through a fixed ‘reflector’ disc with contacts on its right face 
only which would effect a fixed interchange of pairs of letters. The current would 
then flow back through the three rotors in a left-to-right order, again through the 
fixed disc on the right, and finally to one of the 26 lamps which would display the 
encipherment of the letter which had been input.  
The encipherment of each letter would involve a total of seven distinct 
polyalphabetic substitutions. However the Enigma was designed to change this 
encipherment from letter to letter by having the right-hand rotor advance to the 
next of its 26 possible positions at the input of each letter and before the 
electrical contact was made to the fixed input disc. When the input of 26 letters of 
a message had caused the right-hand rotor to make a complete revolution, a 
carry mechanism would cause the middle rotor to advance one position.. After 
another complete revolution of the right-hand rotor the middle rotor would be 
advanced another position, and so on until it would have made a complete 
revolution at which time the left rotor would be advanced by one position. Thus 
the three rotors may be considered to function as a base-26 odometer. The 
introduction of the reflector had two important consequences: A letter could 
never be enciphered into itself, and an enciphered message could be deciphered 
by entering it into an Enigma with the same initial settings as the machine which 
enciphered the message.  
Each of the rotors had a ring attached to the outside and labelled around the 
circumference, usually with the letters A to Z, which could be turned to any one 
of 26 positions. Furthermore each ring had a small carry notch which would 
engage the rotor to the left and make it advance one position. Although the ring 
setting of a rotor did not affect the total number of scramblings, it did affect the 
letter-by-letter substitutions and the point in the revolution of a rotor when the 
rotor to its left was advanced.  
In addition to the rotors a further scrambling was introduced by a stationary 
plugboard which through a set of cables allowed pairs of letters to be 



VECTOR  Vol. 24 No.4 

 122 

interchanged. Usually there were 10 sets of cables which thus allowed the 
swapping of 10 pairs of letters. The plugboard was connected both to the 
keyboard and to the output lamps so that the pairwise swapping of the letters 
took place both before it entered the fixed input disc and after it had been 
scrambled by passing through the rotors, the reflector disc and through the 
rotors a second time.  
The Enigma initially had only three rotors which of course could be inserted in 
any one of six possible orders. In the late 1930s the Enigma versions used by the 
German Army and Air Force were issued with five rotors, labelled I, II, III, IV and 
V, three of which were selected for a given Enigma setting. The Naval version had 
three additional rotors labelled VI, VII and VIII, and some versions could 
accommodate four of these eight rotors.  
It is of interest to calculate the total number of possible substitution ciphers 
made possible by the scrambling mechanism. If we assume that there are five 
rotors, then the three rotors may be selected and installed in 6 × 5 × 4 or 60 
possible ways. For each of these rotor orders the total number of substitutions is 
26 × 26 × 26 or 17,576. To calculate the number of substitutions provided by the 
plugboard we note that the number of ways of choosing m pairs out of n objects 
is n!/((n-2m)!m!2m). If we assume there were 10 cables that could be connected, 
then m=10 and since n=26, this expression becomes 26!/(6!10!210), which may 
be calculated in J in extended precision as  
   x: (!26) % (!6) * (!10) * 2�10  

and has the value 150,738,274,937,250. Therefore the total number of 
substitutions available with the Enigma is given by  
   60 * 17576 * x: (!26) % (!6) * (!10) * 2�10 

which is equal to 158,962,555,217,826,360,000, or approximately 159 million 
million million. Obviously some form of frequency analysis together with any 
knowledge of the possible content of the message or the writing style of the 
sender is the only possible method of breaking such a cipher.  

Using the Enigma 
When using the Enigma, the Germans drew up monthly setting sheets which 
specified for each 24-hour period all of the Enigma settings except the initial 
rotor positions, i.e., the selection of three rotors out of the five, their ring settings 
and order in the machine, and the 10 pairs of plugboard connections. A person 



VECTOR  Vol. 24 No.4 

 123 

sending a message would first set up his machine according to the settings for 
that day and then proceed as follows:  

1. Select a three-letter indicator giving the rotor positions to be used to 
encipher the initial rotor positions or message key to be used when 
enciphering the message.  

2. Turn the rotors to the indicator position and type the message key twice 
writing down the enciphered letters shown on the lamps.  

3. Turn the rotors to the message key letters and type the message writing 
down the encipherment of each letter.  

4. Give the enciphered message together with the indicator and the twice-
enciphered message key to the radio operator for transmission.  

The recipient of the message would proceed as follows:  

1. Set up his Enigma according to the daily settings.  
2. Turn the rotors to the indicator position which he would have received 

unenciphered.  
3. Type in the next six letters of the message which would give the repeated 

message key.  
4. Turn the rotors to the message key and type and decipher the message.  

An Enigma simulator 
In this section we shall give a simulation in J of the simplified Enigma machine 
given in Simon Singh’s The Code Book with the following properties: The alphabet 
is limited to the letters A, B, C, D, E and F; the plugboard allows the interchange of 
only one pair of letters; the rotatable ring with the carry notch determining when 
the rotor adjacent to it would rotate one position is omitted; and the rotor or 
rotors advance one position after (not before) a letter has been entered at the 
keyboard and has been enciphered. However, whereas Singh’s example has the 
current passing through the rotors first from left to right and then through the 
reflector and back through the rotors from right to left, our simulation will 
adhere to the conventional order given in most accounts of the Enigma. The 
substitutions may be defined as follows:  



VECTOR  Vol. 24 No.4 

 124 

Rotor 1:  a|B; b|A; c|D; d|F; e|E; f|C  
Rotor 2:  a|C; b|A; c|D; d|B; e|F; f|E  

Rotor 3:  a|F; b|C; c|E; d|D; e|B; f|A  
Reflector:  a|F; b|C; c|B; d|E; e|D; f|A  

Plugboard:  a|B; b|A; c|C; d|D; e|E; f|F  

We may note in passing that the number of substitution ciphers for this 
simplified Enigma is the product of the 3! or 6 permutations of the rotors, the 
6×6×6 or 216 relative positions of the rotors for each of these permutations, and 
the 15 substitutions for the plugboard, or in total 6×216×15 or 19,440 
substitutions. If we follow and extend Singh’s discussion of the substitutions 
given by the first rotor as it rotates for each keystroke, we may draw up the 
following table giving the cipher alphabet for each position of the rotor:  
 0  1  2  3  4  5  6  7  �  

a  B  D  A  C  B  F  B  D  �  

b  A  C  E  B  D  C  A  C  �  

c  D  B  D  F  C  E  D  B  �  

d  F  E  C  E  A  D  F  E  �  

e  E  A  F  D  F  B  E  A  �  

f  C  F  B  A  E  A  C  F  �  

This simplified Enigma may be defined in J by the following variables:  
   Alphabet      ALPHA=: 'ABCDEF' 

   Rotors        I=: 'BADFEC'; II=: 'CADBFE';  III=: 'FCEDBA' 

   Reflector     Reflector=: 'FCBEDA' 

   Plugboard     Plugboard=: 'BACDEF' 

If we keep track of the typewriter keystrokes by the variable Counter, then the 
amount of rotation of each of the rotors is given by  
  'S2 S1 S0'=: 6 6 6#:Counter  

and, for example, if Counter=: 20 then we have that S0 is 2, S1 is 3 and S2 is 0 
indicating that the right rotor has moved 2 positions, the middle rotor 3 
positions, and the left rotor has remained stationary. The values of S0, S1 and S2, 
which are the digits in the base-6 representation of the decimal value of 
Counter, may be used to determine the substitutions effected by the various 
positions of the rotors. For example, the third column in the above table giving 
the substitutions for rotor I is given by  
   ((_2|.ALPHA) i. _2|.I) { ALPHA 



VECTOR  Vol. 24 No.4 

 125 

which is equal to AEDCFB representing the substitutions  
a|A; b|E; c|D; d|C; e|F; f|B 

All of the above substitutions are those given by the current passing through the 
rotors in a right-to-left direction before passing through the reflector. The second 
set of substitutions with the current passing through the rotors from left to right 
may be found in a similar manner, and using the example for rotor I we have  
   ((_2|.I) i. _2|.ALPHA) { ALPHA 

which is equal to AFDCBE, which represents the substitutions  
   a|A; b|F; c|D; d|C; e|B; f|E 

The Appendix gives a J program in Version 4.06b for a simulation of the 
simplified Enigma machine based on these considerations. The following is a 
simple example of its use:  
   InstallRotors 3 2 1 

   SetRotors 'CFD' 

   m=:enigma 'ABCDEFABVC' 

   m 

 BEAAAABC_F 

   SetRotors 'CFD' 

   enigma m 

 ABCDEFAB_C 

References 
1. Battle of Wits. The Complete Story of Codebreaking in World War II. The Free Press, New 

York.  
2. Hodges, Andrew, 1985. Alan Turing: The Enigma of Intelligence. Unwin Paperbacks, 

London.  
3. Kahn, David, 2009. Seizing the Enigma: The Race to Break the German U-Boat Codes 1939-

1943. Barnes & Noble, Inc., New York.  
4. Sale, Tony, 2009. The Enigma Cipher Machine.  

http://www.codesandciphers.org.uk/enigma/  
5. Singh, Simon, 2000. The Code Book: The Science of Secrecy from Ancient Egypt to 

Quantum Cryptography. Anchor Books, New York.  



VECTOR  Vol. 24 No.4 

 126 

Appendix. Enigma simulator 
NB.   Enigma Simulator 

NB.   Keith Smillie 

NB.   Department of Computing Science 

NB.   University of Alberta 

NB.   Edmonton, Alberta T6G 2E8 

NB.   January 2010 

NB. 

NB. This program gives a simulation of a simplified model of the   

NB. Enigma cipher machine used by the German armed forces during  

NB. World War II. The version is very similar to that given in "The  

NB. Code Book" by Simon Singh (Anchor Books, New York, 2000).  

NB. The allowable characters are given in the list ALPHA. Blanks 

NB. may be used and are not enciphered, and all other characters  

NB. are enciphered as underscores "_". 

NB. 

NB. The following dialogue gives a simple example of its use: 

NB.   NB. Install rotors in specified order   

NB.      InstallRotors 3 2 1 

NB.   NB. Set rotors to given key 

NB.      SetRotors 'BCA' 

NB.   NB. Encipher message 

NB.      x=: enigma 'ABCDEFAC' 

NB.   NB. Display message 

NB.      X 

NB.   BCABBAE_E 

NB.   NB. Reset rotors 

NB.      SetRotors 'BCA'  

NB.   NB. Decipher message    

NB.      enigma x 

NB.   ABCDEFA_C 

ALPHA=: 'ABCDEF' 

I=: 'BADFEC' 

II=: 'CADBFE' 

III=: 'FCEDBA' 

Discs=: I;II;III 

Reflector=: 'FCBEDA' 

Plugboard=: 'BACDEF' 

InstallRotors=: 3 : 0 

Rotors=: (<:y.) { Discs 

Counter=: 0 

empty '' 

) 

SetRotors=: 3 : 0 

empty 

Counter=: (3$#ALPHA)#.|.ALPHA&i. y. 

) 



VECTOR  Vol. 24 No.4 

 127 

rotate1=: 3 : 0 

: 

((x.|.ALPHA) i. x.|.y.) { ALPHA 

) 

rotate2=: 3 : 0 

: 

((x.|.y.) i. x.|.ALPHA) { ALPHA 

) 

Encipher=: 3 : 0 

: 

(ALPHA i. y.) { x. 

) 

enigma=: 3 : 0 

'Left Middle Right'=: Rotors 

PlainText=: y. 

CipherText=: i. 0 

while. 0 < $PlainText do. 

'S2 S1 S0'=: -(3$#ALPHA)#:Counter 

c=: 

{. PlainText 

if. 

-. c e. ALPHA,' ' do. 

c=: 

'_' 

elseif. 

c e. ALPHA do. 

c=: Plugboard Encipher c 

c=: (S0 rotate1 Right) Encipher c 

c=: (S1 rotate1 Middle) Encipher c 

c=: (S2 rotate1 Left) Encipher c 

c=: Reflector Encipher c 

c=: (S2 rotate2 Left) Encipher c 

c=: (S1 rotate2 Middle) Encipher c 

c=: (S0 rotate2 Right) Encipher c 

c=: Plugboard Encipher c  

end. 

CipherText=: CipherText, c 

PlainText=: }. PlainText 

Counter=: >:Counter 

end. 

CipherText < 

) 

 



VECTOR  Vol. 24 No.4 

 128 

Subscribing to Vector 
Your Vector subscription includes membership of the British APL Association, 
which is open to anyone interested in APL or related languages. The membership 
year runs from 1 May to 30 April. 
Name  ____________________________________________________ 
Address  ____________________________________________________ 
  ____________________________________________________ 
Postcode/Zip and country  ____________________________________________________ 
Telephone number  ____________________________________________________ 
Email address  ____________________________________________________ 

UK private membership £20  ___  
Overseas private membership £22  ___  
+ airmail supplement outside Europe £4  ___  
UK corporate membership £100  ___  
Overseas corporate membership £110  ___  
Non-voting UK member (student/OAP/unemployed) £10  ___  

Payment methods (Sterling only) 
1. A Sterling cheque, payable to British APL Association, drawn on a UK bank. 
2. By American Express, MasterCard or Visa: 
I authorize you to debit my American Express/MasterCard/Visa account 
Number:  ____________________________________   Expires: ____/____ 
for the membership category indicated above. 
Signature: ___________________________________   Date: ___________ 
3. By electronic transfer.  
Our account details are: Barclay's Bank; Cambridge, Chesterton Branch; Sort 
code: 20-17-35; Account number: 63955591; Account name: British APL 
Association; SWIFTBIC: BARCGB22; IBAN: GB86 BARC 2017 3563 9555 91. 
4. Use PayPal to credit account treasurer@vector.org.uk (no account needed – 
ask for details). 
If you pay by cheque or credit card, please send the completed form to: 
BAA, c/o Nicholas Small, 12 Cambridge Road, Waterbeach, Cambridge CB25 9NJ 

Privacy Policy 
Your personal information 
will be stored on computer 
but not disclosed to third 
parties. Card data will not be 
stored on computer. 


