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Quick reference diary 
2-5 Oct Boston Massachusetts, USA Dyalog conference 
20-24 Sep Syracuse University, USA Minnowbrook  conference 

Dates for future issues 
Vector articles are now published online as soon as they are ready. Issues go to 
the printers at the end of each quarter – as near as we can manage! 
If you have an idea for an article, or would like to place an advertisement in the 
printed issue, please write to editor@vector.org.uk.  
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EDITORIAL 

I recently returned from visiting Japan for the first time in my life, where I had 
the pleasure of spending a day with Kyosuke Saigusa of APL Consultants of Japan. 
He was revelling in the support for Unicode introduced in recent releases of 
APL2. 
Japanese writers nimbly mix a phonetic script, a script based on Chinese 
ideographs, the Roman alphabet (the romaji), and both Arabic and Japanese 
numerals. These scripts are laid out both left-to-right, top-to-bottom and top-to-
bottom, right to left. Japanese typographers compose pages in which these 
reading directions are mixed, a challenge to both aesthetics and agility. 
In this world the elegant glyphs of APL seemed from the very start to fit in very 
comfortably. When working at IBM years ago, Saigusa-san translated the first 
APL manual into Japanese. But what typographers in Japan manage as routine 
was problematic with computers until the advent of Unicode.  
Saigusa-san describes in this issue the tutorial tool work he and his son have 
built to make APL2 more accessible in Japanese.  
We're pleased to publish a memoir of Donald McIntyre, for many years a 
contributor to Vector, written by his friend Keith Smillie. McIntyre was an early 
adopter of what Ken Iverson pioneered and dubbed as ‘expository programming’. 
(See Vector Vol.22, No.3)  
Plenty to study in this issue. Jan Karman gives the next instalment of Financial 
Math In q and Neville Holmes of Functional Calculation. Stevan Apter's No 
Stinking Loops has a meaty and cunningly-constructed tutorial from Stevan Apter 
on “Tables with calculated columns”. And J-ottings 53 simplifies betting using 
complex numbers. 
Sylvia Camacho profits from J to conduct a “stroppy” dialogue with Graham 
Parkhouse on certain infinite series. Alan Sykes puts Dyalog APL to work to get a 
class library for statistics. And John McInturff finds J convenient for constructing 
odd-order magic squares.  
Enjoy. 
 Stephen Taylor 
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Remembering Donald McIntyre 
by Keith Smillie (smillie@cs.ualberta.ca) 

  
Donald McIntyre 1923-2009 

Donald McIntyre, geologist, teacher, lifelong APL user and contributor to Vector, 
died in 2009. He is remembered here by his friend Keith Smillie. 

The I. P. Sharp Newsletter for November/December 1980 in a brief account of the 
APL Users Meeting held in Toronto that year has a picture of Donald McIntyre at 
the podium with the following caption: 
Donald B. McIntyre, Pomona College, Claremont, Ca, who has persuaded a liberal 
arts college, faculty and staff alike, to use APL before all other computer 
languages (commenting on the concept of the ‘empty vector’): “I think we have 
the Arabs to thank for inventing zero, but I know that we have Dr Iverson to 
thank for inventing nothing.” 
Donald’s contribution to the conference, in addition to his presence which was 
always warmly welcomed wherever he went, was a 30-page paper, “APL in a 
liberal arts college”, describing his work in introducing computing in general and 
APL in particular to Pomona College, which still makes stimulating reading 30 
years later. 
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As readers of Vector know, Donald died on 21 October 2009 at the age of 86 after 
a long illness. It is the purpose of this article to pay tribute to him as a person and 
to his contributions not only to the APL/J community but also to Scottish geology 
and to the larger world of scholarship. Some of the material here has been taken 
from an earlier appreciation of his life and work, “Donald McIntyre: Geologist, 
historian and array language advocate 1923-2009” which was published in 
the Annals of the History of Computing. 
Early life and education 
Donald Bertram McIntyre was born on August 15, 1923 in Edinburgh, Scotland. 
His parents were the Reverend R. E. McIntyre, a Church of Scotland minister, and 
Mary Darling McIntyre. He was educated at George Watson’s Boys College, but 
during the war he was evacuated to Grantown Grammar School in the Scottish 
Highlands. While at Grantown he became an enthusiastic mountaineer. One of his 
earliest adventures was climbing the seven highest Cairngorms within twenty-
four hours. Challenged by a published statement in the Scottish Mountaineering 
Club Journal that the six highest peaks – there were seven and the name of the 
highest had been omitted – had twice been climbed in one day, Donald and a 
fellow schoolboy climbed all seven in a twenty-hour expedition covering 35 miles 
and an ascent of 10,300 feet. According to Donald the climb was made difficult at 
one stage by an “adverse conspiracy of darkness, cloud, aneroid, and lack of 
previous acquaintance with this section of the traverse”. 
In 1942 Donald entered the University of Edinburgh and soon “came under the 
spell”, to use the words of one writer, of Arthur Holmes who had just been 
appointed Regius Professor of Geology. He was one of three students in Holmes’s 
first class in Advanced Physical Geology, and his lecture notes from this class are 
now in the University’s Special Collections. Donald graduated with a B.Sc. in 
geology in 1945. In the same year he presented his first paper, "The crystal 
structure of Apatite and its relation to tooth and bone material", written jointly 
with Arnold Beevers, then Dewar Fellow in Crystallography at the University of 
Edinburgh. Donald was always very proud of this paper which was presented to 
the Mineralogical Society and which represented an early contribution to the 
understanding of the role of fluorine in the development of teeth. 
In 1947 Donald received a Ph.D. in geology from the University of Edinburgh with 
a thesis supervised by Professor Holmes. He spent the following year at the 
University of Neuchâtel in Switzerland studying plate tectonics under C. E. 
Wegmann, Professor of Geology. While in Neuchâtel he developed an interest in 
the history of science which was apparent throughout his career in his lectures 
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and published papers. On his return to Edinburgh in 1948 he took up a three-
year appointment as Lecturer in Economic Geology which was followed by 
another three-year appointment as Lecturer in Petrology, a position he also held 
for three years. During this period his research interests were in tectonics and 
the study of the deformed rocks in the Scottish Highlands. In 1951 he received a 
D.Sc. in geology also from the University of Edinburgh. 
Geology 
In addition to his field work Donald became a leading authority on the life and 
work of James Hutton (1726-1797), a leading figure in the Scottish 
Enlightenment, which Donald has described as “that constellation of friends and 
kin that gave the world modern philosophy, modern economics and much of 
modern science”. Hutton is known as the “father of modern geology” and was the 
first to give compelling evidence that the Earth was a million times older than the 
figure of 6000 years provided by Archbishop James Ussher, who in 1658 from an 
examination of biblical records said that the Earth was created on the night 
preceding 23 October 4004 BC. Hutton published his arguments in 1795 in his 
two-volume Theory of the Earth and was working on a third volume at the time of 
his death two years later. Illustrations intended for publication in this work were 
lost; Donald played a role in their discovery and publication almost 200 years 
later. 
Donald was the opening speaker in The Royal Society of Edinburgh’s bicentennial 
celebration in 1997 of Hutton’s death. His paper “James Hutton’s Edinburgh: The 
historical, social and political background” with its 12 pages of bibliography was 
later published in the journal Earth Sciences History. Earlier that same year on a 
wet and windy 26 March in Greyfriars Kirkyard in Edinburgh he gave an eulogy 
to mark the exact bicentennial of Hutton’s death. Also in the same year Donald 
co-authored with Alan McKirdy of the Scottish National Heritage the 
monograph James Hutton, The Founder of Modern Geology, an attractive and 
beautifully illustrated and written life of James Hutton for the general reader, 
which was revised in 2001. 
One of Donald’s fellow graduate students, who was also studying under Professor 
Holmes, was Ma Hsingyuan, one of the few Chinese students then studying in 
Britain. He and Donald went on geological and mountaineering trips in Scotland 
and Switzerland, and he soon became a family friend – and was the dancing 
partner of Donald’s mother on two occasions. He returned to China in 1948, 
where he disappeared from Donald’s view until he unexpectedly called Donald at 
Pomona College from New York in 1985. He was then Director of the State 
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Seismological Bureau in Beijing and President of the Geological Society of China. 
He and Donald were able to renew their long-interrupted friendship both in the 
United States and in Beijing where Donald was invited to give lectures and 
workshops on computers and geology. Ma died in 2001 after a long illness. 
Pomona College 
In 1954 Donald was invited to join the Department of Geology at Pomona College, 
a small liberal arts college in Claremont, California whose curriculum included 
astronomy, botany and geology. The geological attractions of California might be 
best described in his own words: “…whereas Scotland’s geological activity was in 
the distant past, California is geologically young. Imagine the thrill of a scientist 
seeing a live animal for the first time, having previously been familiar with the 
detailed anatomy of only dead animals. So it was for a young geologist leaving 
Scotland for California!” Donald joined the Department of Geology as an 
Associate Professor. The following year on the retirement of the long-time 
Chairman Professor A. O. Woodford he became Chairman, a position he held until 
1984. In 1957 he was promoted to Professor, and in 1986 was appointed Seaver 
Professor of Science. 

  
First steps in computing 

Donald’s use of computers in geology began with what he termed a “state-of-the-
art Marchant electronic calculator”. In April 1964 Pomona College ordered an 
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IBM System/360 Model 40, which was installed in September 1965. Donald made 
use of this system in his own work and in informal classes in Assembler and 
Fortran. His first introduction to array languages was given by the formal 
description of the System/360 in what was then called Iverson Notation which 
appeared in the IBM Systems Journal, vol. 3, nos 2 and 3. He later said that he 
“pored over this remarkable document for years”. He made use of the notation in 
what was the first credit course in computer science at Pomona College in the 
1968/69 academic year. This course and Donald’s subsequent very extensive 
work in APL and J will be described in the following section. 
In 2001 Donald wrote an account entitled “My Involvement in the Use of 
Computers” which described his work with computers at Pomona College. Today 
it makes fascinating reading with its descriptions of the computing technologies 
available from the 1950s to the 1980s and the methods, most of them primitive 
by today’s standards, of their use. Near the end of the paper he remarked that in 
preparing this account he was “struck with the number of chance occurrences 
that have played so great a role in determining my professional life”, and that he 
kept thinking of the following lines from Robert Frost’s “The Road Not Taken”: 
Two roads diverged in a wood,  
and I –I took the one less travelled by, 
and that has made all the difference. 
Perhaps all of us in the APL/J community by choosing these languages have taken 
“the one less travelled by”, and our lives are the richer for it. 
During his time at Pomona College Donald gave a very large number of banquet 
addresses, invited papers and lectures, and workshops in the United States, 
Canada, Great Britain and other countries on a variety of topics in geology, 
computing and the history of science. He was twice appointed National Lecturer 
for the Association of Computing Machinery. In 1985 he was named California 
Professor of the Year. In the same year he received the medal of the Geological 
Society of China. In 1986 he was appointed a Distinguished Fellow of the 
University of Edinburgh. Most fittingly in 1994 he received the Kenneth E. 
Iverson Award for Outstanding Contributions to the Development and 
Application of APL. 
He gave the Convocation address, “Footprints on the Sands of Time”, when 
Pomona celebrated its centennial in 1987. In this address, which fortunately has 
been preserved as an MP3 file, Donald used his extensive knowledge of the 
history of science and his skills as an expositor to place the Earth, its inhabitants 
and Pomona College in their rightful places in the cosmos. Hearing this address 
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today is as moving as it obviously was to the Convocation audience when it was 
first given. 
In spite of a busy and productive academic and professional life Donald did not 
neglect his personal life for in December 1957 he returned to Scotland and 
married Ann Alexander of Edinburgh in a ceremony conducted by Donald’s 
father. Among the guests were Professor Wegmann, with whom Donald had 
worked in his postdoctoral year in Neuchâtel, and Mrs Wegmann. The Wegmanns 
later visited Donald and Ann on their honeymoon in the Highlands. Donald and 
Ann’s marriage was welcomed by some of his students who felt that he “needed a 
wife to feed him well and bring out his shy sense of humor” and were “pleased to 
hear he’d brought one from Scotland, surely a rosy-cheeked and capable 
woman!”. 
Donald and Ann had one son, Ewen, who was named after Professor Wegmann. 
As Ewen is disabled with cerebral palsy, he always has required special care. 
Donald always took an active part in this with some of his care reflecting his own 
many interests. When Ewen was a little child, Donald would often play him 
lullabies on the bagpipe chanter. Later Donald wrote a suite of personalized 
computer programs which enabled Ewen to have some employment in a local 
California hospital. Ewen even participated in some of his father’s 
mountaineering activities, and on one occasion Donald pushed him halfway up 
the Matterhorn in his wheelchair! 
Donald’s contributions to Pomona College might best be summed up in the 
eulogy by David Alexander who was Pomona’s President from 1969 to 1991: 
In the history of Pomona College Donald McIntyre stands among the titans of its 
leadership. His uncountable contributions to the life and program of the College 
as a member of the faculty from 1954 to his retirement in 1989 admit him to the 
company of those heroic persons who have created and sustained the College’s 
excellence. … Being in the presence of Donald McIntyre was like, one imagines, 
being in the presence of an intellectual nuclear reactor. Learning radiated from 
him. … 
APL and J 
Donald’s publications listed near the end of the paper show 12 papers related to 
APL and J with all but one either being given at APL Users Meetings or published 
in Vector. These represent only a small proportion of his work on these languages 
given the large number of invited talks and workshops with which he was 
involved. In this section we shall discuss two very early papers on APL both given 
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at APL Users Meetings in Toronto, his seminal paper published in the issue of 
the IBM Systems Journal celebrating the 25th anniversary of APL, and briefly 
some of his J papers. 
The first of the APL papers, “The architectural elegance of crystals made clear by 
APL”, describes the use of APL in a second-year crystallography course with a 
class of about 12 students. There were no prerequisites, with the necessary 
mathematics, including spherical trigonometry and matrix algebra, being 
introduced as needed. The approach to the use of APL is of interest and is best 
illustrated by the following quotation taken from the Introduction: “It is 
important always to remember that the subject is crystallography and 
mineralogy, not mathematics or computer programming. For this reason, I 
introduce notation only as needed for the work in hand, minimizing the 
computer and machine characteristics.” Even today, twenty-five years later, this 
course makes a refreshing contrast to so many introductory computer courses 
where the examples are chosen primarily to illustrate features of the 
programming language being used. 
The second paper, “APL in a liberal arts college”, gives an account of the 
introduction of computers and computer courses at Pomona College. Two 
courses, both given by Donald, are of particular interest: one a large, far-ranging 
course entitled “Introduction to Computing” with about 140 students, and the 
other an intensive, two-week faculty seminar in computing with 12 participants. 
Again we see that the emphasis is on meaningful class problems which include 
the construction of frequency histograms, the economic problems of double 
declining balance and the Cobb-Douglas Production function, Brillouin’s 
Diversity Index, an extended syllogism from Lewis Carroll, and a literary 
database. At the end of the paper we are reminded, in case we might become 
discouraged with our own attempts to introduce the APL notation or indeed any 
mathematical notation into our courses, that the English mathematician William 
Oughtred (1574-1660) faced similar difficulties when he introduced our familiar 
multiplication sign. 
The direct form of function definition is used throughout both of these papers. 
Some readers may encounter old friends, possibly long forgotten, amongst these 
functions, only two of which will be mentioned here. The first is the recursive 
definition of the factorial function 
      FAC: �×FAC �-1:�=0:1 

and, for example, FAC 4 is 24. The second is the function 
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      POLY: (��.*���)+.×� 

for the evaluation of polynomials, where the left argument gives the values of the 
independent variable and the right argument gives the values of coefficients. As 
an example, consider evaluating the cubic which in conventional notation would 
be written as 1.5 + 2x – 3x2 + 0.5x3for x = 2.5 and 3.5. Then if C � 1.5 2 ¯3 0.5 
and X � 2.5 3.5, the expression X POLY C would have the value ¯4.4375 
¯6.8125. (In J this calculation could be done using the polynomial verb p. and if 
c=. 1.5 2 _3 0.5 and x=. 2.5 3.5, then c p. x would be _4.4375 
_6.8125.) 
Donald’s paper “Language as an intellectual tool: From hieroglyphics to APL”, 
which appeared in the special issue of the IBM Systems Journal (vol. 30, no. 4) 
celebrating the 25th anniversary of APL, is a masterly survey of the development 
of mathematical notation interspersed with many examples given in APL, usually 
in both ordinary functional form and in direct definition form, and in J. They 
include a sequence of definitions for the familiar statistical computations of 
mean, deviations from the mean, sum of squares, etc., the calculation of pi using 
Archimedes’ method of inscribed polygons and the calculation of interest 
payments on a declining balance as examples of recursion, and some examples 
from the logical calculus of George Boole. This is followed by a detailed account of 
the evolution of the concept of an array in one or more dimensions with 
reference to the work of the nineteenth-century English mathematicians J. J. 
Sylvester, William Cayley, and William Rowan Hamilton. The last section, 
“Notation as a tool of thought” which is the title of Ken Iverson’s Turing Award 
lecture, presents the views on the importance of good mathematical notation of 
Charles Babbage, J. J. Sylvester, A. N. Whitehead, Bertrand Russell and Giuseppe 
Peano. There is a bibliography of 125 cited references and notes followed by 92 
general references. We should mention that Donald’s paper is followed by Ken 
Iverson’s “A personal view of APL” which presents his views on the language and 
the development of J. Ken remarks that he turned his attention to developing a 
dialect of APL when he “retired from paid employment”, a delightful phrase that 
applies only too well to many academics and other professionals. Anyone 
interested in the development of APL and J would be advised to read these two 
landmark papers. 
Donald’s papers on J can be divided into two groups, those concerned primarily 
with the language and its differences with APL and those concerned with 
applications. In the first group is an introduction to J for persons familiar with 
APL and papers on special topics such as function composition and the use of 
conjunctions. In the second group there are papers on the use of J in teaching 
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elementary arithmetic, eigenvalue calculations, and importing data into a J 
system. All of these papers show a remarkable appreciation of the language, 
especially the first one, “Mastering J”, written in 1991 at time when most of us 
were just becoming aware of the language and were reluctantly abandoning the 
APL symbols with which we were so comfortable. 
We shall mention, and only briefly, one of the J papers, “Perils of subtraction: a 
new language for an old algorithm” which begins with a discussion of the 
calculation of pi by Archimedes’ method of inscribed polygons. It might be 
considered a continuation of a discussion of the same topic in the paper 
“Language as an intellectual tool” which was published in the same year. In this 
latter paper it was shown that the value after 8 doublings of the number of sides 
the value of pi was 3.14159 and a remark is made at the end of the section that 
the “algorithm fails when the number of doublings is further increased”. 
However, in the “Perils of subtraction” paper it is shown that with 28 doublings, 
giving a polygon of with 1,610,612,736 sides, calculations in J give a value of 0 for 
pi, a result explained by a discussion of number representation in a PC and the 
process of subtraction. 
Perth 
When he retired from Pomona College in 1989 after 35 years service, Donald, 
Ann and Ewen returned to Scotland and settled first at Kinfauns near Perth and 
then later in the centre of Perth. Interpreting retirement by Ken Iverson’s phrase 
quoted above he continued with his work with APL and the newly developing J, 
and with giving invited papers and workshops. His professional work was 
recognized during this time and he was made a Fellow of both the University of 
Edinburgh and the University of St. Andrews. He also found time to study 
Egyptian hieroglyphics and was able to translate a few symbols while visiting an 
active Coptic church in Scotland. 
Donald’s last major work in computing was an account of the development of the 
APL and J languages which was intended when completed for submission to 
the Annals of the History of Computing. A rough draft of 29 pages, entitled “The 
Story of APL and J”, gives a fascinating account of Ken Iverson’s childhood in 
rural Alberta, his awakening interest in mathematics in school, and, after 
wartime service in the Royal Canadian Air Force, his undergraduate education at 
Queen’s University and his graduate work at Harvard leading to a Ph.D. under 
Howard Aiken. The evolution of the APL language is described up to the 
publication of A Programming Language and Automatic Data Processing. He 
worked closely with Ken on this paper up to a few days before Ken’s death. 
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Fortunately Roger Hui has edited these notes and they have been published, with 
an introduction by Roger, in Vector in Ken’s name as “An autobiographical essay”. 
Donald was also active in the Perth community. He was Chairman of the Perth 
Civic Trust and helped save Dunsinane Hill – of Shakespeare’s Macbeth fame – 
from being quarried to destruction, was an active member of the Burns Club, and 
was honorary archivist of the Scottish Mountaineering Club. He also took piping 
lessons and had the reel “Professor Donald McIntyre” written in his honour. 
Epilogue 
In his last years Donald suffered from Parkinson’s disease and vascular dementia. 
He died in Perth on 21 October 2009. The memorial service, held in St John’s Kirk 
(founded in 1248), was introduced by the playing of the reels “Professor Donald 
McIntyre” and “Lord Lovat’s Lament” and celebrated his Scottish and Church of 
Scotland heritage, his professional life as a scholar, geologist and historian, and 
his family and community life in Perth. To the scripture readings from the Old 
and New Testaments read at the service we might append here the following 
from Ecclesiasticus, ch. 32, v. 8 which reflects the spirit, if not the letter, of the 
APL and J languages: “Let thy speech be short, comprehending much in few 
words.” 
Acknowledgements 
Donald’s beautifully crafted and carefully written pages on the World Wide Web 
contain a wealth of information on his life and work. The Home Page at 
www.mcintyre.me.uk with its many links has a large colour picture of the 
beautiful Perth Bridge over the River Tay which, we are told, is a “Five minutes 
walk from home!”. 
I would like to thank Ann McIntyre for her encouragement and help throughout 
the preparation of this paper, Roger Hui for his most helpful comments, and 
Willem Langenberg for providing a copy of Donald’s 1987 Convocation address 
in mp3 format. 
I first met Donald at the APL Users Meeting, “The March on Armonk”, in 
Binghamton in 1969. Since then I have valued not only his friendship but also his 
guidance given by “precept and godly example”, if I may borrow a phrase from 
our common heritage. His help to me and to my work has been out of all 
proportion to the very little I have been able to do for him. Thank you so very 
much, Donald. 



VECTOR  Vol. 25 No.1 

 15 

Publications 
1. Craig, G. Y., Donald B. McIntyre and Charles D. Waterston, 1978. James Hutton’s Theory of 

the Earth. The Lost Drawings. Scottish Academic Press, Edinburgh. 
2. McIntyre, Donald B., 2008. “James Hutton, the Clerks of Penicuik and the igneous origin 

of granite.” Transactions of the Royal Society of Edinburgh, vol. 15, Supplement 1-
Supplement 15. 

3. McIntyre, Donald B., 1997. “James Hutton’s Edinburgh. The historical, social and political 
background.” Earth Sciences History, vol. 16, no. 2, pp. 100-157. 

4. McIntyre, Donald B. and Alan McKirdy, 2001. James Hutton. The Founder of Modern 
Geology. National Museums of Scotland Publishing Limited, Edinburgh. 

5. McIntyre, Donald B., 1986. “The architectural elegance of crystals made clear by 
APL.” APL Users Meeting Proceedings, Toronto, Ontario, pp. 233-250. 

6. McIntyre, Donald B., 1980. “APL in a liberal arts college.” APL Users Meeting Proceedings, 
Toronto, Ontario, pp. 544-581. 

7. McIntyre, D. B., 1991. Language as an intellectual tool: From hieroglyphics to APL.” IBM 
Systems Journal, vol. 30, no., 4, pp. 554-581. 

8. McIntyre, Donald B., 1991. “Mastering J.” APL Users Meeting Proceedings, Stanford, 
California, pp. 264-273. 

9. McIntyre, Donald B., 1992. “Hooks and forks and the teaching of elementary 
arithmetic.”Vector. The Journal of the British APL Association, vol. 8, no. 3, pp. pp. 101-
110. 

10. McIntyre, Donald B., 1992. “Using J with external data: Two examples.” Vector. The 
Journal of the British APL Association, vol. 8, no. 4, pp. 97-110. 

11. McIntyre, Donald B., 1993. “Using J’s boxed arrays.” Vector. The Journal of the British 
APL Association, vol. 9, no. 1, pp. 92-124. 

12. McIntyre, Donald B., 1993. Jacobi’s method for eigenvalues: An illustration of J.” Vector. 
The Journal of the British APL Association, vol. 9, no. 3, pp. 125-133. 

13. McIntyre, Donald B., 1995.”Perils of subtraction: A new language for an old 
algorithm.”Vector. The Journal of the British APL Association, vol. 11, no. 44, pp. 93-103. 

14. McIntyre, Donald B., 1995. “The role of composition in computer programming.” APL 
Users Meeting Proceedings, San Antonio, Texas, pp. 116-133. 

15. McIntyre, Donald B., 2001. My Involvement in the Use of Computers. 14 pp. 
(unpublished) 

16. McIntyre, Donald B., 2005. The Story of APL and J. 29 pp. (unpublished) 



VECTOR  Vol. 25 No.1 

 16 

17. McIntyre, Donald B., 2006. “A tribute to Ken Iverson.” Vector. The Journal of the British 
APL Association, vol. 22, no. 3, pp. 109-114. 

Additional references 
1. Alexander, David, 2010. “Professor Donald McIntyre.” Pomona College Magazine, vol. 46, 

Winter issue, p. 59. 
2. Butcher, Norman E., 2009. “Donald McIntyre. Mountaineer, geologist, scholar and 

teacher.”The Scotsman, November 13. 
3. Iverson, K. E., 1991. “A personal view of APL.” IBM Systems Journal, vol. 30, no. 4, pp. 

582- 593. 
4. Iverson, Kenneth E., 2008. “An autobiographical essay.” Vector. The Journal of the British 

APL Association, vol. 23, no. 4, pp. 70-84. 
5. Merriam, Daniel E., 2010. Memorial to Donald B. McIntyre (1923-2009). Geological 

Society of America Memorials, vol. 39, pp. 23-25. 
6. Phillips, Lucy Dickson, 2010. “Piping professor.” Pomona College Magazine, vol. 46, 

Winter issue, p. 59. 
7. Smillie, Keith, 2011. “Donald McIntyre: Geologist, historian and array language advocate 

1923-2009.” Annals of the History of Computing, vol. 33, no. 1, pp. 73-77. 



VECTOR  Vol. 25 No.1 

 17 

Industry news 

Dyalog Ltd 
Version 13.0 
Dyalog APL Windows Version 13.0 was made commercially available on April 1 
in 32 and 64 bit versions. The AIX and Linux versions are also commercially 
available. 
Again this year, Dyalog has kept the pricing unchanged, which means prices have 
now stayed the same year on year since 2006. 
For more information on new features and functionality please visit 
www.dyalog.com/v_13-0.html or visit the documentation page for Version 13.0 
on http://www.dyalog.com/documentation/13.0 
World Wide Computer Programming Contest 2011  
Now in its third year, the Programming Contest for 2011 was kicked off on May 
12. The purpose of the contest is specifically to encourage students and others to 
investigate APL.  
 
A fully featured copy of the latest release of Dyalog APL is made available free of 
charge to students, whether or not they wish to participate in the contest. Contest 
participants can either use the Microsoft Windows or the Linux versions of 
Dyalog APL, or any other version of APL as long as it is converted to the Dyalog 
APL platform. Tools are provided on the contest website for interchange format 
conversion. 
 
A total of US$12,600 in prize money has been provided by several sponsors, 
including US based Fiserv, Italian based APL Italiana, Danish based SimCorp, 
Dyalog Ltd., as well as several anonymous individuals and companies.  
 
The First Prize winner can look forward to US$2,500 plus a round trip travel 
from anywhere in the world where the winner lives to the Dyalog '11 Conference 
in Boston Massachusetts, USA, during October 2-5 2011, where they will receive 
the award in person and present the work that lead to winning the prize.  
 
Second and third prizes will be awarded with US$1,200 and US$600 respectively 
and a further 20 contestants will receive US$100 each. Additionally, the people or 
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organisations that introduce the winning students to the contest will receive the 
same dollar prizes – and they need not be students to make the introduction. 
 
This year we’re making more use of the social networking sites Facebook and 
Twitter to post information regarding the programming contest. We also 
regularly update the Q&A page relating to the Contest on 
http://www.dyalog.com/contest_2011/qanda.html 
 
The deadline for submission is 12:00 UTC (Noon), Sunday August 14, 2011. The 
winners of the three main prizes will be notified directly via e-mail and their 
names will be posted to www.dyalog.com on August 22nd 2011. 
 
Dyalog ’11 – THE Array Language Event of the Year 
 

Book your diaries already now for October 2-5, where the Dyalog User 
Conference will take place in Boston, Massachusetts, USA. 
 
This year’s conference will take place at John Hancock Hotel & Conference Center 
located in the heart of Boston’s Back Bay. It is a small venue - in comparison to 
many traditional Conference venues – only 68 guest rooms, so the Dyalog '11 
Conference will occupy virtually the entire venue. We also urge you to book 
accommodation when you register, as we cannot guarantee bedrooms after the 
expiry of Early Bird Registration. Should we run out of guest rooms there are 
fortunately several other hotel located in close walking distance to John Hancock.  
We’re in the process of putting the conference program together, but it will 
follow the now traditional format with Training Courses on Sunday 2 October 
and Wednesday 5 October pm.  We can already now see that we will have a fully 
packed programme of Conference sessions – presented by invited speakers, 
users and Dyalog developers throughout Monday, Tuesday and Wednesday a.m.  
Remember to pack your glad rags for the banquet dinner Tuesday 4 Oct.   
Conference participants can also look forward to a very exciting conference 
edition of Dyalog APL containing a number of experimental features from the 
Dyalog Research Labs. 
The Registration System is now open and there is a 10% discount for Early Bird 
registration. Early Bird expires on August 14th at 23:59 UK time. 
For more information on the Dyalog ’11 conference programme and to register 
please go to http://www.dyalog.com/dyalog_11/index.html 
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Manpower 
After having worked with us on a consulting basis over the last couple of years, 
we are delighted that Brian Becker joined Dyalog full time in February.  As you 
may know, Brian has in particular been working on the Stand Alone Web Service 
(SAWS) – on which he conducted a workshop at the APL 2010 Conference in 
Berlin. Brian will play a key role in the new “APL tools group” that we have 
formed where he will take primary responsibility for the design, implementation 
and documentation of tools that we will be writing in APL in the years to come. 
Brian is based in Rochester, New York – just south of Lake Ontario. In addition to 
working on APL tools, Brian is also providing helpdesk support to selected US 
customers outside UK office hours.  

Check out the hot topics and discussions on Dyalog Forums  
To follow all new discussion on Dyalog join our forums at forums.dyalog.com – 
you do not need to be a user of Dyalog APL, nor do you need to register, to read 
the postings. The Forums are getting livelier all the time and have become our 
primary channel for formal and informal announcements including FAQs.  
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MEETING 

A lightweight look at Minnowbrook 
by Roy Sykes (roy@roysykes.com) 

 

The Minnowbrook series of APL Implementors Conferences was revived in 2007. 
Although its proceedings are always confidential, Roy Sykes gives us a glimpse of 
what it was like to be there. 

The 2010 APL Implementers Workshop was held 16-20 October at the 
eponymous Minnowbrook Conference Center, Syracuse University’s retreat in 
the Adirondack Mountains of upstate New York. Situated on the shore of Blue 
Mountain Lake, complete with boathouse, docks, and canoes, Minnowbrook is an 
immersive experience, as Border Collie Tess (brought to herd the participants) 
found out the hard way. 
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There is always plenty of spirited discussion at Minnowbrook 

For four days and four nights, the conferees explained and discussed, speculated 
and debated the present and future of APL, parallel programming, web services, 
.Net, GUIs (graphical user interfaces), and the Internet. With (mostly) all 
attendees attending (mostly) all sessions, which lasted from 9am to 9.30pm, 
followed by evening seminar, one completes the experience of Minnowbrook 
both exhausted and exhilarated, primed to embark on the challenges of design, 
implementation, education, and marketing of the growing family of languages 
rooted in APL. 
What’s said at Minnowbrook stays at Minnowbrook, so this review is somewhat 
oblique. Our community is strangely and wonderfully both competitive and 
cooperative. At Minnowbrook, marketing and recruiting plans are discussed. 
New features, both planned and speculative, are explained and debated. 

 
A session in progress in the classroom 

Gitte Christensen presented the positioning and marketing plans for Dyalog APL, 
leading to an intense debate led by Morten Kromberg. Morten presented the 
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development and technical plans for Dyalog APL, leading to an intense debate led 
by Gitte. Joe Blaze discussed APL2000’s plans for APL+Win and VisualAPL, 
leading to an intense debate led by Gitte and Morten. Alan Graham and Cory 
Skutt each presented their somewhat black-box plans, intensely debated by 
everyone. 
Several implementers, led by David Liebtag of IBM, discussed their various 
implementations and problems with PEACH (parallel each) and related 
operators, leading to cacaphonous parallel discussions quashed only by the 
immoderate moderator, Roy Sykes. These tend to benefit SIMD (single-
instruction, multiple-data) types of applications. In contrast, MIMD (multiple-
instruction, multiple-data) applications benefit from the types of work Ron 
Murray did at Microsoft, called cohort scheduling, to address server scheduling 
issues, and Jacob Brickman is doing in development of function (as opposed to 
data) arrays. Bob Smith addressed meaty issues relating to singletons and 
prototypes, leading both to dinner and to subsequent discussions of multisets 
and related functions (union, intersection, index of, etc.), new system functions, 
and powerful new operators. 

 
Dinners at Minnowbrook are superb 

Shannon Bailey, a founder of Native Cloud Systems, fascinated the group with her 
compiled APL, which forms the heart of a secure and scalable native cloud stack, 
which is also inherently parallel. Both she and Alan Graham emphasized the 
complexity and insecurity inherent in today’s computing and communication 
environments, and addressed solutions thereto. Paul Grosvenor also addressed 
solutions to the GUI issues and questioned APL’s role, which led to a wider 
discussion of object orientation and its utility in APL for anything but GUIs. 
Other topics covered in more or less detail were Unicode and symbology, APL on 
64-bit processors, IDEs (integrated development environments), and broadening 
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the APL market and educating new APL programmers, the latter particularly 
addressed by Ray Polivka, Gitte Christensen, Joe Blaze, and Paul Grosvenor. Jon 
McGrew wrapped up the final session with a video presentation of the work of 
Catherine Lathwell (daughter of Dick), who is creating a movie documenting the 
history of APL, and urged the group to keep in contact with 
“http://AProgrammingLanguage.com” for ongoing information about the project. 
We decided to hold Minnowbrook every odd year starting in 2011, which is 
already scheduled for 20-24 September, when the autumn colours will be on full 
display and the weather a bit less brisk. 

 
Two pontoon planes were brought in for us 

What little recreational and eating time remained was pleasingly filled with 
aeroplane rides around the Adirondacks (graciously donated by Paul Grosvenor), 
canoeing, hiking, excellent food from the Minnowbrook staff, tasty wines 
courtesy of Joe Blaze, zesty ales supplied by Jon McGrew, multiple libations 
supplied by Garth Foster, and scrumptious malt Scotch whiskies sacrificed to the 
crew by Paul Grosvenor and Roy Sykes. Jon McGrew did his usual excellent work 
providing the materials for the workshop. Finally, we thank Garth Foster, who 
started the Minnowbrook conferences in the early 1970s, and without whom 
they would not exist today. 

 
A serene time: Minnowbrook at midnight (60-second time-exposure) 
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MEETING 

FinnAPL Spring Meeting 2011 
at Vanajan Linna 

by Adrian Smith (adrian@apl385.com) 

FinnAPL celebrates 30 years 
This meeting was a good mix of history (both of FinnAPL and the various 
statistics associations that have always formed the backbone of the group) and 
some very leading-edge material, like Tomas with his boat simulator, using the 8-
way parallel capabilities of the GPU to run part of the physics model. 

 
Vanajan Linna 

As ever, the location was part of the point, although much of the European Tour 
golf course was still under snow. However it was almost shirt-sleeve warm and 
the snow was subliming away as you watched, so we both came back a lot 
browner then we were on arrival! 



VECTOR  Vol. 25 No.1 

 25 

 
First tee 

I can see why the Finns are so good at creating usable devices (like Nokia 
phones) – they have such a simple pragmatic approach to problem-solving, al-
ways taking the shortest route to a good result. They are natural ‘extreme’ pro-
grammers, finding a small corner of a problem which has a known need and a 
simple solution, implementing that, and moving on carefully to the less sure 
parts. Maybe a lifetime of ice-fishing has something to do with this? Put one foot 
in the wrong place and you get very cold rather quickly! 
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Meeting notes (day-1) 
A History of Astika 
Jaakko Ranta (Statistics Finland) 

  
Jaakko with one of the early APL2/PC implementations 

Astika is a time-series database, which began in 1979, after one year in the plan-
ning. APL was widely available (and was being actively sold by IBM) so VS APL 
running on VSPC was the natural choice for an interactive system. It started life 
on 300baud terminals, but soon moved to 3270 displays, with printed (and 
commonly memorised) code catalogues for cheap and efficient access. The inter-
net edition began in 1995, by which time over 30,000 timeseries were available, 
requiring two big folders for the codes (but many customers just knew the codes 
they used!). 
From 1985 it was available in English, and from 1987 real-time updates of indus-
try data began. APL*PLUS/PC could be used to view the data, but at a cost of 1 in-
terpreter per user it was way too expensive. An AI project was begun to enable a 
true ‘natural language’ user-interface; this was eventually abandoned, but it left 
behind a well-defined query language which may still be used to this day. 
PC-Astika (1990-2010) ran in APL2/PC (free packager and runtime), in parallel 
to an early Windows system (written in Visual Basic), until both were super-
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seded by Astika-W in Dyalog APL from 2000 onwards. This was always a server 
application, using a single database on component files, with users accessing the 
data over TCP/IP. The data-maintenance was gradually re-written, and graphics 
added with RainPro. 
From 2009, all the data was moved to PX-Web to fit with other national data-
bases, but it has been hard to get rid of all the (paying) customers for the old sys-
tem! They like being able to save their queries (not available in the new system). 
The web interface makes good use of SharpPlot to serve custom charts beside the 
traditional tabular data. 
News from Dyalog 
Gitte Christensen (Dyalog Ltd) 

  
Gitte introducing the new Remote Interface 

The theme of the talk was all about allowing the domain expert to work closely 
with (or often to be) the programmer. Eight of the ten largest customers (who 
account for 80% of the revenue) grew in this way, and many are now profes-
sional software vendors. Asset management is typical (Simcorp, APL Italiana, 
FiServ, InfoStroy) with reporting and budgeting (KCI, Carlisle Group) also promi-
nent. Then there is ProfDoc which does healthcare for 40,000 patients in Sweden, 
is heading towards 1m records, and may soon be the biggest medical records sys-
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tem in the world. Exxon-Mobil reckon that their refinery optimiser is worth at 
least $50m pa (and rising with the oil price). All these are classic examples of of-
fering an expert a tool for thinking, and waiting 10 or 15 years for a locally-de-
veloped solution to grow into something very significant. 
As well as supporting established experts, the new challenge is to tease and bribe 
the kids with a free APL. Over 1000 have been licensed to date, with new 
enquiries arriving daily from students of finance, business, physics and 
environmental studies. The annual programming contest led to a winter 
internship for the winner, and maybe after his PhD he will be back! Last year’s 
winner is helping to design this year’s contest, and each one results in a run of 
new educational licences. 
The fair pricing model – pay nothing until you make money, then a simple royalty 
– is working well. As customers invest more in APL, Dyalog have been able to 
build their full-time staff up from 5 to 20, and Gitte is confident that the company 
now forms a stable, viable investment for the shareholders. The next opportunity 
to get together will be in historic downtown Boston (John Hancock’s house) from 
2-5 October 2011; meanwhile more code-sharing with ]ucmd will be encouraged, 
along with forum activity and even Twitter. 
New applications are typically web-based, and several old customers have 
returned to build the next generation. Many retired APLers are taking the non-
commercial licence, and are helping to enhance the interpreter by encouraging 
the less commercial aspects, like complex numbers and primes. Dyalog are still 
waiting for that blockbuster application (such as launched Python) but feel ready 
for it when it comes, with an integrated approach to functional, array and object-
oriented programming. 
APL# and R-IDE will allow APL to run wherever a browser can run, or to be 
spread across machines, with the development environment on your laptop (or 
phone) and the interpreter on some IBM mainframe under Linux if that is what 
you need. Other research projects include bridging to Java, JIT compilation of 
Dfns, and rational numbers. Morten can fill in the details tomorrow! 
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Timo with a BIS chart from 1931 

Paradigm shift – from paper to interactive 
Timo Laurmaa (BIS) 
Timo succinctly described his role in the BIS as “Helping the data to speak”. As 
head of web communications and publishing, he is actively researching the 
paradigm shift from paper to interactive, firstly in finding out the requirements, 
and then thinking how to improve the tools. The toolkit must adapt to the new 
media, but the graphics should continue to convey the message about the data; 
all this must happen without a big change to the existing paper workflow. 

  
Helping the data to speak 

This shows a simple modification to one of the many line-charts from the latest 
BIS Quarterly Report (download the PDF from their website to see the originals). 
What Timo has done is greyed all the lines, and then coloured the one that the 
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user points to with the mouse. This can easily be added to the original workflow 
without changing the printed image, but is a real enhancement to the SVG 
version. 

 
Stacked barchart 

Stacked barcharts are quite bad even on paper, so applying the same simple 
approach to user-selection may not be enough to make this one work well. 
Highlighting sections in the middle of a deep stack still leaves the data hard to 
see, so maybe the stack could re-arrange, or the chosen series could be run out as 
an overlay plot just below the composite? More experiments are clearly needed 
here! 
The other challenge is to pick up the Wow! element in the data and have it jump 
off the screen as the presenter talks in front of it. Timo showed a splendid 
modification to the UK interest chart which ran up to 2008 on a y-axis ranged 
from 3.5% to 7% – running this forward with the y-axis diving to zero to follow 
the plummeting data line really hit you in the face with the message “Something 
unheard-of just happened” which is the whole point of the presentation! 
One final challenge is to find a good way of pulling out extra dimensions as the 
user navigates the chart. Timo’s final example was a gantt chart of the Finnair 
fleet showing the planes down the left, and coloured bars for the inbound and 
outbound legs. By pointing to a leg with the mouse, you could show the routing 
(useful) and show all the other legs from all the other planes which were flying 
the same route (simply by re-colouring the bars). 
This was a good point for Timo to hand over to Adrian, who spent Wednesday 
working with him and Morten in an attempt to understand how 
SharpPlot/Rainpro might begin to implement some of these ideas. 
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Animations in SharpPlot 
Adrian Smith (Causeway) 

  
Adrian with the Swansea house-prices re-cast as exploding bubbles 

This talk was largely born out of a full day spent chatting with Timo and Morten 
the day before the conference began. We started by exploring the requirements 
for animations, and then developed a couple of simple demos to show what 
current technology could achieve easily (well, in less than 6 hours after a few 
beers!). 
Incidentally, the APL session in the picture (taken by Timo) nicely illustrates the 
use of ]ucmd to allow APL to behave as a simple SQL engine for data exploration. 
The SQL syntax (at least the variant of it devised by Arthur Whitney called q) is 
ideally suited to the task of drawing charts from data in the workspace, and the 
great thing about user commands is that the interpreter never sees your (very 
non-conforming) syntax, and the session syntax-colouring also ignores it. 
The requirements clearly begin with simple enhancements to existing paper 
charts. If you grab almost any PDF from www.bis.org you will see lots of classic 
small multiples, where a grid of similar charts (generally with identical axis 
ranging and a common legend) are used to compare countries or time periods. 
This works well on paper (really good colour discrimination, massive resolution) 
but really badly on a typical laptop display, and is utterly useless on a phone. By 
creating these as a stack of pages, with a simple user-driven scroller or page 
control, the problem is largely solved – minimal change to the paper workflow, a 
simple mod to SharpPlot to output the trellis as a paged stack, and this should be 
achievable in almost any medium. 
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A variation on this theme is where there are lots of lines on a timeseries, or a big 
stack of bars on a barchart. On paper, colour discrimation seems to work much 
better, and the user can generally follow a line without difficulty. On screen you 
need to add some (simple) JavaScript so the user can pick out the line of interest, 
having drawn them all in a low-contrast grey to begin with. This is very easy in 
SVG or XAML, but hard to do well if you are limited to raster images (PNG or 
JPEG) where some experimentation will be needed to see how seamless this can 
be made to feel. Again, it should be possible without a complete re-design of the 
original chart – Timo is still aiming to leave the BIS workflow unaltered as far as 
possible. 
The prime use of animation seems to be for presenter emphasis, rather than as a 
passive or user-driven display on the internet. There may be good examples out 
there where (for example) animation of the time dimension adds visibility to the 
data, but all the ‘cool stuff’ on Google Docs seems to leave the end-user in control 
of the hidden dimension. On the other hand, when a presenter is standing in front 
of a moving chart, which is well-timed to add punch to the point being made, the 
effect is very powerful and adds genuine value. A simple barchart can be timed to 
grow in the time it takes for the presenter to tee-up a rhetorical question, and 
then deliver the punch-line for him. This can be done now with SharpPlot and 
SVG animation, but (as Adrian illustrated by messing up several times) it requires 
a good knowledge of the SMIL tags and a strictly logical mind to get all the parts 
to work well together. Here is the finished example in SVG:  
http://www.apl385.com/finnapl2011/growbar.svg 
Have a look at ‘View, Page source’ to see all the animate tags which the 
programmer either added in SharpPlot/RainPro as Effects, or post-processed 
with a text editor in the generated SVG. 
There may well be a use for simple animation for smoothing out the transitions 
when a chart steps through time, and the steps might involve uncomfortably 
large jumps between frames. The photo at the top of this report shows a faked 
growth pattern in Alan Sykes’ data from ASLGreg, first shown at Swansea in 
1984. All I did was create a bubble-chart of the prices, then hammer around a 
tight loop applying the Nationwide house-price index to the numbers. 
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      0 Base data 

      age�Swansea.Age 6 area�Swansea.Area 6 price�Swansea.Price 

      :For yr :In ΙΡ∆hpi 

         age�Swansea.Age+yr 

         price�Swansea.Price×∆hpi[yr] 

         @�' ',C1983+yr 

         EDL 1 
      :End 

Crude, but has quite a good element of suspense, and a suitable ‘Wow factor’ as 
the market suddenly explodes around 2004. This could implement very well in 
SVG (with animations to smooth the movement and growth of the bubbles from 
frame to frame) or maybe just as a stack of images with some trivial JavaScript to 
work down the stack. Switching the visibility of each image should give a 
relatively flicker-free transition on this kind of progressive time-series. 
Summary – lots of possibilities, and the technology is catching up fast (all the top 
browsers now do SVG, and everything with the SilverLight plugin does XAML). 
Ideas welcome, prototyping starts here. 
The StormWind simulator 
Tomas Gustafsson (Stormwind Ab Oy) 

 
Tomas navigates safely home 

Yes, we have seen this before, but what we was today is a massive step forward 
in realism and visual quality. Partly it is all about hardware – graphics cards are 
where much of the best research is going these days, and system memory is no 
longer a constraint on design. The version we saw was developed with 
sponsorship from the Finnish maritime organisation, and is a free download if 
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you want to test your boat-driving skills. It has full digital charts for Finnish 
coastal waters, so there are plenty of islands to run into. 
Essentially, it gives a step-by-step introduction to what happens in your smart 
new boat, from the list of mandatory safety equipment to the recognition of 
multi-sector lights and buoys by night. The data-processing challenge was to 
create virtual reality out of a truly obscure 1980s’ standard for digital mapping 
(has anyone heard of octets these days?). Then there is the annoying issue wth 
DirectX which uses float rather than double so you only have 32 bits of precision. 
If your boat is 10km away from base, then a 5cm wave height cannot be 
expressed accurately, and things start to get lumpy. Essentially, addition doesn’t 
work any more! So you have to shift the world on the medium scale and the boat 
on the small scale – it hardly matters if you get an island 5cm off! 

 
Parallel GPU 

A very neat trick Tomas used for processing speed was to implement the physics 
model of wave-height on the boat’s motion 24-way parallel in the GPU. A little 
debugging display in the top left showed the sum of the forces at 8×3 points on 
the hull as colours (GPUs always return colours) which could easily be decoded 
to give the hull an appropriate kick. Certainly the realistic waves and (very) 
realistic cabin motion were highly impressive. And yes (before someone tries it) 
– if you drive flat out at an island you can beach yourself among the trees! 
Meeting notes (day-2) 
Calling Demetra+ for seasonal adjustment 
Jouko Kangasniemi (EK) 
Taking the seasonal effects out of quarterly data is one of those messy challenges 
that does not implement well in APL. A simple moving average makes a mess of 
the ends, and modern techniques like X12 and Arima are highly iterative. Jouko 
has been exploring a new library (set up as an EU project) called Demetra+ which 
brings together many Java and C# libraries with a common interface. It accepts 
XML data (easy to format with the Exml system function), or you can call the 
.Net interface. Using the Dyalog Metadata option in the Workspace Explorer is 
most helpful when browsing around the library. It is quite huge, with a full set of 
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numerical methods, but far from fully documented, so expect quite a lot of status 
messages and DOMAIN ERRORS as you get the calls to work from APL. 
It is redistributable, and should be much easier to set up than the R library (and 
its COM interface) if you need to include some of the routines as part of a shipped 
application. 
What’s cooking at Dyalog 
Morten Kromberg (Dyalog Ltd) 

  
Morten obscures a small corner of Dyalog’s future 

Version 13 may look much the same on the outside, but it has 128-bit float so it 
can do currency calculations to the nearest cent and not lose anything in the 
rounding. In earlier APLs: 
      1-+/10Ρ0.1 
1.11022302463E¯16 

But with version 13 you can set Efr�1287 6 Epp�34 and zero is what you get, to 
34 dec places. Of course it runs slower (only the IBM RISC machines do this in 
hardware) but you save so much ‘check it and fix the result’ code that the 
application may speed up, and it gets so much simpler to maintain. 
With complex numbers ¯1*0.5 works as engineers always hoped it would, and 
the absolute limit on array size (2 billion elements) has been lifted. This is hard 
to test – Dyalog are upgrading a machine to 64Gb of RAM to give it a work-out! 
Perl-style regexp is built in now, for search and replace on text vectors, and 
application profiling has been made much easier to use. Short left arguments 
to NOP neaten up your code a little by filling in the spare dimensions, and you 
can use QR to chain expressions in a much more functional style than by using 
diamonds. The IME can help with overstrikes (by showing a drop-list) and can 
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also be set to ignore the next keystroke, allowing Ctrl+S to make an upstile in APL 
and save your work in Notepad. 
The mind map has nearly 50 topics on it for future work, but there are now 
nearly 20 people on the team, so that is only around 3 items each! This is roughly 
the size of group that IPSA and IBM ran with back in the days when they majored 
in APL, so it is definitely manageable and has been very productive in the past. 
Themes are speed, portability, power & simplicity, security & encryption. There 
will be a strong focus on tools and training materials. 
Some old assumptions will have to go – in APL# parallel operators like f¨ do 
not guarantee the order of execution; partial compilation will be required to 
make larger chunks that can run in parallel. This will work much better with 
Dfns, so try and aim new code towards a pure functional style if you can. APL# 
will be pure managed code, so it will run in the browser, or anywhere else you 
can use JavaScript. R-IDE will run wherever SilverLight runs (very likely on the 
ARM chip with Windows-8 – look out for Nokia) and the bridge idea will be 
extended out from .Net to Mono and Java. If you want to see more, better be in 
Boston in early October! 
PX-Edit retrospection 
Veli-Matti Jantunen (Statistics Finland) 
You will have to wait for the full report on this one – I enjoyed the cartoon slides 
rather too much and my note-taking fell away almost to zero. A couple of 
technical points that I did pick up: by all means upgrade on the fly (the .exe is just 
a loader, pulling everything off file as EOR, but make sure to fire this off a timer, 
as many users leave the application running continuously). Also it is best to turn 
off ClearType for printing, as it can make the text look fuzzy at small sizes. Ask 
Veli-Matti if you need to do this – the switch is hidden deep in Windows and is 
not trivial to get at! 
The PLURAL programming language 
Walter Fil 
I’m sure Walter will write this up for us when it has progressed a little further. It 
is an attempt to make a consistent array language out of a Java-like structure, but 
without all the depressing coding needed to handle simple array operations. 
Maybe a sort of numerical Python. I will follow its progress with interest, as he 
gets parts of it running to the point where I can fool around with it. It is still 
mostly in its PowerPoint phase, so is hard to evaluate in any useful way. 
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Round-up 

 
The inevitable group photo (camera propped in the snow, hence the wide grins on many faces!) 

The organisation was efficient and everything went to plan; the sun shone, the 
birds were singing and we saw a Camberwell Beauty in the woods near the 
airport, so a very successful trip. I think some good work was done, and everyone 
came away feeling more positive about APL than they had done for some time. So 
well done the Finns, see you next year! 



VECTOR  Vol. 25 No.1 

 38 

MEETING 

BAA Annual General Meeting 2011 
by Peter Merritt  

Minutes of the British APL Association AGM 2010 held at The Albion, 3 New Bridge 
Street, London EC4 on Friday 21 May 2010 

Minutes of AGM 2010 
The minutes had been published on the web site and were taken as read without 
correction. 
14:40    Welcome (Phil Last) 
    - Apologies:  Stephen (still in Japan), Paul (still in Sussex) 
    -16 bods in attendance (incl. guests) 
14:45    Presentation 1: Morten on new features in Dyalog13 
    -true 128 bit numbers 
    -regular expressions 
    -large arrays 
    -PROFILE (successor to quad-MONITOR) 
    -TCPIP toolkit 
    -SQAPL revamp 
    -parallelism 
15:18    AGM 
    -In the absence of Paul Grosvenor, Peter Merritt railroaded the meeting:- 
    -previous minutes (not as such; agreed anyway) 
    -report from chair (no) 
    -report from treasurer (funds OK, no sign of BCS letting go of any BAA cash) 
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    -report from treasurer on membership 
               corporate was 439 members, now 415;  
               individual was 255, now 247 (66 UK, 180 o/s) 
    -thanks to Nick for splendid job 
    -committee elections: 
In a hard-fought election lasting several seconds, exactly the same people were 
co-erced into doing exactly what they did last year. 
Chairman Paul Grosvenor 
Treasurer Nicholas Small 
Secretary Peter Merritt 
Editor  Stephen Taylor 
Activities Phil Last 
Auditor Chris Hogan 
Two others (Kai Jaeger, John Jacob) were also 'elected', until someone pointed 
out that those posts did not actually exist, and that to create them would require 
a constitutional change. They were then immediately un-elected. 
    AOB 
- The said Kai Jaeger and John Jacob were co-opted onto the committee to 
continue previous functions. 
- Achievement award should have been awarded... but no committee discussion 
had taken place. Kai therefore nominated Stephen Taylor for splendid work with 
Vector, seconded by loads of people; Peter Merritt to inform Paul Grosvenor to 
arrange 'gong'. 
- Jane Sullivan proposed a vote of thanks to committee 2010 which staggeringly 
was accepted 
15:37    AGM CLOSED 
15:48    Presentation 2: John Scholes - Function Trains  i.e. no more syntax errors 
- they're features (I've been saying that for years) 
16:30    Presentation3: Mike Hughes - Application Design with WPF and APL 
            Mike circulated an early draft of a Dyalog manual covering these aspects. 



VECTOR  Vol. 25 No.1 

 40 

BAA accounts and membership 
Nicholas Small 

 
Income and expenditure/receipts and payments:       

  2010/11 2009/10 2008/09 2007/08 
  (R&P) (R&P) (R&P) (R&P) 
  £ £ £ £ 
Income/Receipts         
Subscriptions 3977 1280 10711 6005 
Vector advertising 0 0 250 0 
Other 10 302 8142 0 
  --------- --------- --------- --------- 
Total receipts 3987 1582 19103 6005 
Expenditure/Payments         

Meetings 0 282 0 0 
Administration 258 321 968 261 
Vector production and despatch 4180 3725 7177 3650 
Projects 201 153 169 745 
Other 3 127 0 312 
  --------- --------- --------- --------- 
Total payments 4643 4608 8314 4968 
Assets summary:         

Bank and other balances 7410 7882 10789 26773 
Debtors 1000 3207 5107 4247 
Creditors -3015 -7958 -10879 -7166 
  --------- --------- --------- --------- 
Net assets 5395 3131 5017 23855 
 
Written off     100~ 500~ 
~ Cancelled invoice         
BAPLA membership at May 2011 (previous year's figur es in parentheses)        
 UK       FOREIGN     TOTAL   
  Number Vectors Number Vectors Number Vectors 
Sustaining* 6 (6) 28 (28) 5 (5) 42 (42) 11 (11) 70 (70) 
Corporate* 2 (3) 10 (15) 2 (2) 15 (15) 4 (5) 25 (30) 
Corp. Ind* 5 (5) 5 (5) 2 (8) 2 (8) 7 (13) 7 (13) 
Individual 66 (70) 65 (70) 181 (185) 182 (186) 247 (255) 247 (256) 
Non-voting 15 (19) 15 (19) 0 (0) 0 (0) 15 (19) 15 (19) 
Life 1 (1) 1 (1) 0 (0) 0 (0) 1 (1) 1 (1) 
Library 0 (0) 0 (0) 5 (5) 5 (5) 5 (5) 5 (5) 
Russians         11 (11) 11 (11) 11 (11) 11 (11) 
APL Groups         12 (12) 34 (34) 12 (12) 34 (34) 
                      415 (439) 
*Add the Vector numbers in these rows to get the total subscribed for by corporate and sustaining 
members          
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BAA AGM 2011 – Chairman’s report  
by Paul Grosvenor - June 2011 

 

Another year passes and it seems even faster than the previous year if that is 
possible. Once again we held our AGM at the Albion in London to an audience of 
20 or so. Unfortunately I was unable to attend at the last minute so our new 
Secretary, Peter Merritt, stood in for me – trial by fire and all that. After the AGM 
presentations by Mike Hughes (Using WPF with Dyalog APL), Morten Kromberg 
(New features of version 13) and John Scholes (Function-trains in APL) were all 
well received as was the beer in the bar afterward. 
2010/2011 has, once again, been a very busy year for the APL world. The 
Vendors are keeping our world alive with new features and initiatives; I just wish 
I could keep up with all of them myself. The positive momentum I described last 
year still seems to be in existence and even in these troubled times new APL 
users continue to appear. However we must not be complacent and the good old 
APL flag needs to be kept waving; a subject that I know is close to many hearts. 
I thought that we might be able to have a conference this year as in 2009 but 
pressures of work simply took over and it became impossible to find enough time 
to organise it properly. Hopefully an event in London in 2012 will be possible. 
Our committee for 2011/2012 remains unchanged from 2010/2011 so thank 
you to all for your continued support. As always we welcome new blood into the 
committee so if you do have some spare time and want to help please get in 
touch. Contact details can be found at the back of Vector.  
Our issue with the BCS regarding our funds continues but their stance has not 
changed. Circa £14,000 remains under their control and we will continue to 
apply pressure on them to release it to us. Some of you may be aware that there 
was a vote of no-confidence in the BCS management last year and an EGM was 
called as a result. I submitted some information to that meeting on behalf of the 



VECTOR  Vol. 25 No.1 

 42 

BAA. Rather than me repeating all that was said and done please follow the 
following link where all the information can be found; 

www.bcsegm.blogspot.com 
We will keep you up to date with progress. 
The BAA London group have continued their meetings each month which is very 
good news and I hope that even more of you can try to attend. Phil Last will be 
announcing each meeting through various forums including comp.lang.apl so if 
you are in the area, please feel free to drop in on them.  
For the second year running I am proud to be able to announce that we have 
decided to present our ‘Outstanding Achievement Award’ once again. The 
award is designed to acknowledge the efforts of an individual, or organisation, 
within the world of APL where a particularly high level of achievement has been 
made. This year I am very pleased to be able to award it to Stephen Taylor for his 
work promoting APL and in particular for his efforts building and maintaining 
the Vector web site and of course the hours of time he has spent editing the 
Vector publication over the years. 

Congratulations and Thank You Stephen 
Thanks also to Optima Systems Ltd for 
sponsoring this award. The award reads; 

To 
Stephen Taylor 

The Outstanding Achievement Award 
May 2011 

From 
BAA 

 
I hope that you, like myself, are looking forward to the coming year with eager 
anticipation and that I may get to see even more of you in some of the 
forthcoming APL conferences. 
As always if you have any comments, thoughts or suggestions please email me at: 

chairman@vector.org.uk 
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D I S C O V E R  
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Unicode and related subjects in APL2 
by Kyosuke Saigusa (JCE01163@nifty.com) 

Recent service levels of IBM Workstation APL2 V2 for Windows introduced support 
for Japanese characters in Unicode. APL tools are described for exploiting this 
capacity and for introducing Japanese programmers to APL. 

The APL we use 
Unicode seems to have been included in the design of this product from the 
beginning, but before its service level 7, released in 2005, we could neither key in 
nor display Japanese characters in APL functions. Therefore we developed our 
own system based on SHIFT-JIS (ASCII) with a customised Japanese font called 
APL2KJ and a special function editor. This font was created by sacrificing some 
infrequently used characters. 
During 2005-2007, I closely watched IBM’s efforts to implement Japanese 
language support with Unicode, initially with suspicion, but later with 
admiration, as they released Service Levels 7, 8, 9, 10 and 11, with vital issues, 
such as distinction between legal and illegal blanks, getting solved step by step. 
As a result, two items remained unsolved because of complexity of fixing the 
interpreter code. One was the entry and display of Japanese characters on the 
APL session manager screen. The other was Japanese texts in the format masks 
for primitive function “format (C)”. 
The first item above may be something that classical APL users, using APL in desk 
calculator mode mainly, may want, but today’s APL systems offer highly 
sophisticated editors to write APL programs and the dependency on the session 
manager is relatively smaller than before. For the data input and display in APL 
applications, dialogue windows will provide much better human interface. 
The second item is something that programmers can get around easily, by 
defining a function to achieve it. Therefore we judged that we can do without 
them. 
Microsoft Windows offers a Unicode font called Arial Unicode MS. This font we 
found is not suitable to write APL functions with, because of the unfamiliar 
shapes and unbalanced sizes of its APL characters and pitches. New system 



VECTOR  Vol. 25 No.1 

 45 

font Courier APL2 Unicode on the other hand behaved as if it contained Japanese 
characters as well under Windows XP and Vista, and we found it a perfect font for 
our use. 
Conversion of APL functions from ASCII encoding to Unicode 
When I confirmed that the Unicode approach is the right direction, at least for 
Japanese programmers, I decided to convert all of my functions to Unicode 
encoding without exception, though IBM Workstation APL2 allows coexistence of 
both encodings in the same workspace, mainly for simplicity. Workstation APL2 
V2 seems to handle this conversion automatically, but we had to process 
Japanese texts preceded and followed by SO/SI codes in APL functions in our 
Japanese text support system. 
The function shown below was used to convert individual functions one by one 
with care. It produces only Unicode character arrays as cardinal representations, 
because if conversion fails, we can analyse to see which parts to mend. 
Fortunately it worked well. In actuality, it was used in the way that all the 
functions be converted to vector of cardinal representation arrays and they were 
in turn EFX¨ed to produce the vector of fixed names or numeric values indicating 
the fix failed for the corresponding functions. 

  
Fig.1: ∆UNIFNS source 

Once they are converted to Unicode encoding, APL2 system’s object editor 
handled the entry and display of Japanese characters in a very natural way. One 
of the things I found it superior to my old system was that now I didn’t have to 
pay attention to break Japanese characters (formerly two bytes each) into 
illegible segments in APL statements. 
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How we handle block letters for display and print 

  
Fig.2: Example of DISPLAY output as shown on the object editor of the Workstation APL2 v2 

  
Fig.3: Example of ∆DISPLAY output 

Advantage of ∆DISPLAY over DISPLAY is that the output is not affected by the 
size difference of the characters used. Besides it will choose the most appropriate 
font sizes automatically, so that it will accommodate almost any size output and 
any part of it can be cut to be shown in enlarged scale. This is a convenient and 
powerful alternative to analyse the structures of APL2 objects. 
∆DISPLAY is a utility tool function programmed in APL as shown below and is 
stored in a name space and used from there. It can be modified easily to fit users’ 
requirements if necessary. Internally it uses the function DISPLAY and converts 
its output into a graphic representation as shown in the illustration. The same 
logic can be applied to any similar cases to convert texts to graphics, which is 
more flexible. 

  
Fig.4: ∆DISPLAY output 
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Fig.5: ∆DISPLAY source code 

How we handle business forms printout 
Classical approaches to create business forms output in APL includes a method to 
draw lines with box characters as TUVWXYZ[\]. The same method as used in the 
case of ∆DISPLAY can be used, but for higher quality printout, positions of these 
block characters in the intermediate output can be used to draw lines graphically. 
In this case texts must also be converted into graphic images. 
Before Unicode, when we used double byte-code, it presented no problems 
because there were only two sizes with Japanese characters identified 
with X'8x', X'9x', X'Ex' and X'Fx' codes in the first byte having twice the 
width of other ASCII characters. 
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Fig.6: Designing business forms 

How to bring new programmers to APL 
Unicode has brought about an ideal environment for casual as well as 
professional programmers to try and learn APL2 in native languages. However, in 
reality, the initial cost of getting a product license is something beyond the 
budget of most of the prospective users. To invite these people into the world of 
APL effectively, neither academic initiative nor free trial use is adequate, because 
real persuasion comes from proper tools to prove the usefulness of APL and 
access to consistent and high-level consultancy and information. 
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Fig.7: Japanese APL Learning System (1) 

Therefore we created an APL2 package called the Japanese APL2 Learning 
System as shown above, which offers an inexpensive APL programming 
environment with full interpreter capabilities of the free IBM Workstation APL2 
V2 runtime modules. It uses currently most advanced features of the Workstation 
APL2 V2 such as calling APL2 interpreter under application APL2 to isolate 
interpreter environment to avoid crashes between user entered names and the 
names uses in the application system program. 
This package, revised totally in November 2008, supports only the Japanese 
users with online APL references all in Japanese at this time, and is downloadable 
free upon registration of e-mail address from our website aplcons.com without 
obligation to pay any fee for the entire system, although it is priced to cover 
development and support cost. It interprets every line user enters in the upper 
section of the window by way of EEC and the result or error message will be 
displayed in the lower section. 
It is safe from system program crashes resulting from invalid entries, because all 
the errors are trapped and shown in the lower section of the window. Japanese 
texts are directly handled in these windows as well. In addition to supporting 
hardware keyboard, APL-Japanese software keyboard is also provided. 
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Fig.8: Japanese APL Learning System (2) 

This package allows defining, editing, executing APL functions including the ones 
transferred from APL product environments as well. In another word, it is 
designed to fulfil the requirements of most of the prospective APL users to assess 
APL2’s total capability. 
Dialogue editor with APL function-generation capability 
In order to encourage novice programmers to use designed dialogue windows 
instead of bare-input and output on the APL session manager, we developed a 
system to help write APL applications with embedded dialogue windows. 
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Fig.9: GUI code generation 

The generated APL function prototypes as shown above can be edited to develop 
real APL applications in a short time. A Japanese online text book explains the 
rules and syntax of this method (which is somewhat different from what the IBM 
product offers) accompanies this program. 
In conclusion 
Adoption of Unicode in APL which supports native languages in any part of the 
world can provide a good opportunity to spread the use of APL as a major 
programming language. 
I firmly believe that this language is no longer a replacement of desk calculators. 
Therefore I wish the vendors of APL would emphasise the runtime with a high 
degree of error handling and maintenance capabilities in the language system. 
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Introduction to cryptography  
in Dyalog APL and .Net 
by Dan Baronet (danb@dyalog.com) 

Cryptography and how to use it in Dyalog APL and .Net. This is only an introduction 
to the subject. The functions presented here are only to play with. 

Cryptography deals with Encryption and Decryption. Encryption is the process of 
converting ordinary data (plaintext) into unreadable form (ciphertext). 
Decryption is the reverse. A cipheris a pair of algorithms to create the encryption 
and the decryption. The algorithms are controlled by a key or by a pair of keys. 
Ciphers without a key can be easily broken (knowing the cipher) so keys are very 
important. Ciphers can be used directly for encryption or decryption without 
additional procedures but it is a good idea to add authentication or integrity 
checks to make them more secure. Another category of algorithms, used for 
hashing, do not have a key. All these algorithms are the primitives of 
cryptography. 
Symmetric-key algorithms 
Symmetric-key cryptography refers to encryption methods in which both the 
sender and receiver share the same key. They come in several flavours, some 
with better security in one aspect or another than others. There are two main 
types: block ciphers and stream ciphers. 
Block ciphers work in sections (block) and include the Data Encryption Standard 
(DES) and the Advanced Encryption Standard (AES), designs which have been 
designated standards by some governments. Despite its deprecation, DES and the 
more secure triple-DES variant remain quite popular and are used across a wide 
range of applications. Many other such ciphers have been designed and released, 
with considerable variation in quality. Many have been cracked. 
These block cipher algorithms can directly be used for the encryption and 
decryption of a data block without additional procedures. However, this is 
usually not advisable, because identical plaintext blocks encrypt into identical 
ciphertext blocks, out of which attackers might draw conclusions. To avoid this, 
these algorithms are used in operation modes, which is somewhat similar to the 
use of APL primitives in APL operators. Padding schemes can be used on the last 
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block to allow the encryption of plaintexts not matching a multiple of the block 
size. 
Other modes convert a block cipher into a stream cipher. These can continuously 
encrypt data on a byte or even a bit basis. It is common to all these modes to 
require (besides the key) an initialization vector (IV). This is a randomly chosen 
byte sequence in the length of a block. 
Symmetric-key systems use the same key for encryption and decryption. A 
drawback of symmetric ciphers is the key management necessary to use them 
securely. Each distinct pair of communicating parties must, ideally, share a 
different key, and perhaps each ciphertext exchanged as well. The number of 
keys required increases as the square of the number of network members, which 
very quickly requires complex key management schemes to keep them all 
straight and secret. The difficulty of securely establishing a secret key between 
two communicating parties, when a secure channel doesn't already exist 
between them, also presents a chicken-and-egg problem. So, in practice, most 
uses have a short life cycle. 
Asymmetric or public-key cryptography 
In 1976 was proposed the notion of public-key cryptography in which two 
different but mathematically related keys are used: a public key and a private 
key. 
In this system, the public key may be freely distributed, while its paired private 
key must remain secret. The public key is typically used for encryption only, 
while the private or secret key is used for decryption. 
In addition to encryption, public-key cryptography can be used to implement 
digital signature schemes. A digital signature is reminiscent of an ordinary 
signature; they both have the characteristic that they are easy for a user to 
produce, but difficult for anyone else to forge. Digital signatures can also be 
permanently tied to the content of the message being signed; they cannot then be 
'moved' from one document to another, for any attempt will be detectable. In 
digital signature schemes, there are two algorithms: one for signing, in which a 
secret key is used to process the message (or a hash of the message, or both), and 
one for verification, in which the matching public key is used with the message to 
check the validity of the signature. RSA and DSA are two of the most popular 
digital signature schemes. 
Most public-key algorithms involve operations which are much more 
computationally expensive than the techniques used in most block ciphers, 
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especially with typical key sizes. As a result, public-key cryptosystems are 
commonly hybrid cryptosystems, in which a fast high-quality symmetric-key 
encryption algorithm is used for the message itself, while the relevant symmetric 
key is sent with the message, but encrypted using a public-key algorithm. 
Similarly, hybrid signature schemes are often used, in which a cryptographic 
hash function (see below) is computed, and only the resulting hash is digitally 
signed. 
Hash algorithms 
Cryptographic hash functions are a third type of cryptographic algorithm. They 
take a message of any length as input, and output a short, fixed length hash which 
can be used e.g. as a digital signature. MD4 is a long-used hash function which is 
now cracked; MD5, a strengthened variant of MD4, is also widely used but 
cracked in practice. SHA-0 was a flawed algorithm that was withdrawn; SHA-1, 
now considered weak, is widely deployed and more secure than MD5, the SHA-2 
family improves on it, and there’s SHA-3 on the way. 
Combining cryptographic primitives 
By themselves, cryptographic primitives are quite limited. For instance, a bare 
encryption algorithm will provide no authentication mechanism, nor any explicit 
message integrity checking. Only when combined in security protocols, can more 
than one security requirement be addressed. For example, to transmit a message 
that is not only encoded but also protected from tinkering (i.e. it is confidential 
and integrity-protected), an encoding routine, such as DES, and a hash-routine 
such as SHA-1 can be used in combination. If the attacker does not know the 
encryption key, he cannot modify the message so that message hashed values 
can't be successfully faked. 
Example of asymmetric algorithm: RSA 
The RSA algorithm is among the most widely used. It involves three steps: key 
generation, encryption and decryption. 
The following uses the notion of congruence. Two integers a and b are said to be 
congruent modulo n, if their difference a −	b	is	an	integer	multiple	of	n,	i.e.	they	
have the same remainder. 
Key generation 
RSA is known as a deterministic encryption algorithm, i.e. it has no random 
component. It involves a public key and a private key. The public key can be 
known to everyone and is used for encrypting messages. Messages encrypted 
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with the public key can only be decrypted using the private key. The keys for the 
RSA algorithm are generated the following way: 

1. Choose two distinct prime numbers p and q. 
2. Compute n = p × q. n is used as the modulus for both the public and private 

keys. 
3. Compute the totient[1] of n, T = (p-1)×(q-1). 
4. Choose an integer e such that 1<e < T, and e and T share no divisors other 

than 1 (i.e. e and T are coprimes). e is released as the public key exponent. 
5. Determine d which satisfies the congruence of de and 1 modulo T. In other 

words, de −	1	can	be	evenly	divided	by	the	totient	T=	(p	−	1)x(q	−	1).	d	is	
kept as the private key exponent. 

The public key consists of the modulus n and the public (or encryption) exponent 
e. The private key consists of the modulus n and the private (or decryption) 
exponent d which must be kept secret. 
Encryption 
Adam transmits his public key (n,e) to Bea and keeps the private key secret. Bea 
then wishes to send message m[2] to Adam. She computes the ciphertext c 
corresponding such that c and me are congruent modulo n. 
Bea then transmits c to Adam. If Adam's ex Eve were to eavesdrop on the 
transmitted message she could make no sense of it. 
Decryption 
Adam can recover m from c by using his private key’s exponent d like this: 
We know m and cd are congruent mod n because cd and med are congruent 
modulo n. 
Since ed = 1 + kT, then med is congruent modulo n, to m1+kT or m(mT)k or simply 
m. 
The last congruence directly follows from Euler’s theorem when m is relatively 
prime to n. It can then be shown that the equation holds for all m. 
This shows that we get the original message back as cd and m are congruent 
modulo n. 
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This is a simplified example. In reality there are all kinds of ways to complicate 
matters and make the life of a would-be attacker hell. For example, the choice of 
prime numbers should be large and the plaintext should be padded with random 
numbers. 
A working example 
Here is an example of RSA encryption and decryption in J. The parameters used 
here are artificially small, but one can also use OpenSSL to generate and examine 
a real key pair. 
We’ll use the verbs 
tot =:  */ @: <: 

cong=: =/@:| 

NB. the (2) numbers (right arg) have the same remainder  

NB. mod n (left arg) 

xgcd=: 3 : 0 

xy=. y|.c>/y NB. smaller first 

 0 1         NB. default result 

if. 0<{: t=. |/\xy do. 

 'X Y'=. xgcd t 

 Y, X-Y*<.%c/xy 

end. 
) 

Choose two prime numbers, eg: p =: 61 and q =: 53 
Compute n =: p*q NB. =3233 
Compute the totient T =: tot p,q NB. (61-1)*(53-1) =3120 
Choose e > 1 coprime to 3120, here we pick a value not too small e = 17 
Compute d such that T cong 1,d*e e.g., by computing the modular 
multiplicative inverse of e modulo T: 
   d =:  T|{: xgcd e,T    NB. 2753 

since 46801 = 17×2753 and 1 = 3120|46801 this is the correct answer. 
The public key is (n = 3233, e = 17). The encryption statement is: 
   c =: n|mje 

The private key is (n = 3233, d = 2753). The decryption statement is: 
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   m =: n|cjd 

For example, to encrypt m = 123, we calculate 

   c=: 3233 | 123x j 17    NB. 855 

To decrypt c = 855, we calculate. 
   m=: 3233 | 855x j 2753  NB. 123 

In real life situations the primes selected would be much larger, however in our 
example it would be relatively trivial to factor n, 3233, obtained from the freely 
available public key back to the primes p and q. Given e, also from the public key, 
we could then compute d and so acquire the private key. The message, also, 
would be a much larger integer (think of a character string as a long list of bits 
representing a large integer). 
.Net 
The previous example is fairly easy to program in any language as long as the 
numbers are kept small. Otherwise special routines must be written to handle 
large numbers like the ones represented by long strings. Plus there are a number 
of issues that must be dealt with regarding security. Without getting into too 
many details let’s say that it is not easy to come up with an acceptable solution. 
This is where ready-made solutions like .Net come in the picture. 
.Net offers a series of classes to handle cryptography. They reside in 
System.Security.Cryptography which is in System.Core.dll 
Let's first define a few utilities, including a hash function: 
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:Namespace CryptoTools 

   k r�DNetCrypto 0 The location of the cryptography libraries 

    0 change for 64b OS: 

     r�'System.Security.Cryptography,\Program Files'  

     r,�'\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll' 

   k 

   k value�hash string;str;EUSING 

    0 Return hash value of the string given as arg 

     :If isChar str�,string 

       str�EUCS str 0 turn characters into numbers for the hash fn 

       {}EDR str    0 kludge for V12 to ensure str is small int 

     :EndIf 

     EUSING�DNetCrypto                0 also SHA1/384/512, CRC32 

    0 MD5CryptoServiceProvider: 

     value�(ENEW SHA256Managed).ComputeHashtstr 
   k 

   if�/u 6 UTF8�'UTF-8'�Eucs 6 isChar�{v/0 2=10|EDR 1/Ω} 

  0 EDR forces demotion (V12): 

   UCSN�{cisChar Ω:Ω 6 v{Α}Edr v�UTF8 Ω}  

 
:EndNamespace 

The hash function (here SHA256, but it could be another) can be applied to any 
string: 
      CryptoTools.hash  y,/Esrc CryptoTools 
165 157 223 218 183 249 78 22z 

The following class will handle symmetric cryptography: 
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:Class  CodeSymmetric 

 

  :include CryptoTools 

 

  M2MS�{8÷uΩ[2]+0,s×Ι(-/2NΩ)÷1|s�¯1NΩ} 0 valid Key sizes [min-max] 

  k boa provider;choices;msg;n 

  :Access public 

  :Implements constructor 

0 Data Encryption Standard (DES) supports a 64 bit key only 

0 Rivest Cipher 2 provider supports keys from 40 to 128* bits 

0 Rijndael (also known as AES) provider supports keys 128/192/256* 

0 TripleDES provider (also known as 3DES) supports keys of 128/192* 

  choices�'DES' 'RC2' 'Rijndael' 'TripleDES' 

  msg�'Invalid provider; choose one of',Cchoices 

  msg ESIGNAL 99 if(Ρchoices)<n�choicesΙtprovider 

  EUSING�DNetCrypto 

  choices�DESCryptoServiceProvider RC2CryptoServiceProvider 

  _algo�ENEW nychoices,RijndaelManaged 

TripleDESCryptoServiceProvider 

 

  n�y_algo.LegalKeySizes.(MaxSize MinSize SkipSize) 
  _vks�M2MS n   0 all valid Key sizes 

  IV�'1Az=-@qT' 0 Initialisation Vector 

  EDF provider  0 conveniently identify instance 

  k 

  k r�RandomKey 0 This generates a random Key 

    :Access public 

    _algo.GenerateKey 

    r�_algo.Key 
  k 

  :property Key 0 The key used to encrypt/decrypt data 

  :access public 

  k r�get 

    r�_key 
  k 

  k set val;val;msg;t 

    msg�'ΡKey must be ',((1<Ρt)/'one of '),Ct�_vks 

    msg ESIGNAL 11 ifc(Ρval�val.NewValue)�t 

    _algo.Key�_key�UCSN val 

  k 
   :endproperty 
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0 Using the default Cipher Block Chaining (CBC) mode, all data  

6 blocks are processed using the value derived from the previous  

6 block; the first data block has no previous data block to use, 
0 so it needs an Initialisation Vector (IV) to feed the first block 

 :property IV 

 :access public 

  k r�get 

    r�_iv 
  k 

  k set Value;val;validBS 

  0 We must ensure the value fits requirements: 

    validBS�M2MSy_algo.LegalBlockSizes.(MaxSize MinSize SkipSize) 

    :If cvalidBS�uΡval�Value.NewValue 0 if invalid block size 

        val�validBS[1++/validBS<Ρval]Ρval 0 pick the next one 

    :EndIf 

    _algo.IV�_iv�UCSN val 

  k 
 :endproperty 
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0 Encrypts the specified Data using preset key and preset IV 

  k r�EncryptString d;EUSING;ms;cs;cr 

    :Access public 

    EUSING,u�t'System' 

   0 The key and IV have better been set 

    ms�ENEW IO.MemoryStream 

    cr�_algo.CreateEncryptor � 

    cs�ENEW CryptoStream(ms cr CryptoStreamMode.Write) 

    cs.Write((UCSN d)0,Ρd) 

    cs.Close 

    ms.Close 

    r�ms.ToArray 

  k 

   0 Decrypts the specified data using preset key and preset IV 

  k r�DecryptCipher encryptedData;b;ms;cs;len;EUSING 

    :Access public 

    EUSING,u�'System' 'Dyalog' 

    ms�ENEW IO.MemoryStream(encryptedData 0,ΡencryptedData) 

    cs�ENEW CryptoStream(ms(_algo.CreateDecryptor 

�)CryptoStreamMode.Read) 

    b�ENEW ByRef,tt3/uΡencryptedData 

    len�cs.Read(b 0,ΡencryptedData) 

    cs.Close 

    r�EUCS lenNb.Value 

  k 
:EndClass 

Let’s try it: 
  s1�Enew CodeSymmetric  'TripleDES' 

  s1.Key�16Ρ'secret' 

  +cs1�s1.EncryptString 'Let''s rendez-vous at midnight' 

155 230 195 207 193 180 216 228 2 14 11z 

  s1.DecryptCipher cs1 
Let's rendez-vous at midnight 

Any instance of the class will do to decrypt the cipher as long as the Initialisation 
Vector and the key are the same. 
Obviously, that code could be modified to, say, accept the Initialisation Vector 
and/or the key at instantiation time. 
The following class will handle asymmetric cryptography: 
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:Class CodeAsymmetric 

0 The only provider supported is the RSACryptoServiceProvider. 

  :include CryptTools 

  Eusing� DNetCrypto 6 Eio Eml�1 6 Ewx�3 

  k boa0 0 The public Key is automatically generated 

    :Implements constructor 

    :Access public 

    _rsa�ENEW RSACryptoServiceProvider 

    GenerateNewKeys 
  k 

  k boa1 arg 0 This is where you make the public Key. 

   0 It could be made of INI files, XML, etc. 

   0 Here we only accept XML strings. 

    :Implements constructor 

    :Access public 

    _rsa�ENEW RSACryptoServiceProvider 

    _rsa.FromXmlStringtarg 
  k 

0 Generates a new public/private key pair as strings 

  k {(publicKeyXML privateKeyXML)}�GenerateNewKeys 

   0 Generate new keys for this instance 

    :Access public 

    publicKeyXML�_rsa.ToXmlString 0 

    privateKeyXML�_rsa.ToXmlString 1 
  k 

  k r�Decrypt cipher 

    :Access public 

    r�UTF8 _rsa.Decrypt cipher 0 
  k 

  k r�Encrypt d 

    :Access public 

    r�_rsa.Encrypt((UCSN d)0) 

  k 

:EndClass 

Now, Adam creates an object with both public and private keys: 
      adam�Enew CodeAsymmetric 
      (pub  pvt)� adam.GenerateNewKeys 

Adam forwards the public key to Bea who uses it to send him messages: 
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      bea�Enew   CodeAsymmetric    pub 

      +msg�bea.Encrypt  'meet me at midnight' 

89 12 181 136 53 z 

Adam decrypts the message like this: 
      adam.Decrypt  msg 
meet me at midnight 

That’s how easy it is. Because asymmetric cryptography is calculation-intensive it 
is best to limit the material to small strings. 
Now, in real life messages tend to be longer and symmetric cryptography works 
best. What some people do is to encrypt the large text symmetrically with a key 
which is encrypted asymmetrically. They often also add a signature, for example 
the hash of the message and/or encrypted key to ensure everything is kosher. 
Something along the lines of 
      beamsg�1000Ρ'long message... ' 

      code�Enew CodeSymmetric 'RC2' 

      code.Key�cpw�'secret' 

      Ρcryptedmsg�code.EncryptString beamsg 

1008 

      Ρcryptedkey�bea.Encrypt cpw 

128 

      ΡH�CryptoTools.hash cryptedkey,cryptedmsg 
32 

She then sends Adam the encrypted message, the encrypted key and the hash. 
Adam first checks there's been no tampering: 
      H�CryptoTools.hash cryptedkey,cryptedmsg 
1 

He then finds the key used to encrypt the message: 
      adam.Decrypt cryptedkey 

secret 

Then he finally decodes the message: 
      decode�Enew CodeSymmetric 'RC2' 

      decode.Key�'secret' 

      decode.DecryptCipher cryptedmsg 
long message... long message... long message... 
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That is the basis of message exchange protocols like SSL which will bundle up all 
the stuff to transfer, adding their own packaging information. 
Epilogue 
The topic of cryptography is fairly complex. There are many issues related to this 
which are out of the scope of this article. 
Feel free to play with this; there are a number of methods to en/decrypt streams 
(files) and others. Have a look. 
Notes 

1. The totient (usually denoted φ) of a number is defined as the number of coprimes of that 
number. For a prime number P it is P-1. 

2. Here the Message is turned into an (large) integer using a technique known as "padding" 
which is irrelevant to the description 
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FINANCIAL MATH IN Q 

3: The annuity 
by Jan Karman (jkarman@planet.nl) 

The annuity differs from the other applications in that it doesn’t need external files. It 
is simply (and simple) mathematics. The program produces a survey of the 
amortisation of an annuity loan, with the necessary controls. For convenience we 
shall define some auxiliary functions so that the development of the annuity function 
will be very easy, almost trivial. So, the purpose is just to show what is possible with 
a few lines of K. The annuity loan is in wide use for mortgages and a large scale of 
many other types of private loans. 

Mathematics 
In actuarial practice every value is being brought back to the point of time 0 – 
that’s where we are – usually called “the present value”. The present value of an 
annuity, a financial form in which a unit of capital is being paid at the end of 
every consecutive year, is denoted by an. If an individual wants to settle for a loan 
and repaying it by way of a yearly level amount t, then t.an should be 1, according 
to the equivalence principle as the axiom of all financial theory, and t = 1/an. If i is 
the interest rate and v denotes the present value of the unit 1 at the end of the 
year v = 1/1 + i. 
The present value of each payment in the annuity can be written as 
v1, v2 … v(n-1), vn 
and the total value of the annuity 
an = v1 + v2 + … + v(n-1) + vn     (1) 
Multiplied by the ratio (1+i) we get 
(1+i).an = v0 + v1 + … + v(n-2) + v(n-1)      (2) 
and like an ordinary geometric series we subtract (1) from (2) 
i.an = 1 – vn 
getting 
an = (1-vn)/i 
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The level annual payment of t contains two components: an interest component 
and a redemption component. Two successive outstanding balances amount to 
 t.an-m and t.an-m+1 and therefore the debt appears to be decreased with   
t.vn-m+1 immediately after the mthpayment. 
A little detour 
It may seem all trivial, but the geometric series has its dark and obscure caverns. 
We have seen that the yearly payments have two components, an interest and a 
redemption part. Now, the first redemption, a1, equals to the level payment, t, 
minus the indebted interest i, being t-i. In the second year this component 
increases to (t-i).(1+i), and all the remaining redemption parts form again a 
geometrical series with ratio (1+i), adding up, of course, to the initial amount of 
the debt 1, and the series will be cumulated to sn, the accumulated value of an 
annuity – also known as a saving contract. 
Thus (t – i).sn = 1, so t – i = 1/sn. 
Therefore, since by definition 
t = 1/an 
it follows that 
1/an – i = 1/sn 
and 
1/an – 1/sn = i. 
Here we see the remarkable relationship between the present value and the 
accumulated value of an annuity on the one hand and the interest rate on the 
other. Indeed, the difference between the reciprocal of the present value of an 
annuity and the reciprocal of the accumulated value of the same annuity results 
in the basic ingredient: the interest rate. Of course we could come to this result 
by reducing right from the definitions – that would give a longer detour. 
Back to business. 
Effective interest rate 
An interest rate is most typically quoted as an annual percentage. In practice, 
however, interest rates are being paid in fractions, say half-yearly, quarterly or 
monthly or even in days. In theory it can be paid in infinitely small fractions, in 
which case we have to do with continuous interest rates. Here, we will confine to 
the discrete method. 
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It would be logical when calculating a monthly interest that the accumulated 
monthly fractions would equal the contractual interest. Thus that j in 
j = ((1 + i'/12)12) – 1 
would equal i, with of course i' somewhat lower than i. 
Banks know better, they are the money experts and they calculate 
j = ((1 + i/12)12) – 1 
(Once, when I showed this to my brother in law, he checked his mortgage 
contract, which stated an “annual interest rate of 6%, payable monthly” – he 
lodged a complaint with his bank, with success). 
The K-implementation 
/Global functions 

f:{100*((1+0.01*x%y)jy)-1}    / real interest 

vn:{(1+0.01*z%y)j-x*y}        / present value 

an:{(1-vn[x;y;z])%0.01*z%y}   / annuity 
sumrnd:{x*(*t)-':t:_.5++\y%x} / rounding function 

Calculations 
The calculations are all being done in one dependency: 
t..d:".$term" 

eff..d:"f[I.i;t]" 

eff..f:5.2$ 

ann..d:"B.bd*%an[D.d;t;I.i]" 

ann..f:8.2$ 

tm..d:"!D.d*t" 

at..d:"sumrnd[0.01;(ann-B.bd*0.01*I.i%t)*(1+0.01*I.i%t)j!D.d*t]" 

it..d:"(nR.nbd*0.01*I.i%t)+ann-at" 

ml..d:"at+(1-0.01*IB.ib)*it" 
rs..d:"nR.nbd+B.bd-+\\0,-1 _ at" 

Picture 
… and the show gives this: 
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The complete application is available online and can be downloaded freely from 
http://www.ganuenta.com/annuity_k.exe. 
There is also an APL version at http://www.ganuenta.com/annuity.exe built in 
Dyalog APL by means of Causeway. From this version neat reports can be printed 
by use of Newleaf, Adrian Smith’s DTP application – so, 100% APL. 
Appendix 
(May be downloaded from 
http://archive.vector.org.uk/content/published/karman/annuity.k) 
/ Amortization scheme for annuity 

/ Variables: amount(bd), duration(d), interest rate(i), marg 

IRS(IB) 

 \m f courier new-9 

/ \m l arial-8 

  \m c 0 -1 808080 

  \p 16 

  \c 0 
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/Global functions 

f:{100*((1+0.01*x%y)jy)-1}/ real interest 

vn:{(1+0.01*z%y)j-x*y}/ present value 
an:{(1-vn[x;y;z])%0.01*z%y}/ annuity 

/ Dictionaries 

\d .k.B 

bd: 1.0*120000; bd..l:""; bd..f:12.2$ 

incbd:"bd+:1000"; decbd:"bd-:1000" 

incbd..c:decbd..c:`button 

incbd..l:"+"; decbd..l:"-" 

incbd..f:16.2$ 

.k.B..l:"Amount of annuity loan" 

.k.B..a:(`bd;`incbd`decbd) 

\d .k.nR 

nbd: 1.0*0; nbd..l:""; nbd..f:12.2$ 

incnbd:"nbd+:1000"; decnbd:"nbd-:1000" 

incnbd..c:decnbd..c:`button 

incnbd..l:"+"; decnbd..l:"-" 

.k.nR..l:"Non Repayable" 

.k.nR.[`x]:12 

.k.nR..a:(`nbd;`incnbd`decnbd) 

\d .k.D 

d: 30; d..f:4$; d..l:"" 

incd:"d+:1"; decd:"d-:1" 

incd..c:decd..c:`button 

incd..l:"+"; decd..l:"-" 

.k.D..l:"Duration" 

.k.D..a:(`d;`incd`decd) 

\d .k.I 

i:4.50; i..f:5.2$; i..l:"" 

inci:"i+:0.01"; deci:"i-:0.01" 

inci..c:deci..c:`button 

inci..l:"+"; deci..l:"-" 

.k.I..l:"Interest rate" 

.k.I..a:(`i;`inci`deci) 

/In some countries interest paid on a (mortgage) loan is  
/deductible from income for IRS; 
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\d .k.IB 

ib:40; ib..f:4$; ib..l:"" 

incib:"ib+:1"; decib:"ib-:1" 

incib..c:decib..c:`button 

incib..l:"+"; decib..l:"-" 

.k.IB..l:"Marg IRS %" 

.k.IB..a:(`ib;`incib`decib) 

\d j 

eff..e:ann..e:0 

eff..l:"    Effective interest rate    " 

ann..l:"    Periodical payment" 

Yearly:1; Half_yearly:2; Quarterly:4; Monthly:12 

term:`Monthly 

term..l:"Frequency of payments" 

term..c:`radio 

term..o:(`Yearly `Half_yearly `Quarterly `Monthly) 
term..x:18 

t..d:".$term" 

eff..d:"f[I.i;t]" 

eff..f:5.2$ 

ann..d:"B.bd*%an[D.d;t;I.i]" 

ann..f:8.2$ 

tm..d:"!D.d*t" 

at..d:"sumrnd[0.01;(ann-B.bd*0.01*I.i%t)*(1+0.01*I.i%t)j!D.d*t]" 

it..d:"(nR.nbd*0.01*I.i%t)+ann-at" 

ml..d:"at+(1-0.01*IB.ib)*it" 
rs..d:"nR.nbd+B.bd-+\\0,-1 _ at" 

/ Survey 

hdr:`Period`Repayment`Interest`NetPayment`Balance 

fs:("6$.k.tm";"13.2$.k.at";"13.2$.k.it";"13.2$.k.ml";"15.2$.k.rs") 

comp:{[x;y;z] 

 a:.,(`e;0) 

 t:.+(x;y;a) 

 .[t;(cx;`d);:;z]} 

Survey:comp[hdr;&#hdr;fs] 
Survey..l:"Survey amortization schedule" 

.k..l:"Amortization of Annuity" 

.k..a:((`B`D`I`IB);(`nR;`term;`eff`ann);`Survey) / rearrange 

display 
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`show$`.k 

/================================================================= 

\ 

Description: This program produces a survey of the amortization of 

an annuity loan. 

In the top section of the screen are four controls for the data. 

In the middle section are two controls and display of real interest 

and yearly annuity. 

The bottom section shows the amortization scheme with one line for 

every payment, giving redemption part, interest part, net cost and 

balance. 

The + and - buttons are supposed to behave like spinboxes. 

\ 

 Comments & questions welcome 

 Middelburg (Neth), January 2006 

 info@ganuenta.com 
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NO STINKING LOOPS 

Tables with calculated columns 
by Stevan Apter 

This article is the second in an occasional column, No Stinking Loops. Stevan Apter is one 
of the programmers Jeffry Borror referred to as “the q gods” in his textbook q for 
Mortals. 

K4 has a quite different way of representing tables from that used in K3. This 
article describes how to simulate in q the column dependencies that K3 
supported. 
0. Dependencies 
In K3, tables are pseudotypes, dictionaries of vectors. The ‘columns’ of a ‘table’ 
are first-class variables. Thus, using dot-notation: 
  t.f:10 20 30 

  t g:40 50 60 

The ‘records’ of a table are the corresponding elements of the ‘column’ variables. 
A variable is a data-structure with three components: 
• a simple symbolic name, e.g. `f 
• a value, e.g. 10 20 30 
• a recursive dictionary of attributes 

The d attribute is used to define the variable as a functional dependency. For 
example, using double-dot-notation: 
  t.h..d:"f+g" 

  t.h 

50 70 90 

Thus, h is a variable in the dictionary t, having name t, value 50 70 90, and 
an attribute dictionary containing a single variable with name d, value "f+g", 
and empty attribute dictionary: 
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  T 

.((`f 

   10 20 30 

   ) 

  (`g 

   40 50 60 

   ) 

  (`h 

   50 70 90 
   .,(`d;"f+g";))) 

The evaluation of t recursively evaluates the columns f, g, and h of  t. t.h 
depends on f and g. If either f or g changes, h is marked ‘invalid’. If h is 
invalid, then on reference it recalculates in t using f and g. 
The K3 workspace is a tree of dictionaries rooted in the nameless dictionary. We 
can capture the entire workspace by evaluating the empty symbol; or, as one wag 
put it, “The value of nothing is everything”: 
  .` 

.((`k 

   .,(`t 

   .((`f 

   10 20 30 

   ) 

  (`g 

   40 50 60 

   ) 

  (`h 

   50 70 90 

   .,(`d;"f+g";))) 

   ) 

   ) 

  (`t;-7.584544e+008;)) 

In q (i.e. K4) a table is a list of records – structurally identical dictionaries. The 
columns of a table are the corresponding entries of the records. (N.B. internally, q 
stores the table as a structure of column-lists.) 
How then can we simulate in q the column dependencies we get for free in K3? 
1. Tables and views. 
In q we have tables: 
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q)t:([]f:10 20 30;g:40 50 60) 

q)t 

f  g 

----- 

10 40 

20 50 
30 60 

and we have views: 
q)v::select from t where g<60 

q)v 

f  g 

----- 

10 40 
20 50 

v depends on t. When t is modified, v becomes ‘invalid’. V will be 
recalculated (‘validated’) the next time it is referenced: 
q)t+:10 

q)t 

f  g 

----- 

20 50 

30 60 

40 70 
 

q)v 

f  g 

----- 
20 50 

2. Calculated columns 
We can use update to add calculated columns to a table: 
q)update k:f+g,l:neg f from t 

f  g  k   l 

------------- 

20 50 70  -20 

30 60 90  -30 
40 70 110 -40 
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but q won’t allow us to add columns unless they depend strictly on existing 
columns in the table: 
q)update k:f+g,l:k*2 from t 

'k 

q)update l:k*2,k:f+g from t 
'k 

Columns must be added as a correctly-ordered sequences of separate updates: 
q)update l:k*2 from update k:f+g from t 

f  g  k   l 

------------- 

20 50 70  140 

30 60 90  180 

40 70 110 220 

3. Automating calculated columns 
Let’s divide up the parameters to the problem and assign them to distinct 
variables: 
t is a table 
f is a data-structure containing the names and definitions of calculated 

columns 
v is a view which depends on t and f 
For example, f might be defined through a GUI, in which users specify the 
calculated columns. 
v will be a view which functionally depends on t and f: 
v::willbe[t;f] 

The function willbe takes t and f as arguments and returns a table 
containing the columns of t plus the defined columns, or ‘willbes’, specified 
by f. 
4. Implementation 1: update over 
To start, let’s use q’s native parsing primitive to analyse the structure of the 
successful update from section 2: 
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q)parse"update l:k*2 from update k:f+g from t" 

! 

(!;`t;();0b;(,`k)!,(+;`f;`g)) 

() 

0b 

(,`l)!,(*;`k;2) 

The functional form of update is: 
![t;a;b;c] 

where t is the table to be updated, a is the constraint, or ‘where’ clause, b is 
the group, or ‘by’ clause, and c is the dictionary of names and definitions of the 
columns to be added. 
In the problem at hand we have no constraints and no grouping, so by 
convention a and b are () and 0b. 
The column definitions are unit dictionaries. Each one gives the name and 
definition of a single field. A unit dictionary maps a one-element symbolic vector 
– the name – to a one-element parse of the definition. So, for example: 
q)enlist[`k]!enlist parse"f+g" 
k| + `f `g 

The form of the successful update is: 
![![t;();0b;kdict];();0b;ldict] 

Where kdict and ldict are unit-dictionaries which define k and l 

respectively. Generalising, we see that in order to add columns c1zcn to t we 
have to construct an expression of the form: 
![..![t;();0b;c1]..;();0b;cn] 

Let’s simplify this by defining a function which eliminates the constants: 
col:{![x;();0b;enlist[y]!enlist z]} 

col takes three arguments: x is a table, y is a symbol, and z is the parse of a 
definition. Col returns x updated with the new column y. So: 
col[..col[t;`c1;def1]..;`cn;defn] 

We know what to do with this pattern: express it as the application 
of col over t, a vector of names, and a list of definitions: 



VECTOR  Vol. 25 No.1 

 79 

col/[t;`c1..`cn;(def1;..;defn)] 

col executes n times. Initially, t is updated with c1 to produce t1. Then t1 is 
updated with c2 to produce t2. 
q)col/[t;`k`l;parse each("f+g";"k*2")] 

f  g  k   l 

------------- 

20 50 70  140 

30 60 90  180 
40 70 110 220 

5. Implementation 2: column references 
q still requires that we order the definitions correctly: 
q)col/[t;`l`k;parse each("k*2";"f+g")] 

{![x;();0b;enlist[y]!enlist z]} 
'k 

Let’s start by having f, our dictionary of column definitions: 
q)f:`l`k!("k*2";"f+g") 

q)f 

l| "k*2" 

k| "f+g" 

Then parse each expression: 
q)p:parse each f 

q)p 

l| * `k 2 
k| + `f `g 

We want to order p by column-reference, but first we have to extract these from 
each parsed definition. The algorithm is recursive: descend the parse tree looking 
for symbol atoms: 
ref:{$[-11=t:type x;x;t;();.z.s each x]} 

We read the conditional $[..] as follows: 
• if x is a symbol, return x 
• else if x is not a list, return () 
• else self each x 
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For example: 
q)ref p 

l| () `k () 
k| () `f `g 

Since each recursion adds a level of nesting, we need to flatten the result. The q 
primitive raze(K: ,/) takes a list of sublists and returns the catenation of the 
sublists. The raze of x reduces one level of nesting. And since references can 
occur more than once in an expression, we need to compress out duplicates with 
distinct. 
Since the result of ref is a tree it will often contain more than one level of 
nesting. For example: 
q)ref parse "(a+b)*c-a*b" 

() 

(();`a;`b) 
(();`c;(();`a;`b)) 

But distinct raze reduces just one level: 
q)distinct raze ref parse "(a+b)*(a*b)-c" 

() 

`a 

`b 

(();`a;`b) 
`c 

To flatten a list of arbitrary depth, we keep applying raze until the result 
converges. That is, until the result cannot be any flatter: 
flatten:distinct raze over 

 

q)flatten ref parse "(a+b)*(a*b)-c" 

`a`b`c 

So the final form of our function for extracting references from a parse-tree is: 
refs:flatten ref@ 

Thus: 
q)refs each p 

l| ,`k 
k| `f`g 
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6. Implementation 3: column order 
Now that we have the references of p just one piece remains: re-order p so we 
can add columns to t in correct order. 
Let’s define f as follows: 
q)f:`h`j`k!("j+k";"f+g";"j*100") 

q)f 

h| "j+k" 

j| "f+g" 

k| "j*100" 

q)p:parse each f 

q)p 

h| + `j `k 

j| + `f `g 

k| * `j 100 

q)r:refs each p 

q)r 

h| `j`k 

j| `f`g 

k| ,`j 

q)k:key r 

q)k 
`h`j`k 

Now if we index r by k: 
q)r k 

`j`k 

`f`g 

,`j 

we get the references of each definition. Notice that some symbols in the result 
are indices of r(`h`j`k) and some are not (`f`g). Indexing r by one of the 
latter returns an empty list: 
q)r r k 

(`f`g;,`j) 

(`symbol$();`symbol$()) 

,`f`g 

q)r r r k 

((`symbol$();`symbol$());,`f`g) 

(();()) 
,(`symbol$();`symbol$()) 
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In this process, we are drilling down in parallel to the ultimate constituents of 
each definition in r. Eventually, we bottom out in a nest of empties, since the 
ultimate constituents (f and g) are columns of t: 
q)r over k 

((();());,(();())) 

(();()) 

,(();()) 

To capture the sequence of intermediates, we use scan: 
q)r scan k 

h                                  j                       k 

`j`k                               `f`g                    ,`j 

(`f`g;,`j)                         (`symbol$();`symbol$()) ,`f`g 

((`symbol$();`symbol$());,`f`g)    (();())                  

(`symbol$();`symbol$()) 

((();());,(`symbol$();`symbol$())) (();())                 ,(();()) 

((();());,(();()))                 (();())                 ,(();()) 

Reversing the result, we get the constituent analysis of f in calculation order: 
q)reverse r scan k 

((();());,(();()))                 (();())                 ,(();()) 

((();());,(`symbol$();`symbol$())) (();())                 ,(();()) 

((`symbol$();`symbol$());,`f`g)    (();())                 

,(`symbol$();`symbol$()) 

(`f`g;,`j)                         (`symbol$();`symbol$()) ,`f`g 

`j`k                               `f`g                    ,`j 

h                                  j                       k 

The nesting and the empties are irrelevant, so we flatten the analysis: 
q)flatten reverse r scan k 

`f`g`j`k`h 

This gives us a valid calculation order: the ultimate constituents first (in no 
particular order), followed by j (f+g), k (j*100), and h (j+k). 
For complex f, flatten over reverse r scan key r produces ever-larger 
and more complex intermediates. By moving the flattening operation into the 
scan loop we keep the intermediate results as simple as possible, thereby 
reducing the complexity of the indexing: 
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q)(flatten r@)scan k 

`h`j`k 

`j`k`f`g 

`f`g`j 

`f`g 

`symbol$() 

() 

q)flatten reverse(flatten r@)scan k 

`f`g`j`k`h 

Finally, we want to exclude non-calculated constituents from the result: 
q)flatten[reverse(flatten r@)scan k]inter key k 
`j`k`h 

So our final function is: 
order:{flatten[reverse(flatten x@)scan key x]inter key x} 

7. Synthesis 
Putting it all together: 
willbe:{[t;f] 

 p:parse each f;        / parse of expression 

 r:refs each p;         / references 

 o:order r;             / ordered by reference 

 col/[t;o;p o]}         / create view 

flatten:distinct raze over 

ref:{$[-11=t:type x;x;t;();.z.s each x]} 

refs:flatten ref@ 

col:{![x;();0b;enlist[y]!enlist z]} 
order:{flatten[reverse(flatten x@)scan key x]inter key x} 

Let’s run through an example: 
t:([]f:10 20 30;g:40 50 60) 

f:`h`j`k!("j+k";"f+g";"j*100") 

v::willbe[t;f] 

q)t 

f  g 

----- 

10 40 

20 50 

30 60 
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q)v 

f  g  j  k    h 

------------------ 

10 40 50 5000 5050 

20 50 70 7000 7070 

30 60 90 9000 9090 

q)t:update g:g+1 from t where f<50 

q)t 

f  g 

----- 

10 41 

20 51 

30 61 

q)v 

f  g  j  k    h 

------------------ 

10 41 51 5100 5151 

20 51 71 7100 7171 
30 61 91 9100 9191 

8. Partitioned calculations 
Our implementation allows us to define new columns by applying their 
definitions to existing columns as wholes. For example, h is all of j plus all of 
k. Suppose we add a grouping column e to t: 
q)t:([]e:1 1 2;f:10 20 30;g:40 50 60) 

q)t 

e f  g 

------- 

1 10 41 

1 20 51 
2 30 61 

Then we may want to define a new column whose values are computed for each 
e-partition of t: for the subtable where e=1 and the subtable where e=2. 
Notice that our definition of col supplies the constant 0b to the third position 
of !, so new columns are always computed on the ungrouped input table x: 
col:{![x;();0b;enlist[y]!enlist z]} 

Let’s add a parameter to willbe which controls grouping: 
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q)f:`h`j`k`l!(�j+k";"f+g";"j*100";"k%sum k") 
q)g:`h`j`k`l!(0b;0b;0b;enlist[`e]!enlist`e) 

The new parameter g is a dictionary of ‘group by’ clauses, corresponding to the 
definitions of the calculated columns f. 
We revise our suite of functions accordingly: 
willbe:{[t;f;g] 

 p:parse each f;        / parse of expression 

 r:refs each p;         / references 

 o:order r;             / ordered by reference 

 col/[t;g o;o map'p o]} / create view 

flatten:distinct raze over 

ref:{$[-11=t:type x;x;t;();.z.s each x]} 

refs:flatten ref@ 

map:{enlist[x]!enlist y} 

col:![;();;] 

order:{flatten[reverse(flatten x@)scan key x]inter key x} 

So that: 
q)t:([]e:1 1 2;f:10 20 30;g:40 50 60) 

q)f:`h`j`k`l!("j+k";"f+g";"j*100";"k%sum k") 

q)g:`h`j`k`l!(0b;0b;0b;enlist[`e]!enlist`e) 

q)v::willbe[t;f;g] 

q)v 

e f  g  j  k    h    l 

------------------------------ 

1 10 40 50 5000 5050 0.4166667 

1 20 50 70 7000 7070 0.5833333 
2 30 60 90 9000 9090 1 

You can find this source code at www.nsl.com/q/willbe.q 
Acknowledgements 
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J-OTTINGS 53 

j Complex? You bet! 
by Norman Thomson 

j doesn’t necessarily mean complex! 
Although j in J normally means ‘complex’, numbers of the form 7j2 can model 
other forms of duple such as odd ratios, for example 7j2 can model odds of 7 to 
2 (that is 7 to 2 against), from which fractional odds (fro) are obtained as 

   fro=.({: % +/)@:+."0 NB. +. transforms ajb to a b 

   fro 3j1 
0.25 

%fro then gives what is returned (winnings and stake) after a successful unit bet. The 
accumulated fractional odds of a field of three in which the odds offered by a 
bookmaker are evens, 3-1 and 7-2 is 
   (+/@:fro)1j1 3j1 7j2 
0.9722 

Of course (pun intended!) bookmakers and betting shops see to it that such a 
sum is never less than 1, the excess over 1 being what the bookmaker creams off 
as markup or overround. In practice, real probabilities, that is the absolute 
probabilties of the various horses winning, vary dynamically right up to the final 
minutes before a race. Real probabilities reflect the many technicalities of racing 
as a sport such as the assessment of horses, jockeys, trainers, weather, racetrack 
condition, even insider trading and corruption, all of which lends a certain 
naïvety to the fact that some of the observations on which this article is based are 
derived from the single sets of static odds quoted in the racing pages of daily 
newspapers. However, broad conclusions can be drawn, for example that in UK 
horse racing overround seems to average between 25% to 40%. (It goes without 
saying that should any reader discover a race card for which the +/@:fro is less 
than 1, he or she should immediately raise every possible penny to place bets on 
all horses in multiples of fro and even more importantly should as a matter of 
duty contact me urgently!) 
Add a couple of horses to the above field to make matters more realistic : 
   (+/&:fro) fld=.1j1 3j1 7j2 5j1 8j1 
1.25 
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giving an overround of 25%. Thus if bets are placed in the proportions fro fld 
then the cost of betting on all horses will be 1.25 for an assured return of 1 and 
an assured gain to the bookmaker of 0.25. 
Assuming that the bookmaker’s quoted odds reflect his view of the relative 
probabilities of the horses winning the race, the underlying true odds are: 
   to=.(%+/)&:fro       NB. true odds 

   to fld 

0.4 0.2 0.1778 0.1333 0.08889 

(Technical note: the hook %+/ normalises a list so that the total of its elements is 
1.) 
To also demonstrates the extent to which the bookmaker downgrades odds in 
order to achieve overround, e.g. the horse quoted at evens has in fact a 
probability of 0.4 of winning the race. Also the returns (that is, including the 
original stake) multiplied by the true odds remain the same whichever horse 
wins the race : 
   (to * %@fro)fld 
0.8 0.8 0.8 0.8 0.8 

namely the reciprocal of the overround. The bookmaker accepts bets to create a 
book, on which he reckons to make the overround as profit whatever the 
outcome of the race. 
Random real probabilities totalling 1 are generated by 
   rnd=.?@#&0       NB. random uniforms in {0,1} 

   rrp=.(%+/)@:rnd  NB. random real probabilities 

   rrp 5 
0.176 0.28 0.047 0.232 0.265 

Using these and a book based on fld, the bookmaker’s long-term income and 
outgoings based on horses winning with random probabilities are given by 
   book=.40 20 18 13 9 

   (+/book),+/book*(rrp 5)*%fro fld 
100 79.85 

Significant risk to the bookmaker arises only if both his book and the real 
probabilities change. Bookmaker’s arithmetic is a continuous process with input 
parameters: current book, real probabilities, current actual odds in which he 
strives to adjust his quoted odds in order to keep the book in balance, and 
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thereby his profits secure. Incomings and outgoings can be formalised in a verb 
whose left argument is book;real probabilities, and whose right argument is 
current actual odds. A balanced book would be simply a multiple of the real 
probabilities. The example below shows how real probabilities make little 
difference to the bookmaker’s expectations even if public assessment of the race 
shifts dramatically in favour of the outsider : 
   inout=.dyad : '(+/>{.x),+/*/(>x),%fro y' 

   book_rp=.40 20 18 13 9;0.2 0.1 0.1 0.1 0.5 

   book_rp inout fld 

100 80.4 

However, suppose that the outsider attracts a large number of bets : 
   book_rp=.40 22 18 13 50;0.2 0.1 0.1 0.1 0.5 

   book_rp inout fld 

143 265.7 

This gives the bookmaker a projected loss of 123. His options are (1) to sustain 
his previous belief in the relative probabilities but reduce exposure to the new 
favourite by reducing its quoted odds, in the hope that future bets on the other 
horses may help to recoup his losses: 
   book_rp=.40 22 18 13 0;0.2 0.1 0.1 0.1 0.5 

   book_rp inout 1j1 3j1 7j2 5j1 1j2 
93 40.7 

or (2) to accept the new real probabilities and requote all his odds based on 
these. The primitive verb j. transforms a b to ajb, that is fractions back to 
odds: 
   (j./@:(%/,-.))0.78 

0.78j0.22 

(The hook ,-. returns a fraction joined to its 1s complement) 
However, it is more satisfactory to have odds in the form 1jx or xj1 so define 
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   odds=.monad :0 

t=.%/y,1-y 

if.t>1 do.r=.>.1,t 

else. r=.<.(%t),1 end. 

r=.j./r 

) 

   odds"(0)0.5 0.25 
1j1 3j1 

(Note: Any rounding favours the bookmaker which seems quite reasonable given 
that odds can never be a scientifically precise measure.) 
The bookmaker might choose to revise his true odds and apply an overround of 
about 25% to give 
   odds"(0) 0.2 0.1 0.1 0.1 0.5*1.25 

3j1 7j1 7j1 7j1 1j2 

It is not suggested that bookmakers carry out any such arithmetic formally, 
although the above presumably models roughly the nimble calculations which 
they instinctively perform. 
Beating the bookie 
Given the inherent bias in favour of the bookmaker, are there any ways by which 
the better can possibly turn the situation to his advantage? First assume that he 
has some technical knowledge of which he feels reasonably assured and believes 
to be superior to that of the bookmaker. 
Since %fro fld gives the returns for a unit bet the returns for any list of bets 
are 
    rets =.[*%@:fro@]   NB. left argument = bets 

    1 1 1 1 1 rets fld 
2 4 4.5 6 9 

Suppose now that as a matter of judgement the better believes that the race will 
certainly be won by one of the two favourites with probabilities in proportion 
3:2. His expected returns for a bet which reflects this are 
   6 4 0 0 0 rets fld 
12 16 0 0 0 

that is, for a total outlay of 10 he will achieve a return of either 12 or 16 or 0. His 
expectation, using true odds, is (0.4×6) + (0.2×12) = 4.8 which would give the 
bookmaker an expected gain of 5.2. However the expectation based on his own 



VECTOR  Vol. 25 No.1 

 90 

judgement is (0.6×12) + (0.4×16) = 13.6, and so if he has complete confidence in 
his judgement and behaves rationally, it would be senseless for him not to bet, 
nor indeed would he be unhappy if one of the unbacked horses won, since he 
would still have achieved value for his money in the same sense that an insurance 
policy on which no claim is made has nevertheless provided valuable cover. 
Alternatively the better might choose to use the judgement of others, e.g. 
newspaper tipsters. What are the net gains or losses resulting from a unit bet on 
every tipster recommendation for a given day? On a day in which 20 races were 
run and four winners were tipped at 4-1, 11-4, 7-2 and 4-1, the net gain achieved 
for unit bets placed by following a tipster was given by : 
   tips=.-c+/@:(1&rets)@ ] 

   20 tips 4j1 11j4 7j2 4j1 
_1.75 

that is an overall loss of -1.75. Empirical evidence using the racing 
correspondents of the Times and the Daily Telegraph shows that following 
tipsters’ advice consistently is very rarely profitable, and even then only when a 
winner happens to be picked at unusually long odds. 
Turn now to manipulating probabilities, are there any techniques based on 
probability alone which can swing the bias away from the bookmaker towards 
the better? Such a possibility is demonstrated by the so-called Martingale in 
which a stake is progressively doubled for a losing bet and betting stops on a 
winning one. In a fair game at evens, e.g. coin tossing with bets on a tail, a tail is 
bound to occur eventually, at which point there is a net gain of one original 
betting unit. The problem is that the certainty of winning requires unbounded 
available capital. 
Fantasy betting 
The safest way for the novice to take his first steps into the world of betting is to 
use his computer to estimate and simulate the forces he will encounter in the real 
world in which real money changes hands. First generate random uniform 
integers using Interval Index I. to transform each of the numbers in rnd into a 
serial number of one of the intervals defined by the left argument. 
   wrnd=.(+/\)@[  I. rnd@]   NB. weightd random integers 

   >:(to fld)wrnd 10 
1 3 3 3 1 4 1 1 2 3 
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thus in 10 reruns the first and third horses each won 4 times, the second and 
fourth horses won once and the fifth horse not at all. To count frequencies arising 
in such runs say 
   +/"1 (i.#fld) =/ (to fld)wrnd 10 
2 3 4 0 1 

which can be consolidated in a verb where the right argument is the number of 
reruns : 
   rerun=.dyad :'+/"1 (i.#x) =/ (to x)wrnd y' 

   fld rerun 20 
10 5 2 2 1 

that is the favourite won exactly half of the time in the above simulated sequence. 
A simulated race with between 5 and 17 runners each of which consists of 
drawings from a negative exponential distribution with mean 1.25 is given by 
   sortd=.{c\: 

   rne=.[ * j.@%@rnd@]  NB. random negative exponential 

   odds"(0)0.0475>.sortd (%+/)1.25 rne 10 

5j1 5j1 6j1 8j1 9j1 10j1 12j1 12j1 14j1 20j1 

(Note : There is no special reason for using the negative exponential distribution 
other than that it appears empirically to give lists of odds which look tolerably 
similar to those actually printed daily in the sporting pages. 0.0475> is to 
ensure that no odds are greater than 20j1.) 
It is convenient to head each list with the sequence number of the randomly 
drawn winner (favourite = 1, etc.). 
rrace=.monad :0                  NB. random race 

r=.odds"(0)t=.0.0475>.sortd (%+/)1.25 rne 5+?13 

r=.(>:(+/\ (%+/)t) I. rnd 1),r   NB. join random winner 

) 

   rrace 10 
2 1j1 3j1 12j1 13j1 17j1 18j1 20j1 20j1 20j1 20j1 20j1 20j1 

A random race card with 3 races is then given by 
   rrcard=.monad : '>rrace each 5+?y#13' 

   rrcard 3 

3 2j1 2j1 6j1  6j1  7j1 19j1    0    0    0    0    0    0 

1 2j1 3j1 9j1 11j1 14j1 15j1 16j1 17j1 19j1 19j1 19j1 19j1 
1 1j1 5j1 5j1  7j1 10j1 18j1 19j1 19j1 19j1 19j1    0    0 
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Betting methods 
Various methods can be employed when a bet on a single race is placed, for 
example the favourite can be backed, or a pin stuck in the race card, or a horse 
chosen at random but with weights applied based on the quoted odds. These 
three possibilities are described respectively in 

method=.dyad : 0 

r=.i.0 [ i=.0 

while.i<#x do. t=.i{x                 NB. loop through races 

select. Y 

  case. 1 do. b=.1                    NB. bet on favourite 

  case. 2 do. b=.>:?<:#t              NB. stick a pin in race card 

  case. 3 do. b=.>:(fro }.t)wrnd 1    NB. random, wts=oddsend. 

if.(b={.t)do. r=.r,(<:{.t){%fro }.t   NB. Win 

else. r=.r,0 end.                     NB. Lose 

i=.i+1 end. R 

) 

The experiments which follow are based on a hypothetical race meeting where 
between 5 and 17 horses ran in each of 1,000 races, with a simulated 25% 
overround. 
   rc=.rrcard 1000 

   +/"1>(<rc)method each 1 2 3 

752.8 503.3 772 

gives the total winnings on a unit stake in each race. Thus for each method 1,000 
units of were staked, and apart from method 2, the totals in the above run 
converge towards a value of 800. Repeated reruns with further race cards show 
consistency in the case of methods 1 and 3 but considerable variability with 
method 2, which rarely comes even close to 800 – in other words, random 
selection is likely to be a worst case strategy in the long run! That said, the 
methods were applied to three real race meetings at Ripon, Carlisle and Newton 
Abbot with 7, 7 and 6 races respectively with results : 
Ripon: 9 0 0   Carlisle: 7.375 16 0   Newton Abbot: 11.1 0 3.75 

showing that even pin-stickers can have their lucky day! 
Betting systems 
Simulated race cards provide the opportunity for testing out betting systems, 
that is betting sequences in which stakes change dynamically according to 
previous results. One such system is due to the 18th-century mathematician 
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d’Alembert. Applying this system, the size of the stake is increased by 1 in the 
case of a losing bet and decreased by 1 in the event of a winning bet. A zero stake 
is replaced by the original stake. For example, with an initial bet of 5 and a sole 
win of 5 on the fourth race out of six, the succession of bets was 5, 6, 7, 8, 7 and 8, 
a total of 41 for a return of 8×5=40 and an overall loss of 1. The following verb 
simulates the sequence of stakes : 
   dalem=.dyad :0                NB. x is stake, y is returns list 

r=.x [ i=.1 

while.i<#y do.                   NB. loop through returns 

if.(0={:r)do.r=.(}:r),x          NB. if 0 restore initial stake 

else.r=.r,({:r)+_1++:0=(<:i){y end.  NB. raise or lower 

i=.i+1 end.r 

) 

   5 dalem 0 0 0 5 0 0 
5 6 7 8 7 8 

Long runs of losers lead to increasingly large stakes developing. Using the ‘back 
the favourite’ method on the simulated 1000-race card rc, the total returned is 
   t1=.rc method 1 

   +/(*5&dalem) t1 
198252.2 

for total stakes of 
   +/5 dalem t1 
256230 

198,252/256,230 = 77.4% which is little different from straightforward constant 
bets. The corresponding figures for methods 2 and 3 are 211,035÷445410 = 
47.4% and 267065÷331,278 = 80.6%, indicating again the weakness of ‘selecting 
by pin’. In all cases the figures show how the better runs the risk of a heavy 
absolute loss using this system when wins are relatively infrequent. 
Other systems could be based on patterns of wins and losses for which the 
primitive verb E.is helpful. For example if a constant bet of 5 is made only after 
observing a ‘win-lose’ sequence, define 
    wl=.3 :'0 0,_2}.1 0 E.yc:0' 

    wl 1 0 0 0 1 1 
0 0 1 0 0 0 

In this case bets would in the long run be placed only part of the time: 
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    +/wl 0c:t1=.rc method 1 

185 

    +/(wl tc:0)#t1 
131.33 

131.3÷185 = 71.0% and the corresponding percentages for methods 2 and 3 
were 55.5% and 90.0% respectively. The practical message is that neither of the 
above systems offers the better much hope of advantage in the long run. 
However, having so much experimental possibility available at home makes 
things significantly easier to organise than a day at Aintree or Goodwood, and a 
good deal cheaper too – have a great day in! 
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FUNCTIONAL CALCULATION  

5: Operations 
by Neville Holmes (neville.holmes@utas.edu.au) 

This article is the sixth in a series expounding the joys of functional calculation. 
Functional calculation does with operations applied to functions and numbers what 
numerical calculation does with functions applied to numbers. The functional nota-
tion used as the vehicle in this series is provided by a freely available calculation tool 
called J. This article makes a start to introducing those functional calculation capa-
bilities, in particular the use of certain operators which can be applied to functions 
and values to produce new functions. 

Functional calculation 
The description so far has been of numerical calculation, that is, of functions 
which can be applied to numbers to produce other numbers, though there has 
been some consideration of structures of characters and boxes. Much is possible 
using the J notation through such simple numerical calculation, because the nota-
tion provides a rich variety of primitive functions, that is, of functions that have 
symbols like + and <. and %: instead of names given by the user, names like y 
and foo and Herbert. 
What remains to be described is how functional calculation can be built, uni-
formly and consistently, upon the numerical calculation provided by J. 
There are two ways in which functional expressions can be built up – by juxta-
posing functions in trains, and by applying operations to functions and values. Of 
course the two methods may be combined. Here operations are reviewed while 
the use of trains is deferred. 
In J the definition of functions is exactly the same as the definition of results – it’s 
simply a matter of naming. Naming is done using the =. or =: copulas, of which 
the latter is more general in providing a definition which holds globally. Thus the 
square root of 999 is a numerical result and is named by 
   sr =: %: 999 

while the natural log of the difference[1] is a function and is named by 

   ld =: j. @ - 
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where the j. and the - are functions, and the @ is an operation, as is about to 
be explained. 
Operations 
Operations are to functions what functions are to values. Primitive operations are 
given special symbols, and can be monadic or dyadic, but not both. In this they 
differ from primitive functions which can be used both monadically or dyadically. 
The point about operations is that they are applied to produce functions, whereas 
functions are applied to produce values, that is, numbers or characters or boxes. 
As higher level entities, operations apply themselves to their operands more 
strongly than functions apply themselves to their arguments. Two primitive op-
erations have been briefly considered in previous articles. 
The symbol � stands for a primitive monadic operation, and its operand (the 
function to its left) is always applied dyadically. Thus, the argument of the func-
tion it produces when used monadically is used both as the left argument and the 
right argument. Otherwise, the arguments of the function it produces when used 
dyadically are reversed, or commuted, the right argument being used as the left 
and the left argument being used as the right. 
The symbol / stands for a primitive monadic operation, and the function it pro-
duces when used monadically applies its operand dyadically between all the 
items of its argument. So +/ applied monadically to a list of numbers will add 
them up. 
There are two dyadic operations which can be used to combine functions to 
make new ones, as illustrated in the following diagram. 
f&g y x f&g y f@g y x f@g y 

f    f f f 

 ↖   ↗ ↖  ↖  ↖ 
   g  g   g    g    g 

    ↖   ↖    ↖     ↖   ↗  ↖ 
      y    x     y       y  x    y 

Monadic After Dyadic After Monadic Of Dyadic Of 
Syntactically, what holds for primitive functions also holds for composed func-
tions. Where a primitive function can be used so also can a function produced by 
an operation. A function, primitive or composed, can be used monadically or dy-
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adically, and this is independent of whether any component operation is monadic 
or dyadic. 
Note particularly that an expression like 
   x f@g y 

can be keyed in directly for evaluation, but that the expression 

   x f g y 

does not have the same meaning, even though it might give the same result. 
In some of the literature, dyadic operations are called conjunctions, while mo-
nadic operations are called adverbs, by analogy with the conventional names for 
parts of speech in natural language. This is a dubious analogy, but the names are 
useful and will be adopted here. 
Adverbs 
The simpler operations are the adverbs. They only have one operand, to their 
left; conjunctions have two. Most primitive adverbs are structural, that is, their 
operand is a function, and the adverb controls how the operand is applied 
amongst the items of the composed function’s argument or arguments. The table 
lists the adverbs discussed in the following. 
� both swap    
/ across between /. diagonals sequester 
\ prefixes infixes \. suffixes exfixes 
} extract amend b. basic  
   f. fix fix 

Moving arguments 
The simplest primitive adverb has � for its symbol. It always uses its operand as a 
dyadic function, but the function it produces may of course be used monadically 
or dyadically. 
If its result, say f�, is used monadically, then the argument is used as both argu-
ments of the operand function. The expression f�x is equivalent to x f x. For 
example, +�x will double x, while *�x will square it. 
If f� is used dyadically, then the arguments are swapped for the operand func-
tion. The expression x f�y is equivalent to y f x. For example, x-�y will sub-
tract x from y, not y from x, while x%�y will divide x into y, not by it. 
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The dyadic use of this adverb is convenient to streamline thought by removing 
parentheses. Thus (expression) f x may be rewritten x f� expression. 
Inserting functions 
The primitive adverb with symbol / is structural at a lower level, causing its op-
erand to be inserted between the items of the argument or arguments of the 
function it produces. 
If its result, say f/, is used monadically, then it is as though f is inserted be-
tween the items of the argument of f/ however many items there might be. In 
this case / is often pronounced across or insert. For example, +/x will add up 
the items of x, */x will multiply them up, and ;/x will put each in a box. 
If f/ is used dyadically, then it is as though f were inserted between the items 
of the left argument of f/ and the items of its right argument, each and every 
one of them at least for scalar functions. In this case / is often pronounced be-
tween or table. For example, x+/y will, if x and y are lists, make a table of the 
sums of the items of x and of y, while x*/y will make a table of their products. 
Conveniently, */�>:i.12 will produce a 12×12 multiplication table, and, using 
functions other than * as operand, other tables may be similarly produced. 
The function f/ is often spoken of as the f reduction when used monadically be-
cause its effect is normally to reduce the rank of its argument, at least when f is 
a scalar function. The aspect of most interest here is that a list is reduced to a 
scalar, so that means an empty list like i.0 or $9 must reduce to a scalar. That 
scalar must be the identity value for the reducing function, so that +/i.0 will 
yield 0, while */$7 will yield 1. 
More complex ways of inserting functions use symbols that look like the / sym-
bol. However, in all cases that follow, the operand is applied monadically by the 
adverb, unlike the operand of / which is applied dyadically. 
• Used monadically, f\ will apply its operand to successive prefixes of its 

argument. For example, <\ will show those successive prefixes boxed, 
and +/\ will yield progressive sums. 

• Used dyadically, f\ will apply its operand to successive subsequences of 
its right argument of the size specified by its left argument. When its left 
argument is negative, the subsequences are consecutive within their ar-
gument, if positive their heads are consecutive. Thus _2+/\y will yield the 
sums of distinct pairs of y, giving a result with half as many items as y, 
but 2-�/\y will yield the first differences, that is, it will subtract each 



VECTOR  Vol. 25 No.1 

 99 

item except the last from its immediately following item giving a result 
with one item fewer than y. 

• The adverb \. is just like \ except the subsequences included by \ are 
excluded by \. so that #\i.3 yields 1 2 3 while #\.i.3 yields 3 2 1. 

• Monadic /. applies its operand to diagonals of its argument, while dyadic 
/. applies its operand to subsequences of the right argument selected ac-
cording to the key given by the left argument. 

Other adverbs 
The amend adverb with symbol } behaves in a more complex way. In the first 
place, its operand may be a function or it may be a value. In the second place, the 
} adverb is closely associated with the function {, an unlikely association. 
Superficially, monadic x} looks like monadic x&{ when their argument is of 
rank one. Thus, 4}i.7 yields the same as 4&{i.7 but their behaviour diverges 
when more complex arguments and operands are used. 
Dyadically, after w=:x z} y is carried out, z{w will yield x in simple cases. 
The basic idea of dyadic amendment is that, using the example just given, the op-
erand z specifies which elements of y the elements of x are to replace. 
The amend adverb is too complex to explain further here, except that, where the 
operand is a function, that function is applied to the overall function’s argument 
or arguments to give a result that becomes the effective operand as already de-
scribed. 
A couple of housekeeping adverbs are basic and fix, spelt b. and f. respec-
tively. The basic adverb produces a monadic function which, for an argument of 
_1 yields a character string showing the obverse of b.’s operand, for an argu-
ment of 0 a numeric list of the ranks of the operand, and for an argument of 1 a 
character string showing the identity function of the operand. The obverse is 
needed for the �: and &. conjunctions, and can be defined by the :. conjunc-
tion. The fix adverb yields its operand function, but redefined entirely in terms of 
primitives. All contained definitions are eliminated, so once a function is fixed it 
can no longer be changed by changing other definitions. 
Conjunctions 
The more complex operations are the conjunctions, more complex because they 
have two operands. Some primitive conjunctions are strictly compositional, their 
operands being functions, and the conjunction controlling how the operands are 
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applied to the composed function’s argument or arguments. Other primitive 
conjunctions are structural, that is, they have one operation that is a function, 
and one that is a value which modifies how the other operand, the function, is 
applied to the conjunction’s argument or arguments. 
Here is a table of the simpler conjunctions. 
   ;. cut cut �: power power 
   !. fit fit !: foreign foreign 
" rank rank    L: level level 
@ of of    @: of of 
& after after &. dual dual &: after after 

But, before discussing more general primitive conjunctions, it’s useful to review 
one of the simplest of them, value bonding, because it is perhaps the most versa-
tile. 
Value bonding 
The symbol for bonding is &, the ampersand. In value bonding, one of the oper-
ands is a function, and one is a value. 
For example, used as a monadic function 3&+ will add 3 to its argument, while 
%&5 will divide its sole argument by 5. The value operand doesn’t have to be a 
scalar, nor does it have to be numeric. 
On the other hand, used as a dyadic function a 3&+ will add 3 to its right argu-
ment a times, while a %&5 will divide its right argument by 5 a times. If a is 
zero, nothing will happen, but if a is negative, the inverse function will be car-
ried out -a times. 
Compositions 
Bonding can also be used with two functional operands. For a function composed 
in this way, the right operand is always used monadically, being applied to each 
argument when there are two, and the left operand being applied to the result or 
results from the right operand. Thus j.&%:y is the same as j.%:y (the ln of the 
square root of y), while xj.&%:y is the same as (j.x)%:(j.y) (in which the 
second pair of parentheses are included for aesthetic reasons), the ln x root of 
the ln of y. 
The other simple function-combining primitive conjunction uses the @ as its 
symbol, and applies its left operand to the result of its right operand, which is 
supplied with whatever argument or arguments the composed function is given. 
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Thus j.@%:y is the same as j.&%:y, but xj.@%:y is the same as j.(x%:y) 
the ln of the x root of y. 
The following diagram shows the nature of these two most common conjunc-
tions. 
f&g y x f&g y f@g y x f@g y 

f    f f f 

 ↖   ↗ ↖  ↖  ↖ 
   g  g   g    g    g 

    ↖   ↖    ↖     ↖   ↗  ↖ 
      y    x     y       y  x    y 

Monadic After Dyadic After Monadic Of Dyadic Of 
The conjunctions which use the & and @ are the most commonly used, but 
there are several related ones that are of interest. 
• The dual or under conjunction uses the symbol &. and applies the ob-

verse (which is usually its inverse) of its right operand to the result of the 
bond of its operands. This is very useful with a > (unbox) right operand to 
allow the contents of boxes to be worked on then put back into boxes. 

• For primitive functions the obverse is usually the inverse, but the :. con-
junction yields its left operand with its obverse defined as its right oper-
and. The obverse is used by the j: conjunction described below, as well 
as by &. as just described. 

• The symbol :: stands for the adverse conjunction, very like obverse but 
using its right operand for the replacement upon error of its left operand 
rather than for its obverse. 

• The symbols .. and .: stand for the even and odd conjunctions, though 
the other uses of the . symbol means that usually a blank character must 
precede these conjunctions to make their meaning unambiguous and plain. 
In brief, f ..g is -:@(f+f&g) while f .:g is -:@(f-f&g). The names 
describe the effect when g=.- since they then yield the even and odd 
parts of the function f. 

Modifying functions 
The primitive conjunctions that modify functions typically use the value of their 
right operand to change the application of their functional left operand to the ar-
guments of the function produced. 
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Perhaps the most interesting, and at the same time the most complex, of modify-
ing primitive conjunctions is the rank conjunction, expressed by the ditto (") 
symbol. When its left operand is a function, its right operand specifies the rank to 
be used for the items of the modified function’s argument or arguments. 
Summary 
This article is like a list of ingredients that can be used for combining functions 
using notation provided by J. At their simplest, these ingredients can be used to 
define functions that are more complex than the primitive functions but which 
combine those primitive functions in a variety of ways. 
The operations described here, together with those not yet considered, provide 
the basic means of functional programming. Yet to be considered are trains of 
various kinds, which will soon be described. 
However, the next article in this series will illustrate how operations can be used 
with functions as a preliminary to treatment of trains. 
Postscript 
Some explanation of the brevity and content of this article seems needed for new 
readers of the series and for anyone thinking of using the series for teaching. 
The articles were written over a decade ago and were each handed out to stu-
dents attending a two hour lecture that used the J interpreter’s workings dis-
played on a large screen to show in more detail the meaning of what is gone over 
in the article handed out at the beginning of the lecture. Any queries by students 
were answered on the spot by use of the interpreter. 
At the end of the lecture students were given an article such as the previous one 
published here, that is, an article giving many examples of the use of the matter of 
the lecture. While the exemplary articles were based on using the digits of a year 
to generate the first hundred integers, the students were required to mimic the 
examples but using the digits of their student identification number. The code 
used to mark their work would, they were told, give credit for the variety of ex-
pressions and for their brevity. 
Notes 

1. Properly speaking, the difference is the magnitude of the subtraction, but English doesn’t 
have a convenient unambiguous word for the result of a subtraction, so difference has its 
loose meaning here. 
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OOStats – A statistics facility for  
users of Dyalog APL 

by Alan Sykes 

At the Dyalog Users Conference (Elsinore 2008) I reported my first efforts at 
providing facilities for statistical computing using Dyalog APL’s object-oriented 
facilities. Since then, the software has expanded and consolidated to such a point that 
I would like to invite others to use it, suggest suitable extensions to it (and even 
provide them). This article is therefore a brief introduction to it. 

The starting point 
From the beginning, I knew that if the software were to be used for real, then it 
had to cope with missing values. Post retirement, I did some consultancy work, 
and was invariably given a very messy Excel sheet of data purporting to be a 
database! Importing this into APL and hitting a column of figures with a simple 
Mean program had about a 0.1% chance of working! Also, having worked with 
colleagues into analysing survey data, I knew that as well as system missing 
values, it was useful to have user-declared missing values for a particular 
variable (so that analyses of what type of respondents tended to leave a 
particular database field empty are possible). 
So the starting point was the development of a simple database object that 
allowed the user to do the usual database operations e.g. selecting cases, 
computing new variables, deleting case set cetera. In doing this early work, I soon 
felt it important to be able to use the graphical user interface (e.g. for declaring 
variable formats) as well as using the session. (This was fortuitous, as later on, 
they were incorporated into a full GUI wrap-round that emerged naturally from 
the object-oriented approach adopted.) 
Creating a database from APL 
Creating a database from APL should be easy – it is. Using the object code s_db in 
the workspace oostats: 
      db�Enew s_db (('alan' 'adrian')(alan adrian)) 

The user variables are referred to by names as listed in the public field: 
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      db.UserNames 
 alan  adrian 

In addition, however, there are three variables that keep a track of the case 
number, whether that case is selected, and the case frequency: 
      db._Cases 

1 2 3 4 

      db._CSel 

1 1 1 1 

      db._CFreq 
1 1 1 1 

(Occasionally, it is helpful to be able to declare a case frequency – for example if 
analysing a contingency table given from external sources.) 
To look at the database: 
      db.View 

 
Figure 1 

System missing values are kept in a field: db_SM 

      (Enull)(t'')(t�)('')�db._SM 

1 1 1 1 

and the collection of missing values for each of the user variables is contained in 
      db.MissVals 

 (Enull)(t'')(t�)('')  (Enull)(t'')(t�)('') 

Each of these lists is a string (to make it easier to see just what the missing values 
are) and may be added to: 
      db.MissVals[1],�t'(2)' 

      db.MissVals 

(Enull)(t'')(t�)('')(2)  (Enull)(t'')(t�)('') 

Alternatively, the method db.GetMissVals provides a grid object for entering 
further values: 
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Figure 2 

After such an allocation, any statistical method using the variable alan would 
filter out values equal to 2. 
Selecting cases is programmed as a method in s_db, and is straightforward: 
     db.SelectCases '(alan<4)jadrian<5' 

Cases selected by (alan<4)jadrian<5 

3 cases not selected 

     db.View 

 
Figure 3 

In the grid view of the database, cases not selected are in grey – note that case 3 
has not been selected because I take the view that a null value cannot be included 
in the comparison. 
Statistical Methods 
As well as the above (and other) database methods, the object code s_db 
contains a number of statistical methods: 
      db.StatsMethods 

UniqueFrequency Unistats Regress TwoSampleMeans CrossTabs 

Multistats MatchedPairs OneWayAnova Scatterplot Table Boxplot 
TimeSeries OneWayManova 

With one exception (the Unistats method) each statistical method creates a 
sub-object db.s which has its own fields and methods. For our first example, 
consider UniqueFrequency, useful when investigating a database for the first 
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time – it lists unique values of a variable and their frequency (missing values are 
included here): 
      db.UniqueFrequency 'adrian' 

Sub-object s created from all cases 

      )cs db 

#.[s_db] 

     s.UniqueValues 

1 2 5  [Null] 

     s.Frequencies 

1 1 1 1 

     #.Tab s.FrequencyTable 

 ValueLabels  Values  Frequency  Percentage 

              1               1          25 

              2               1          25 

              5               1          25 

              [Null]          1          25 

(With a view to printing out tables later, a table is returned as a vector of column 
headings and then the body of the table – #.Tab simply glues them together 
adjusting lengths as necessary.) 
The Unistats sub-object 
Perhaps the most frequently used statistical method in s_db is the Unistats 
object which allows you to calculate means and standard deviations etc for a 
single variable. Using this from the session, I took the view that one might want 
to do this for more than one variable, so I decided to create an object at the root 
level called by the name of the variable. 
      db.SelectCases 1 

(re-instates all cases) 

      db.Unistats 'adrian' 

Created object #.adrian.? 

Currently, # cases excluded = 1 

(In creating this object, any value that is in the list of missing values for the 
variable is filtered out. The ability to do this automatically when creating a 
statistical object is really important. For example, when fitting different 
competing regression models, cases will be included or excluded as each new 
model is specified.) 
We can now type: 
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      adrian.Mean 

2.66667 

      adrian.StDev 
2.08167 

The choice of options for the Unistats method reflects my own personal 
outlook on the process of statistical data analysis – in particular the important 
role that graphics plays in understanding what is going on and therefore what 
analysis is (or is not) relevant. So, for example, with Unistats – there are three 
graphs – a histogram (Hist), a Boxplot (useful for identifying cases that are 
outliers) and a Rankitplot (a visual check on whether or not the data is 
Normally distributed). Other options are easily added. 
Finding out about the options available 
With any statistical object, it is useful to document what options are available, 
and also to provide a Script (a nested matrix) for documenting output. This is 
driven by the function #.Explore. For example, the statistical method 
UniqueFrequency has a Script matrix 
      #.Ed.freq 

1 1  Heading         1   2  Heading 

1 0  UniqueValues    1   2  'Unique Values' 

                     1   3  UniqueValues 

1 0  Frequencies     1   2  'Frequencies' 

                     1   3  Frequencies 

1 1  FrequencyTable  1   2  'Frequency Table of all Unique Values' 
                     1   4  FrequencyTable 

listing options (plus information on left and right arguments) with the last 
column specifying executable commands for output if that option is selected. 
(The matrix itself may be constructed through a specially designed GUI nested 
matrix editor #.Ed.Edit.) 
The object itself accesses this information through a field s.Options: 
      s.Options 

 Left arg  Option          Right arg 

           Heading 

           UniqueValues 

           Frequencies 

           FrequencyTable 

To see this working more effectively, 



VECTOR  Vol. 25 No.1 

 109 

     Open 'c:\oostats\student.adb' 

Object 'db' has been created using s_db from file 

c:\oostats\student.adb 

(A database is saved in an APL component file together with its attributes.) 
      db.UserNames 

 sex  height  weight  age  left  react  sort 

      db.Unistats 'weight' 

Created object #.weight.? 

Currently, # cases excluded = 0 

      weight.Options 

 Left arg                   Option               Right arg 

                            Heading 

                            Sum 

                            Mean 

                            StDev 

                            StError 

                            LHinge 

                            Median 

                            Uhinge 

                            Table of Statistics 

                            Outliers 

                            ExtremeOutliers 

                            Ttest                hypval�0 

                            NonParTest           hypval�0 

                            Percentiles          pcts�25 50 75 

                            FreqTable            start,width� 

                            ConfInt              conflev%�95 

 Normal,Exponential,Gammaz  Hist                 start,width� 

                            Boxplot 
                            Rankitplot 

Right arguments (numeric) are indicated through a text vector, thus the Ttest 
option has a right argument which specifies the hypothesis value required. Left 
arguments, where they exist, are a list of names indicating categorical options – 
thus for the Histogram method, a left argument of 'Normal' would add a 
normal-density overlay to the histogram. 
Here are some examples of the options: 
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      weight.Min 

33 

      weight.Max 

96 
      weight.Hist 30 4 

 
Figure 4 

Note the menu item View which activates the Causeway viewer, and Overlay 
which gives you a choice of fitting to the data a Normal, Exponential, Log-Normal, 
Gamma distribution or a smoothed version of the histogram (the left argument 
options to Hist). 
If you are unsure of which options to use, then you can use #.Explore with 
right argument equal to the object to be explored. This allows the user to tick 
appropriate options and obtain suitably annotated output: 
      #.Explore weight 

 
Figure 6 
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Univariate statistics for weight 

 Statistic    Value 

 #-cases     100 

 Sum        6188 

 Mean         61.88 

 StDev         9.98107 

Outliers 

There are 2 outliers 

 Case  Value 

   77     92 
   95     96 

Extreme Outliers 

There are 0 extreme outliers 

If we pursue the information on weight of students further, we can recognise that 
there are male and female students in the same data set, so this histogram is a 
mixture of two distributions (one for each sex). To investigate how they differ, 
we need either a boxplot (see later), or two histograms on one axis (not advisable 
and so not provided) or two smoothed histograms. Both options are available if 
we use the statistical method TwoSampleMeans: 
      db.TwoSampleMeans 'weight' 'sex=1' 'sex=2' 

Sub-Object s created using s_twosamt 

      db.s.FreqDensities 4 

(The parameter is a smoothing parameter – think of it as a class-width for a 
histogram.) 

 
Figure 6 
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Note that the labels in the key are produced from the database, which has a field 
db.ValueLabels – a vector of matrices, one for each user variable: 
      db.ValueLabels 

 1  Male 
 2  Female 

(n.b. there is only one variable here with value labels) 
The resulting graph gives a clear picture of how the distributions of male and 
female weights differ – a formal test of the equality of means may be performed 
(either assuming approximate normality or using a non-parametric test): 
      Tab db.s.EqualVarTest 

 df1  df2  F-statistic   p-value 

  53   45      1.21619  0.251715 

which tells us that we can assume equal variances (as suspected 
from the two densities above) 

      Tab db.s.Ttest 0 

 t-Statistic  df      p-value 

     7.10045  98  1.99094E¯10 

If you prefer to use the #.Explore method, then it is a little 
easier to see what is going on 

      #.Explore db.s 

 
Figure 7 
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The chosen options are then performed and reported back with annotations: 
Two-sample analysis for variable weight 

Group 1 is defined by the statement sex=1 

Group 2 is defined by the statement sex=2 

Sample Statistics 

          group 1  group 2 

 Means     67.22    55.61 

 St Devs    8.835    7.265 

 #-cases   54       46 

Pooled Variance Estimate 

 Estimate  Degrees of Freedom 
    66.45                  99 

Test of Equality of Variances 

 df1  df2  F-statistic  p-value 
  53   45        1.216   0.2517 

t-Test of Hypothesis that the means differ by 0 

The results following assume equal variances 

 t-Statistic  df    p-value 

         7.1  98  1.991E¯10 

95% Confidence Interval for Difference of Two Means 

The results following assume equal variances 

 Lower value  Upper Value 
        7.89        15.34 

The Graphic User Interface 
Whilst driving a statistical analysis from the keyboard is a familiar environment 
for statisticians, a GUI interface is also desirable. This is provided by the object 
code s_guidb, which inherits the properties and methods of s_db. Because of 
the inheritance, and because all the database facilities already have a GUI 
interface (e.g. db.GetMissVals) it is straightforward to incorporate them into a 
menu-driven system. 
For the statistical methods, forms are necessary to declare the appropriate 
variables to spawn the statistical object – once the object has been created, the 
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grid object used in #.Explore, provides the user choice for the statistical options 
required from that object, and the output from Explore gives the output required 
for an RTF-viewer. This is illustrated by using the male and female weights 
example again. 
Having selected from the Analyse menu, the option Two-sample analysis, we can 
select the target variable, specify the two groups, and create the object using the 
Analyse button. The default options can then be executed by pressing Do Options 
on the tabbed subform. The boxplot is generated on the right-hand tabbed 
subform as seen below. 

 
Figure 8 

The hidden tabbed sub-forms reveal the database grid object and the text output: 
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Figure 9 

Users wishing to extract output into, say Microsoft Word, can 
1. copy and paste from the RTF Viewer, 
2. paste any of the graphs produced (some objects may have up to three 

different graphs) from the Causeway Viewer available on the View menu 
and 

3. print a Newleaf report of all (or selected parts) of the activity in a session. 
The Help menu provides a set of Help files (standard compiled html) produced 
using Adrian Smith’s documentation software. Other database features not 
mentioned include formatting the variables (including showing dates and value 
labels), ordering cases, ordering the variables, using colour in the grid to indicate 
the spectrum of small to large values, and the ability to edit the grid if required. 
The scope of OOStats 
Currently, OOStats is for APLers using Dyalog 12.1. Some options for further 
development are obvious: 
• the addition of further statistical methods to s_db 
• the addition of further options to any of the existing statistical methods 
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• packaging it up to provide a stand-alone product (it would be necessary to 
provide some cover functions for use in e.g. Case Selection or Computing a 
new variable) 

• Regularising the extended output by the creation of a dictionary thus 
allowing output in different languages. 

(Readers may wish to extend the list!) 
The table below lists the statistical scope to date – note that all the analytic 
power of ASLGREG is available (facilitating some quite advanced analyses on 
multi-way contingency tables, logistic regression etc.) and I would hope that 
there is much here that statistical APLers could use. 
Statistical Method Options 

Boxplot Facilitates boxplots for one or more variables including classifying variables 
(This is a cover-method to interface with boxplots provided on other sub-
objects) 

CrossTabs Observed Expected ViewFullTable 
Analysis of two-way Table StandResid BarchartVar1ByVar2 
frequency tables ProportionsVar1ByVar2 ChiSquareTest BarchartVar2ByVar1 
  ProportionsVar2ByVar1 FullTable TowerChart 

Table Table 
Provides a table of  Boxplot 
univariate statistics  
within groups specified  
by one or two variables 

MatchedPairs Creates a Unistats object on the difference of two variables – see below 

MultiStats #.Cases 75%ile ExtremeOutliers 
Creates an object Mean 95%ile TsquareTest 
for the univariate  Std Dev UnivariateStats TestHypEqualMeans 
or multivariate 5%ile MultivariateStats CorrelationMatrix 
analysis of a group 25%ile CovarianceTable CorrelationTable 
of variables 50%ile Outliers 
 

OneWayAnova MeansTable GroupContrasts FreqDensities 
Analysis of one  EqualVarTest CooksDistance Boxplot 
variable split into  AnovaTable Outliers Rankitplot 
two or more groups Ftest 
 

OneWayManova MeanVector BGCovarianceMatrix ParallelProfileTest 
As above, but for a  GroupMeanMatrix HonogeneityTest GroupContrasts 
group of correlated  GroupMeansTable WilksLambda MeansPlot 
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variables WGCovarianceMatrix HotellingsTsquare CanonicalPlot 
 

Regress CurrentModel CorrelationMatrix Leverage 
Regression and  AnovaTable Outliers CooksDistance 
Generalized Linear  Ftest Diagnostics Stepwise 
Modelling DevianceTable FittedValues Parityplot 
  EstimateTable StandardisedResiduals Fitplot 
  CovarianceMatrix TResiduals RankitPlot 
 

Scatterplot Allows the building of any regression or generalized linear model involving a y-
variable, one regressor variable, and one factor variable showing a scatterplot 
with fitted model 

TimeSeries Acf ARModel  ARMAModel 
Fits auto-regression Pacf MAModel Plot 
or moving average   
time-series models  

TwoSampleMeans Stats NonParTest FreqDensities 
  PooledVar Outliers Boxplot 
  EqualVarTest ConfInt Rankitplot 
  Ttest CooksDistance 
 

UniqueFrequency UniqueValues Frequencies FrequencyTable' 
Frequencies of  
unique values 

Unistats Sum Uhinge Pctile 
Statistics for one  Mean Max FreqTable 
variable StDev Outliers ConfInt 
  StError ExtremeOutliers Hist 
  Min BoxCoxLL Boxplot 
  Lhinge Ttest Rankitplot 
  Median NonParTest 
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Attachments 
1. Dyalog APL workspace, and examples of datasets:  

http://archive.vector.org.uk/content/published/sykes/oostats.zip  
2. Compiled HTML Help file:  

http://archive.vector.org.uk/content/published/sykes/oostats.chm 

 



VECTOR  Vol. 25 No.1 

 119 

Odd-order magic squares expressed in J 
by John C. McInturff 

This note illustrates an array-oriented approach to solving odd-ordered magic 
squares. Part 1 illustrates a computer-sensible solution expressed in J. The resulting 
solution is then subjected to eight symmetrical transformations and each tested for 
‘magic properties’. Part 2 describes the underlying two-step rule for the solution, and 
illustrates how this rule can be applied to the entire magic square (matrix), and 
carried out graphically without a computer. Each graphical step is made computer-
sensible and is executed. 

Part 1 
The following verb, MS, is an array-oriented solution to an odd-ordered Magic 
Square, expressed in J. This expression is intended to minimise keystrokes, not 
maximise the understanding of the thought behind it. The latter objective is 
addressed in Part 2. 
   MS=. 3 : ' (1|. N) P |: (N=. ,.i.y) (P=. |."1) (<.-:y) |. >:i.2# 
y' 

Shown below are four examples, for n=. 3 5 7 9. The verb, each, is: ea=. &.> 
   MS ea 3 5 7 9 

+--------------------------------------------------------------------+ 

G8 1 6G17 24  1  8 15G30 39 48  1 10 19 28G47 58 69 80  1 12 23 34 45G 

G3 5 7G23  5  7 14 16G38 47  7  9 18 27 29G57 68 79  9 11 22 33 44 46G 

G4 9 2G 4  6 13 20 22G46  6  8 17 26 35 37G67 78  8 10 21 32 43 54 56G 

G     G10 12 19 21  3G 5 14 16 25 34 36 45G77  7 18 20 31 42 53 55 66G 

G     G11 18 25  2  9G13 15 24 33 42 44  4G 6 17 19 30 41 52 63 65 76G 

G     G              G21 23 32 41 43  3 12G16 27 29 40 51 62 64 75  5G 

G     G              G22 31 40 49  2 11 20G26 28 39 50 61 72 74  4 15G 

G     G              G                    G36 38 49 60 71 73  3 14 25G 

G     G              G                    G37 48 59 70 81  2 13 24 35G 

+--------------------------------------------------------------------+ 

The sum of each row, column, right diagonal, and left diagonal, is required to be 
equal to the value known as the magic value produced by the verb val=. [:-
:]*1+*:. 
The magic value for each magic square above is therefore: 
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   val ea 3 5 7 9 

+-------------+ 

�15�65�175�369� 
+-------------+ 

The question is: do the above matrices satisfy the ‘magic requirement’? The 
answer requires n calculations where n is equal to the magic value plus the two 
diagonals plus double the number of sides for each matrix. For matrices of order 
3, 5, 7, 9 and 41, n would be: 
   ]n=. (1+2++:) ea 3 5 7 9 41 

+-------------+ 

�9�13�17�21�85� 

+-------------+ 

The objective now is to see if the four matrices meet the above conditions. The 
sum of each row, column, left diagonal, and right diagonal is given by the 
following verbs: 
   row=. +/"1 

   col=. +/"2 

   d1=.[: +/ (<0 1) |: ] 

   d2=. [: +/ (<0 1) |: |. 
   v=. [: val # 

For brevity, the following verb f combines the above 5 verbs and illustrates an 
example of its use for n=. 5 
   f=. (v;' ';row;col;d1;d2) 

   f (MS 5) 

+----------------------------------------+ 

�65� �65 65 65 65 65�65 65 65 65 65�65�65� 
+----------------------------------------+ 

It is seen that the order-5 matrix took thirteen calculations and met all 
conditions. An order-41 matrix would require 85 conditions. The following verb 
Test, when applied to the matrix order, takes all of the above requirements into 
account and returns a 1 if all conditions are met; e.g., 
   Test=. 3 : 0 

   n=. val y 

   q=. MS y 

   *./n=(,>(row q)),(col q)),(d1 q),(d2 q) 
   ) 



VECTOR  Vol. 25 No.1 

 121 

This will now be illustrated for all odd matrices from order 3 through 41. 
   odd=. (1+2*i.21) 

   n=.(3++:) odd 

   test=. Test ea odd 

 

   >< ea odd,n,:(>test) 

+------------------------------------------------------------+ 

�1�3�5 �7 �9 �11�13�15�17�19�21�23�25�27�29�31�33�35�37�39�41� 

+-+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--� 

�5�9�13�17�21�25�29�33�37�41�45�49�53�57�61�65�69�73�77�81�85� 

+-+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--� 

�1�1�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 � 
+------------------------------------------------------------+ 

The value of a magic square is unaffected by the following eight transformations. 
These are the identity transformation t0, plus three clockwise rotations and 
their four respective reflections. There are, therefore, eight magic squares 
associated with the verb MS. 
These eight transformations are expressed by the following eight verbs and are 
illustrated below: 
   t0=: ] 

   t1=: t6@t7 

   t2=: t4@t6 

   t3=: |.@|: 

   t4=: |.@] 

   t5=: t2@t7 

   t6=: |."_1@] 
   t7=: |:@] 

For brevity, these eight transformations are combined into the single verb, t, 
and are more clearly illustrated below for the rectangular 3×2 matrix, a. 
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   t=. (t0;t1;t2;t3;t4;t5;t6;t7) 

   ]a=. >:i.3 2 

1 2 

3 4 

5 6 

   ]T=. t a 

+---------------------------------------+ 

�1 2�5 3 1�6 5�2 4 6�5 6�6 4 2�2 1�1 3 5� 

�3 4�6 4 2�4 3�1 3 5�3 4�5 3 1�4 3�2 4 6� 

�5 6�     �2 1�     �1 2�     �6 5�     � 
+---------------------------------------+ 

The eight magic squares are therefore: 
   t (MS 3) 

+-----------------------------------------------+ 

�8 1 6�4 3 8�2 9 4�6 7 2�4 9 2�2 7 6�6 1 8�8 3 4� 

�3 5 7�9 5 1�7 5 3�1 5 9�3 5 7�9 5 1�7 5 3�1 5 9� 

�4 9 2�2 7 6�6 1 8�8 3 4�8 1 6�4 3 8�2 9 4�6 7 2� 
+-----------------------------------------------+ 

   

Part 2 
The third magic square of the eight above is the 650-BCE Lo Shu magic square[1], 
often credited as being the first recorded magic square. (Somehow it got on the 
back of a turtle!) 
The French diplomat Simon de la Loubère 1642-1749[2] published the following 
“well known” rule for solving odd-ordered magic squares. 

1. Initialise a square grid (matrix) by placing the integer 1 in the center 
column of the first row. 

2. Place the next number, 2, in the square diagonally up and to the right. 
1. If filled, move vertically down one square, 
2. If ‘off the square’, wrap around (odometer-wise) to the last row, or 

first column, respectively. 
3. Continue with the next number 3 etc. (repeating the above rule if 

necessary) until the square is filled. 
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One can start with any number other than 1 and follow the above rule to derive 
other magic squares belonging to the group of eight mentioned in Part 1. 
Although the above rule involves a single number at a time and an iterative 
process, it can be carried out extremely rapidly by hand. Furthermore, it is the 
basis for the thought process that takes place when one applies the same 
principle to the matrix as a whole and follows the same two-step rule. 

1. The first step is to initialise the matrix such that the integer 1 will always 
appear in the centre column of an outside edge. This is assured by verb f2 
in the Appendix. 

2. The second step is to move the entire matrix diagonally up and to the right. 
The term move is a vector instruction that successively shifts each row of 
the matrix, as illustrated in the Appendix. 

Two important comments must be made: 

• For the array-oriented language used, it may be more desirable to 
‘translate’ the matrix and move equivalently, left and up as was done in the 
verb MS. 

• Left and up can be thought of as two degrees of freedom. If one has only 
one degree of freedom, it can be equivalently accomplished by an anti-
clockwise translation and a left shift as was done in the verb MS. 

The array approach using the above method can be carried out by hand as well as 
executed by a computer as described in detail in the Appendix. 
References 

1. Lo Shu Square 
http://en.wikipedia.org/wiki/Lo_Shu_Square 

2. Simon de la Loubère 
http://en.wikipedia.org/wiki/Simon_de_la_Loub%C3%A8re 
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What is it about infinity? 
Sylvia Camacho in conversation with Graham Parkhouse 

A conversation about some paradoxes of infinity, helped by J notation. 

Anthony and I contrive to live among a chaos of possessions acquired during our 
own seventy-odd years and a goodly proportion added by inheritance. We have 
walls of shelves but any other horizontal surface attracts books, which are never 
discarded. Indeed there are occasional duplicates bought anew to replace a 
valued volume gone missing without trace. We are often taken by surprise by 
new arrivals which, as the bailiff never comes knocking, we presumably ordered 
and paid for. However I was slightly taken aback to find three books about prime 
numbers all published since 2000 and all telling the same story. Readers should 
appreciate that neither Anthony nor I have more than School Certificate 
mathematics. So what was so compelling about these three that I began to 
explore one of them in detail, using J to try to connect to its mathematical 
arguments? 
All three of our books about primes were published inside two years, as a 
response to the centenary of David Hilbert’s 1900 Address to the International 
Congress of Mathematicians, challenging them with 10 mathematical problems 
still looking for resolution at the start of the 20th century. For our three authors 
it was noteworthy that number 8 among these, the Riemann Hypothesis, was still 
unproven after yet another century, at the start of the 21st. All three books 
recount the history of attempts to prove the hypothesis, delivered by Bernard 
Riemann to the Berlin Academy in 1859 and entitled On the Number of Prime 
Numbers Less Than a Given Quantity. 
This would have been a matter of only passing interest for me but for the pivotal 
story, common to all three, of the chance encounter between numerical analyst 
Hugh Montgomery and mathematician and physicist Freeman Dyson, at 
Princeton in 1972. This revealed a possible connection between Riemann’s 
attempts to characterise the distribution of prime numbers using the tools of 
calculus and the much later use of matrices in quantum theory; although, of 
course, each investigation was in pursuit of wholly different ends. 
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I have read and tried to summarise histories of calculus that describe how it 
progressed from a tool justified by little more than Isaac Newton’s intuition, to a 
fully axiomatic system for defining the concept of a continuum. The assumption 
of a spacial and temporal continuum was a natural consequence of the 
astronomical speculations of the 17th century, but it was the depth of 
penetration of calculus into almost all pre-1925 physics that made its failure to 
mathematize quantum effects so traumatic that it led to a schism within the 
physics community. One would have supposed that there is nothing more quantal 
than the succession of natural numbers and yet Riemann’s proposition was that 
the techniques of calculus could be used to predict the distribution of primes 
across the infinity of whole numbers. So could that 1972 encounter at Princeton 
presage a healing of the schism? 
To date I have only come to terms with about half of the book I chose to study. It 
is by John Derbyshire and entitled Prime Obsession. When I am wholly lost I turn 
to my friend Graham Parkhouse, who has put my feet back on the right path 
several times as I struggle to express Derbyshire’s exposition in J. He encouraged 
me to come to terms with Equation Editor so I am now able to show here what all 
the fuss was about. Riemann’s Hypothesis is: 

All non-trivial zeros of the zeta function have real part one-half. 
For a non-mathematician this is obscure, but at least I know what a Greek zeta 
looks like (ζ) and I do have a mathematical dictionary which says: 

The zeta function of complex numbers z = x + iy is defined for x > 1 by the 
series… 

 

Even I can see that this is an infinite sum and it becomes apparent in the course 
of the book that, given mathematical ingenuity, it can be evaluated for any real 
number over the entire complex plane, with the sole exception of integer 1. So it 
is natural that the characteristics of infinite series are a key part of Derbyshire’s 
account. He begins gently with a very simple series, based on a deck of cards. 
Suppose the top card is moved over the edge of the pack to its maximum 
overhang without overbalancing, obviously half its length, what about the next 
one down? How far can it be moved without toppling both cards? The series 
expressing this stable progressive shift of the top 51 of the 52 cards is: 
1/2 + 1/4 + 1/6 + 1/8 + 1/10 + 1/12 + 1/14 + 1/16 + … + 1/102 
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Now, in J notation, for the first eight terms this is: 
   NB. Reciprocals of twice the first  8 integers, excluding zero: 

   % 2 * 1 + i. 8    
0.5 0.25 0.166667 0.125 0.1 0.0833333 0.0714286 0.0625 

and for a pack of 52 cards: 
   NB. Sum of reciprocals of numbers 2 through 102: 

+/ % 2 * 1 + i. 51 

2.25941   
   NB. (or 2.2594065907333398 to the maximum precision available) 

The original expression can be rewritten as: 
1/2 × (1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + … + 1/51 ) 
Or, as J has it, the sum: 
   +/ 0.5 * % 1 + i. 51 
2.25941 

This, in other contexts is called the harmonic series and it grows without limit: it 
is divergent. It becomes apparent that this series was carefully chosen, as later 
analyses of the zeta function centre around infinite series similar to the harmonic 
series but convergent. Riemann’s Hypothesis reads All non-trivial zeros of the 
zeta function have real part one-half, so means had to be found to extend the 
domain of the zeta function over the whole complex plane and in the course of 
indicating how this is possible, while avoiding heavy calculus, Derbyshire derives 
series which do yield values less than 1. He shows that: 
log(1 −	x)	=	−	x	−	(x2/2) −	(x3/3) − 4/4) −	(x5/5) −	(x6/6) −	(x7/7) −	… 
is true when x = −1.	In	fact,	it	is	equivalent	to: 
log 2 = 1 −	1/2	+	1/3	−	1/4	+	1/5	−	1/6	+	1/7	−	… 
which resembles the harmonic series but is convergent. 
   NB. if we give it enough terms it is log 2. 

   +/_1* (_1j1+i.1000000)%1+i.1000000 
0.693147 

Now the log 2 expression can be given in J by 
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    +/1,_1r2,1r3,_1r4,1r5,_1r6,1r7 

319r420 

   +/_1*(_1j1+i.7)%1+i.7 NB. not that 7 terms gets us very far! 
0.759524 

But Derbyshire, having introduced the log 2 series, makes an apparently casual 
observation: 

It is, in fact, a textbook example of the trickiness of infinite series. It 
converges to log 2, which is 0.693147180559453 … 
but only if you add up the terms in this order. If you add them up in a 
different order, the series might converge to something different; or it might 
not converge at all! 
… Convergent series fall into two categories: those that have this property 
and those that don’t. Series like this one whose limit depends on the order 
in which they are summed, are called ‘conditionally convergent’. 

Unfortunately at this stage in his narrative he does not offer any clues as to why 
and how the order of a series is liable to change. It seems that I must first come to 
terms with the second part of the book where a real ‘for instance’ is promised. 
However, he does supply an example of what is meant, by first amending the 
order of the terms of the log 2 expression, then enclosing some terms in 
parentheses and resolving the parentheses thus: 

1 −	1/2	−	1/4	+1/3	−	1/6	−	1/8	+	1/5	−	1/10	– … 
Just putting in some parentheses, it is equal to 
(1 −	1/2)	−	1/4	+(1/3	−	1/6)	−	1/8	+	(1/5	−	1/10)	– … 
If you now resolve the parentheses, this is 
1/2 −	1/4	+	1/6	−	1/8	+	1/10	−	…	, 
which is to say 
1/2 (1 −	1/2 +1/3 −	1/4	+	1/5	−	…	). 
The series thus rearranged adds up to one-half of the un-rearranged series! 
This, as the saying goes, “gives one furiously to think”! 

These expressions can be put into J and will be easier to follow if we use J 
notation for negative numbers, which touches on a topic about which Cornelius 
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Lanczos had quite a lot to say and will be sympathetically received 
by Vector readers, as this quotation from his Numbers Without End will show: 
(p88) 

If we think of the picture in which we count steps, 12 −	15	means	that	we	
should go forward 12 steps and backward 15 steps. This will bring us three 
steps to the left from zero, thus generating new points which did not exist 
before… Our usual emotional associations with the words positive and 
negative are here positively out of place. The complete symmetry of the two 
halves of a straight line demonstrates that negative numbers are in no way 
inferior to positive numbers and can be employed with the same 
justification. 

Lanczos suggests that this parity could be emphasised by indicating a positive 
number with a superscribed →	and	a	negative	number	with	superscribed	←	.	He	
goes on: 

Our usual notation is less fortunate. We write + 3 and −	3	which	gives	 the	
impression that the same number 3 is once added, once subtracted. 
But minus 3 does not mean that we should subtract 3. The minus sign be-
longs to the digit 3 and designates a new number, created by the operation 
of subtracting 3 from 0. 

He notes that the Hindus were aware of this distinction and marked negative 
numbers with a superscript dot. He has proposed instead to use an overline thus: 

0 −	3	= 3   and generally: 0 −	a	= a   
Thus to add a positive number is the same as to subtract the corresponding 
negative number and to subtract a positive number is the same as to add the 
corresponding negative number. J emphasises this by a distinction between the 
primitive verb - (subtract) and the underbar _which is an intrinsic part of any 
negative number: so 5 − _3 = 5 + 3 and 5 − 3 = 5 + _3. This allows 
parentheses and sequence changes to be resolved without the ambiguity of ‘the 
rule of signs’. This clarifies Derbyshire’s example of series re-arrangement and 
led me to appeal to Graham in these terms: 

Dear Graham, (26 March) 
Please can you help me clear my head. 
Derbyshire quotes the series: log 2 = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 
… of which he says: 
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It is, in fact, a textbook example of the trickiness of infinite series. It 
converges to log 2, which is 0.693147180559453 … but only if you add up 
the terms in this order. If you add them up in a different order, the series 
might converge to something different; or it might not converge at all ! 

He demonstrates using this extract from the series, saying: 
1 - 1/2 - 1/4 + 1/3 - 1/6 - 1/8 + 1/5 - 1/10 - … Just putting in some 
parentheses, it is equal to (1 - 1/2) - 1/4 +(1/3 - 1/6) - 1/8 + (1/5 - 1/10) 
- … If you now resolve the parentheses, this is 1/2 - 1/4 + 1/6 - 1/8 + 
1/10 - … , which is to say 1/2 (1 - 1/2 + 1/3 - 1/4 + 1/5 - … ). The series 
thus rearranged adds up to one-half of the un-rearranged series ! 

Now Cornelius Lanczos points out that the Hindus distinguished a negative 
from a positive number by putting a dot over it, … 

and after quoting Lanczos I continue … 
So Derbyshire's example above can be written in J 
   NB. with parentheses as above: 

   (1+_1r2)+_1r4+(1r3+_1r6)+_1r8+(1r5+_1r10)  

47r120 

   NB. without parentheses:  

   1+_1r2+_1r4+1r3+_1r6+_1r8+1r5+_1r10 

47r120 

   NB. as sum of a list of numbers: 

   +/1,_1r2,_1r4,1r3,_1r6,_1r8,1r5,_1r10  

47r120 

   NB. same, in descending order: 

   +/1,_1r2,1r3,_1r4,1r5,_1r6,_1r8,_1r10  

47r120 

   NB. D. says this is half the amount! 
   1r2*(1+_1r2+1r3+_1r4+1r5) 47r120 

The +/ expressions emphasise that we are talking throughout about 
summation; it just happens that some of the values are negative. With 
respect to convergence Anthony suggested that I consult his old 1944 
paperback by Eugene Northrop, Riddles in Mathematics and there I found an 
almost identical account of the effect of inserting parentheses into the log 2 
series in his chapter called Paradoxes of the Infinite. This leaves me even 
more confused, because his explanation reads: 
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The difficulty arises from our attempt to apply to infinite series the 
processes of finite arithmetic. In finite arithmetic we go on the 
assumption that we can insert and remove brackets at will, grouping 
terms in any way we please. In other words, we assume that 
A + B + C = (A + B) + C = A + (B + C). 

But surely the point that Lanczos made so cogently is that the associative 
and commutative laws do not apply to subtraction … What am I 
misunderstanding? 

To which Graham responded: (27 March) 
I think you’re misunderstanding the infinity bit a little! There is no way, of 
course, that Derbyshire is saying “this is half the amount” at the following 
stage: 
   NB. D. says this is half the amount! 

   1r2*(1+_1r2+1r3+_1r4+1r5)  
47r120 

To illustrate in J what Derbyshire is saying we need to make two 
calculations: take n terms of the original series, once in the order they 
originally come in (the first n terms) and once in Derbyshire's order. 
I love the series and its zany characteristic! I don't remember seeing it 
before. 
Let’s look at 2*n terms of the original series 
   series =: 3 :',1 _1*&.:|:%(y,2)$>:i.+:y' 

   [s =: series 8r1 

1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10 1r11 _1r12 1r13 
_1r14 1r15 _1r16 

Indices of the first n terms of this series are i.n 
Indices of n terms of Derbyshire's series are ind n where 
   ind =: 3 :'/:c(+:i.>.y%3),>:+:i.0>.<.2r3*y' 

   ind 20 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 23 25 

For n = 13, the indices for s in each case are: 
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    (i.,:ind)13 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 1 2 3 4 5 6 7 8 9 11 13 15 

giving these two series: 
    s{c(i.,:ind)13 

1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10  1r11 _1r12  1r13 

1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10 _1r12 _1r14 _1r16 

Summing them we get: 
    8j4":+/"1 s{c(i.,:ind)13 
0.7301  0.4284 

We can observe the factor of 2 beginning to appear for n = 13. As n increases 
so the two answers would be expected to converge to j.2 and -:j.2. 

To which I responded: (28 March 15:14) 
Of course I agree with everything you say, but that is not my problem. 
Derbyshire is not saying that the value of an accumulation of an extract from 
an infinite series will most probably not match the accumulation of a 
different extract, that is so obvious as not to need saying, I hope. The 
example he quotes does not use two different sets taken from the series. 
What he is talking about is the sequence in which they are accumulated and 
he effects this change by enclosing some pairs of terms in parentheses, 
evaluating the parentheses and then accumulating his partial result. I think 
his 1/2 (1 - 1/2 + 1/3 - 1/4 + 1/5 - … ) suggestion is just an abuse of algebra. 
Let us use the first 10 terms of the original alternating series without 
confusing the issue with parentheses and then merely change the sequence. 
This is what he is actually suggesting is critical after all. Then we have: 
   NB. first 10 terms but remember this is J: 

   1-1r2+1r3-1r4+1r5-1r6+1r7-1r8+1r9-1r10 

1117r2520 

   NB. rearranged & sure enough a different result: 

   1+1r7-1r8+1r9-1r10-1r2+1r3-1r4+1r5-1r6  

1151r2520 

   NB. now taking Lanczos to heart: 

   1+_1r2+1r3+_1r4+1r5+_1r6+1r7+_1r8+1r9+_1r10  
1627r2520 
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   NB. re-arrangement has no effect: 

   1+1r7+_1r8+1r9+_1r10+_1r2+1r3+_1r4+1r5+_1r6  

1627r2520 

What we must remember is that J does not evaluate the same way as 
conventional maths, which does it this way: 
   (((((((((1-1r2)+1r3)-1r4)+1r5)-1r6)+1r7)-1r8)+1r9)-1r10) 
1627r2520 

and this way there is no problem with the sequence 
   (((((((((1+1r7)-1r8)+1r9)-1r10)-1r2)+1r3)-1r4)+1r5)-1r6) 
1627r2520 

but, of course, using different sets is unlikely to give the same answer. It is 
not the sequence of terms that is the problem, it is the sequence of 
evaluation if − is confused with _ … I think 

To which Graham replied: (28 March 20:28) 
Aren't there two quite separate issues here? One is notational and the other 
is the infinite series paradox. The notational one will get anyone into trouble 
who doesn't follow the rules on whatever issue they tackle, but I see no 
reason to believe Derbyshire hasn't followed the rules. But, from your last 
sentence, it seems you think he has. 
Where does he make a notational error when deriving his 1/2(1 - 1/2 + 1/3 
- 1/4 + ...)? 
The reason for the paradox is exactly that the value of an accumulation of an 
extract from an infinite series will most probably not match the 
accumulation of a different extract. We are interested in the series 
1 + -1/2 + 1/3 + -1/4 + 1/5 + -1/6 + -1/7 + -1/8 + … 
If you begin taking these terms in the order Derbyshire does, before 
bracketing them up, 2/3 of the terms he extracts are negative numbers and 
only 1/3 are positive. No wonder it converges to a different sum! 

Which provoked me to: (30 March 14.59) 
Thank you for keeping me thinking – what I want to say to your last is … yes, 
but … what are these mathematicians agonising over? What is it that they 
find so remarkable? If we are allowed to pick and choose among the terms 



VECTOR  Vol. 25 No.1 

 134 

of an infinite series to be summed, we have an infinity of results to choose 
from. If we use only the positive terms our sum diverges: 
   +/\1r3,1r5,1r7,1r9,1r11 

0j6":1r3 8r15 71r105 248r315 3043r3465 
0.333333 0.533333 0.676190 0.787302 0.878211 

If we choose the negative terms, our sum diverges negatively: 
   0j6":+/\_1r2,_1r4,_1r6,_1r8,_1r10 
_0.500000 _0.750000 _0.916667 _1.041667 _1.141667 

If we modify an initial positive, we go from positive to negative: 
   0j6":+/\1,_1r2,_1r4,_1r6,_1r8,_1r10 

1.000000 0.500000 0.250000 0.083333 _0.041667 _0.141667 

A judicial mixture of positive and negative will get us somewhere near the 
number we first thought of – but what is the point? What conclusion are we 
being asked to draw? I thought that there must be some argument to 
suggest that the log 2 irrational is efficiently approximated by the 
summation of the alternative. There may be other values as good or better 
to be obtained by permutations of the terms, but these ‘Gee-Whiz’ 
rearrangements seem frivolous. 
Here it seems justifiable to select only the first 60 terms: 
   NB. alternating sum of reciprocal of 2 to powers 0 to 6: 

   - /% 2 j i.7 

0.671875 

   NB. and here it is for 53 terms at maximum precision: 

   - /% 2 j i.53    

0.66666666666666674 

   NB. while 60 terms reduces it a bit z: 

   - /% 2 j i.60    

0.66666666666666663 

   NB. 90 shows no change, so two-thirds looks like the limit: 

   - /% 2 j i.90    
0.66666666666666663 

Is there something here other than a statement of the blindingly obvious? 
To which Graham came back: (30 March 18:03) 

OK! So what is all the fuss about? 
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We love infinite series, especially ones that converge, because they sum to a 
number that is unique and a number that cannot always be found exactly. 
For example I don't remember (if I ever did know) how to demonstrate our 
series converges to log 2. So there is mathematical excitement associated 
with infinite series. An infinite series is defined by its first few terms, 
assuming the continuing sequence is unambiguous, so the shocking thing 
about our sequence is that you can clearly write it down two different ways 
and so obviously get two very different answers! The fact that you are 
reordering the series is not immediately apparent. 
Another point that makes this a special series is that it converges very very 
slowly. I think I am right in saying that there are very many infinite series 
whose sum would not be affected by the alteration in order that was made 
to our series. Obviously in the extreme case when only positive terms are 
taken from an alternating series you will get a different answer, but there 
are many series that converge to the same sum irrespective of how you 
order its tail end. 

Sylvia to Graham (1 April 16:41) — now we both have our teeth in it! 
The log 2 series is a method of approximating the irrational by accumulating 
values which decrease according to a clear pattern, either positively or 
negatively — a sort of Lambeth Walk. Thus the adjustments continually 
decrease in significance until we call a halt, for the very practical reason that 
we cannot work with infinite expansions. My version of J calls log2, 
0.693147 and half log2, 0.346574, when in standard display mode. 
You chose two sets of terms from the log 2 series. They have the first ten in 
common so we can keep the display small by displaying the sum of those as 
the first cumulative value: 
   8j4":+/1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10 
0.6456 

You then arrive at two different cumulative results from your two chosen 
sets of 13 terms: 
   8j4":+/\0.6456 1r11 _1r12 1r13 

0.6456 0.7365 0.6532 0.7301 

   8j4":+/\0.6456 _1r12 _1r14 _1r16 
0.6456 0.5623 0.4908 0.4283 
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You then posit the case that as the number of terms increases 0.7301 will 
tend to 0.693147 while 0.4283 will tend to 0.346574. What is not clear is 
how the additional terms are to be chosen. You have used two selections 
from the first 16 so we could decide to ignore those and take say a further 8 
from 16 onwards: 
   8j4":+/\0.7301 1r17 _1r18 1r19 _1r20 1r21 _1r22 1r23 _1r24 

0.7301 0.7889 0.7334 0.7860 0.7360 0.7836 0.7382 0.7816 0.7400 

   8j4":+/\0.4284 1r17 _1r18 1r19 _1r20 1r21 _1r22 1r23 _1r24 

0.4284 0.4872 0.4317 0.4843 0.4343 0.4819 0.4365 0.4799 0.4383 

So far both values have increased and this is getting tedious, given that we 
are left with infinity minus 24 to add. 
So what should we do about the terms we have so far left out of each set. 
What happens if we put them back in? 
   8j4":+/\0.7400 _1r14 1r15 _1r16 

0.7400 0.6686 0.7352 0.6727 

   8j4":+/\0.4383 1r11 1r13 1r15 

0.4383 0.5292 0.6061 0.6728 

The difference, unsurprisingly, is accounted for by the terms we left out. We 
have thus been justified in our belief that A+B+C = (A+B)+C = A+(B+C) or 
even C+B+A and all other permutations, but A+B does not equal A+C unless 
A=B=C or A=0. What we have illustrated is that the sequence of the series is 
immaterial providing that all terms up to a selected one are represented. I 
think you are right to say of this so-called “paradox of the infinite” that “this 
only has the appearance of significance”. 
Moreover, I think Derbyshire goes a step too far when he says: 

1 - 1/2 - 1/4 +1/3 - 1/6 - 1/8 + 1/5 - 1/10 - … 
Just putting in some parentheses, it is equal to 
(1 - 1/2) - 1/4 +(1/3 - 1/6) - 1/8 + (1/5 - 1/10) - … 
If you now resolve the parentheses, this is 
1/2 - 1/4 + 1/6 - 1/8 + 1/10 - … , 
which is to say 
1/2 (1 - 1/2 + 1/3 - 1/4 + 1/5 - … ). 
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The series thus rearranged adds up to one-half of the un-rearranged 
series! 

Oh yeah! 
   NB. rearranged and two terms missing, ... but so what. 

   +/1 _1r2 _1r4 1r3 _1r6 _1r8 1r5 _1r10 

47r120 

   NB. resolve some parentheses 

   (1+ _1r2), _1r4, (1r3+ _1r6), _1r8, (1r5+ _1r10) 

1r2 _1r4 1r6 _1r8 1r10 

   NB. add up the result. No change so far. 

   +/1r2 _1r4 1r6 _1r8 1r10 

47r120 

   NB. extracting one-half ... 

   (1r2 _1r4 1r6 _1r8 1r10)%1r2 

1 _1r2 1r3 _1r4 1r5 

   NB. doubles the result z 

   +/1 _1r2 1r3 _1r4 1r5 

47r60 

   NB. so we must times half to get back where we started 

   1r2*1 _1r2 1r3 _1r4 1r5 

1r2 _1r4 1r6 _1r8 1r10 

   +/1r2 _1r4 1r6 _1r8 1r10 

47r120 

   NB. sure is equal! 

   (+/1 _1r2 _1r4 1r3 _1r6 _1r8 1r5 _1r10) = (+/1r2*1 _1r2 1r3 

_1r4 1r5) 

1 

But what could possibly justify us writing it this way? 
(+/1 _1r2 _1r4 1r3 _1r6 _1r8 1r5 _1r10 z ) = (+/1r2*1 _1r2 1r3 
_1r4 1r5 z) 

What could this mean? How are these apparent series to be continued? Is 
the next term positive or negative? I still think it’s an abuse of algebra and 
uninformative into the bargain. 
Stroppy Sylv 

Graham's response: (1 April 21:35) 
You: The log 2 series is a method of approximating the irrational by 
accumulating values which decrease according to a clear pattern, either 
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positively or negatively – a sort of Lambeth Walk. Thus the adjustments 
continually decrease in significance until we call a halt, for the very practical 
reason that we cannot work with infinite expansions. 
Why call a halt? Only if we are computing a result term by term. But the 
equality 
Log 2 = 1 + -1/2 + 1/3 + -1/4 + … 
must not be halted. Halting it makes it no longer correct. 
You: What is not clear is how the additional terms are to be chosen. 
I think you may have missed a key point here. There is a simple rule for 
determining additional terms, which I gave in my first reply, i.e. 
   ind =: 3 :'/:c(+:i.>.y%3),>:+:i.0>.<.2r3*y' 

   ind 20 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 23 25 

Using the verb ind you can find the additional terms. From the pattern 
above it is clear that the 21st term is either going to be 14 or 27, and it turns 
out to be 27. So the “rearranged” series is precisely defined for any number 
of terms. But note that the trailing terms are all odd and these are all 
negative ones, demonstrating what I said in my last email that there are 
twice as many negative terms as positive ones. The rearrangement is a 
completely different infinite series from the original. The sleight of hand is 
in the bracketing process which initially fooled me into thinking the original 
and the rearrangement were one and the same. 
Are you laying your stroppiness at Derbyshire’s door? I cannot spot 
anything you have told me about his argument that I can fault. I think you're 
having a genuine struggle to see the wood for the trees here, and 
worthwhile struggles can be painful. 
I hope this helps. Taking an equal number of terms of each is necessary to 
keep up the paradox because if you took an arbitrary number of each then 
comparing the two sums would have no significance! Keeping them equal as 
you approach infinity is intriguing, but actually it only has the appearance of 
significance. I think the paradox simply demonstrates that the order in 
which you choose to sum an infinite series can sometimes affect the answer. 

Sylvia to Graham (8 April 18:12) — so I turned my attention to the example in 
Northrop’s book. 
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Oooh! I am having fun. This is how Northrop illustrates his ‘paradox of the 
infinite’. 

L=1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+… +1/13-1/14+1/15-1/16+… 
Grouping terms first by twos and then by fours. 
[1] L=(1-1/2)+(1/3-1/4)+(1/5-1/6)+(1/7-1/8)+… +(1/13-1/14)+(1/15-
1/16)+… 
[2] L=(1-1/2+1/3-1/4)+(1/5-1/6+1/7-1/8)+… +(1/13-1/14+1/15-
1/16)+… 
Dividing both sides of equation [1] by 2 we get 
[3] 1/2L=(1/2-1/4)+(1/6-1/8)+(1/10-1/12)+(1/14-1/16)+… 
Adding, bracket by bracket, equations [2] and [3], 
[4] 3/2L=(1+1/3-1/2)+(1/5+1/7-1/4)+(1/9+1/11-1/6)+(1/13+1/15-
1/8)+ … 
which is obviously, he says, equal to 
1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+1/9-1/10+1/11 … 

The trick is not at all obvious when step [4] is glossed over so confidently: 
The expression [4] was arrived at by adding the two-term brackets from [3] 
to the four-term brackets from [2] and then simplifying; e.g. the first bracket 
is the result of working out 1-1/2+1/3-1/4+1/2-1/4. You see how the -1/2 
and +1/2 terms cancel out and -1/4+-1/4 becomes -1/2 to take the place of 
the lost term. So, in the same way, the terms metamorphose into each other 
until all that we are left with is the original alternative L which has 
miraculously been proved by simple arithmetic to be equal to 3/2L! 
But notice that when we added the first set of brackets we used a positive 
term +1/2 to get rid of the -1/2 and, very conveniently, the duplicated -1/4 
terms converted themselves into the, now cancelled out, -1/2 term. Talk 
about smoke and mirrors! This is why I went to my mathematical dictionary 
to see just what is meant by monotonically decreasing, which expression [4] 
is manifestly not doing, and then to check on the meaning 
of alternative and conditionally convergent. It has been a fascinating journey 
and without you to goad me I might never have taken it. Thank you. 

Monotone Monotonic adj… . 
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A monotonic decreasing quantity is a quantity which never increases. 
The use of “never” here suggests that the order of the absolute value of the 
terms is significant, but for summations I think it is always irrelevant except 
perhaps for practical questions about the inevitable limitation of calculation 
to a finite number of terms, which might make it invalid to use terms taken 
almost exclusively from way out along an infinite series. 

Alternating adj. 
… alternating series. A series whose terms are alternately positive and 
negative, as 
1 - 1/2 + 1/3 - 1/4 + (-1)n-1/n + … . 
An alternating series converges if the absolute values of its terms 
decreases monotonically with limit zero (the Leibnitz test for 
convergence). This is a sufficient but not a necessary condition for 
convergence of an alternating series. If one convergent series has only 
positive terms and another only negative terms, then the series 
obtained by alternating terms from these series is convergent, but the 
absolute values of its terms may not be monotonically decreasing. The 
series 
1 - 1/2 + 1/3 - 1/4 + 1/9 - 1/8+ 1/27 - 1/36 + … is such a series. 

This it seems would guarantee log2 convergence, but see below: 
Convergence n… . 

Conditional convergence An infinite series is conditionally convergent if 
it is convergent and there is another series which is divergent and 
which is such that each term of each series is also a term of the other 
series (the second series is said to be derived from the first by a 
rearrangement of terms); i.e.; an infinite series is conditionally 
convergent if its convergence depends on the order in which the terms 
are written. A convergent series is conditionally convergent if and only 
if it is not absolutely convergent. E.g.; the series 1 - 1/2 + 1/3 - 1/4 + … 
is conditionally convergent because it converges and the series 1 + 1/2 
+ 1/3 +… diverges. 

For a summation to depend upon the order in which the terms are written, 
when combining it with terms from another series having just the same set 
of terms, can only be by changing some + and −	signs;	but	this	would	mean	
that the series is not a summation but a series of arguments to addition and 
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subtraction functions. If, taking Lanczos to heart, we use a notation which 
distinguishes a negative number from the positive argument to a 
subtraction function, the alternating series for log2, for instance, contains 
only negative 1/2 and positive 1/3. But negative 1/2 is not a member of the 
divergent series 1+1/2+1/3 … referred to above as the “second series said 
to be derived from the first by a rearrangement of terms”. 
Now, by the definition above, the alternating series for log2, contains an 
infinity of reciprocals of positive odd integers and an infinity of reciprocals 
of negative even integers. It does not contain positive even or negative odd 
denominators although there is, of course, an infinite series having wholly 
negative terms which is monotonically divergent and complements the 
other infinite divergent series 1+1/2+1/3+ … as mentioned in definition 3 
above. Now, which one of these 2 divergent series bears the relationship to 
the log2 alternating seriesdefined above, “such that each term of each series 
is also a term of the other series (the second series is said to be derived 
from the first by a rearrangement of terms”? 
It is easy to prove that the log2 alternate is insensitive to parentheses if it is 
written using J notation: 
   +/1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10 1r11 _1r12 

18107r27720 

   +/(1 _1r2),(1r3 _1r4),(1r5 _1r6),(1r7 _1r8),(1r9 _1r10),(1r11 

_1r12) 

18107r27720 

   +/(+/1 _1r2 1r3 _1r4),(+/1r5 _1r6 1r7 _1r8),(+/1r9 _1r10 1r11 

_1r12) 
18107r27720 

Order of summation changes nothing, the total depends on the number of 
monotonically decreasing terms taken. Division, however, creates new 
terms of which some are in the log2 series and some from a different and 
divergent series and this applies irrespective of parentheses: 
   1r2*1 _1r2 1r3 _1r4 1r5 _1r6 1r7 _1r8 1r9 _1r10 1r11 _1r12 
1r2 _1r4 1r6 _1r8 1r10 _1r12 1r14 _1r16 1r18 _1r20 1r22 _1r24 

The following terms are in the positive divergent series but excluded from 
the log2 series: 



VECTOR  Vol. 25 No.1 

 142 

   NB. are not in log2 alternating series: 

   8j4":+/1r2 1r6 1r10 1r14 1r18 1r22  

   0.9391 

These terms are already in the log2 alternating series and do not occur 
twice: 
   NB. are in the log2 alternating series 

   8j4":+/_1r4 _1r8 _1r12 _1r16 _1r20 _1r24 _0.6125 

   NB. which adds to half log2 

   NB. if we add the terms found only in the divergent series 

   _0.6125+0.9391 

0.3266 

   NB. so their combined sum is indeed 

   NB. half the total of the original alternating series: 

   0.3266*2 
0.6532 

This is the basis on which Northrop claims that rearrangement of its infinite 
series can demonstrate that the log2 series is equal to 1.5 times the log2 
series, which should sum to: 
   8j4":18107r27720 NB. total of first 12 terms 
0.6532 

So by doing some simple arithmetic, terms from two series (one alternating 
and another divergent) have been intercalated with the apparent effect of 
adding half as much again to the total. This is described as a 
mere rearrangement of the alternating series so, as usual with paradoxes, it 
all boils down to a question of terminology: “when is a member of a series 
not a member of a series?” Answer, “only when you can’t think of an 
algorithm which would convert a non-member to a bona fide member”. In 
other words, the term rearrangement covers the whole panoply of algebraic 
manipulation. It is not merely a question of theorder in which the terms are 
taken — in fact the order is immaterial providing sequence A contains the 
same selection of either positive or negative terms as sequence B… . 
Only a bit breathless, 
Sylv 
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In response to which Graham sent: (14 April 21:01) 
Dear Sylv, 
You’re still not happy with it, are you? The bracketing is fine, and I like your 
alternative method. But I prefer the original bracketing method which is 
nicely visualised by the table I have enclosed in the attached Word 
document. And I think this table helps to illustrate why the two infinite 
series are not equal. But see what you think! 
  1 1r2 1r3 1r4 1r5 1r6 1r7 1r8 1r9 1r10 1r11 1r12 1r13 

1r2 1 _1r2            

_1r4    _1r4          

1r6   1r3   1r6        

_1r8        _1r8      

1r10     1r5     _1r10    

_1r12            _1r12  

This table represents the top left hand corner of an infinite table. Along 
the top line we have our first infinite series ‘properly’ ordered. Down the left 
column we have our second infinite series ‘properly’ ordered. Next, all the 
terms of our first infinite series are distributed to the body of the table, each 
being dropped to a row according to the linear pattern clearly visible: the 
filled places form two straight sloping lines. Adding along the rows we get 
the result shown in the left column, i.e. the second infinite series. 
This is a pictorial equivalent of the bracketing and what I used to derive that 
early J expression I gave you defining the reordering of the terms. It gives 
the impression that the two infinite series are equal, but they are not: the 
reordering causes the negative terms to be used up twice as quickly as the 
positive ones, so no wonder the sum is less. 
Notice I have italicised infinite! There are issues associated with the infinite 
and the infinitesimal that cannot readily be replicated in finite examples. 
For example, take a finite table of the kind shown above and you get an 
incomplete first series equal to an incomplete second series – no great deal, 
as you have noted in earlier emails. 

This is the point to which Graham and I have arrived to date. I am hoping some 
others of the APL/J community might join the fray. Do we have any takers? 
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