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Quick reference diary 
16+17 April Düsseldorf, Germany APL Germany & GSE meeting 
22-24 April  Jersey City, USA   APL2000 User Conference 
27 April Cheshunt / UK BAA AGM 
27-29 April Cheshunt / UK APL Moot 
23-25 May  Ireland Kx International User Conference 
23-24 July Toronto, Canada Jsoftware Conference 
14-18 October Elsinore, Denmark Dyalog Conference 

Dates for future issues 
Vector articles are now published online as soon as they are ready. Issues go to 
the printers at the end of each quarter – as near as we can manage! 
If you have an idea for an article, or would like to place an advertisement in the 
printed issue, please write to editor@vector.org.uk.  
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EDITORIAL 

This is probably the first Editorial ever that was not written by the Editor; my 
friend Stephen Taylor has stepped down as Vector’s Editor with immediate 
effect. He tried to get away from the job at the last AGM in 2011 but we didn’t let 
him. Bad move. He had to force us. 
When Stephen asked for help back in 2010 because he could not stem the work-
load any more a number of people including me offered help. Some learned how 
to mark up an article written by a contributor. I learned from him how to collect 
the articles already published on the Web and convert them into a PDF that can 
go to the print shop. I think it’s fair to say that all of us were surprised by the 
amount of work it takes simply to set an article for the web, in particular when it 
is lengthy or contains plenty of code in the text or plenty of images or math 
formulae, let alone an article that combines all these obstacles. 
I remember vividly the lengthy email I got from him after I’d produced the first 
print issue of Vector back in 2010. Although I had spent countless hours on this 
issue I’d missed many details and I’d made plenty of mistakes. We then met on a 
weekend and went through this email, fixing one problem after the other; it took 
us a whole Sunday. I had no idea how much work it takes in the background to 
get this done.  
And that’s just the technical bit. Of course the editor also has to negotiate with 
the authors, and some of them have very strong opinions on how their stuff 
should look. Others must be encouraged to come forward. Articles written by 
authors whose first language is not English add to the workload. Occasionally an 
article was practically rewritten by Stephen.  
Finally there’s the website which was completely redesigned by Stephen; a big 
project in its own rights. 
We will miss Stephen’s passion, his skills and his eye for details. He has done an 
amazing job for many years. At the moment I cannot imagine how we shall 
manage without him but somehow we have to. 
Kai Jaeger 
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N E W S   
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Industry news 

APL2000 
We are pleased to announce the release of APL+WIN Version 11.1 

Enhancements in this release include: 
  
Virtual APLKeyboard 
  

There is now a Virtual APL Keyboard GUI control in the session manager. The 
keyboard can be displayed through the "View" menu or by pressing Ctrl+B. 
  
APL Idioms Manager 
  

There is now an APL Idioms Manager in the session manager. It can be accessed 
through the "View" menu or by pressing Ctrl+1. 
APL+Win Highlights 
• V10: System speed and memory capacity dramatically increased  
• V10: Support for larger dimension arrays in the workspace  
• V10: Separate debug and release execution modes  
• V10: Capture execution history with minimal performance effect  
• V10: New crash recovery mechanism  
• V10: New/enhanced control structures  
• V10: Enhanced exception handling  
• V10: Enhanced debugger  
• V10: Enhanced Unicode support  
• V10: New system commands 
• V10:  APL Supervisor for multi-thread/multi-processor access in APL+Win  
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• V11: Idioms manager to maintain and deploy idioms into application 
systems  

• V11: Fully-interactive, scalable, glyph position correct, virtual APL 
keyboard 

A .Net string-key dictionary is now available to current APL+Win Subscription 
Licensees. Dictionary data type with string keys and values of any data type is 
implemented using the APL+Win interface to Microsoft .Net. 
VisualAPL Enhancements  
• The VisualAPL ‘Lightweight Array Engine’ is now based upon .Net 

Framework 3.5 so that end users can implement custom .Net extension 
methods to any LAE operator or method  

• The VisualAPL data representation (xml-serialization of VisualAPL 
objects) and the wrapl system function now use UTF-8 encoding  

• An automated converter from APL+Win component files to enhanced 
VisualAPL component files has been implemented  

• Performance enhancements for the grade up/down functions 
implemented  

• VisualAPL documentation now uses the pdf format with extensive 
bookmarks  

• VisualAPL demonstration/evaluation versions are now available for 
production and Express versions of Visual Studio 

2012 APL2000 User Conference  
Join us for the 2012 APL2000 User Conference to be held Sunday – Tuesday, April 
22-24 at the Hyatt Regency Jersey City on the Hudson.  This is a beautiful 
location, conveniently located near New York City and easily accessible to 
Newark Liberty Airport.  APL2000 is offering a comprehensive training class on 
Sunday, taught by Joe Blaze, giving attendees the opportunity to learn how to 
create a Windows Presentation Foundation (WPF) Graphical User Interface (GUI) 
for their APL+Win applications.  The agenda for Monday and Tuesday includes 
informative presentations and stimulating discussions on a wide range of topics.  
Attend the conference and enjoy the camaraderie of spending a few days with 
fellow APL enthusiasts.  For more information and to register, visit our website, 
www.apl2000.com. 
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Dyalog Ltd 
TryAPL.org 
Since 2006, Dyalog has made a free educational version of APL available to 
anyone enrolled in a full-time education program. The number of downloads has 
gradually increased from a trickle to an average of one per day, with a total of 
twelve hundred licences downloaded to date (plus a few hundred non-
commercial licences). However, we know that many people are reluctant to enter 
personal information in order to be able to test our product. In order to make 
APL more easily accessible to anyone who is interested, we have decided to make 
a version of Dyalog APL available as a “no-questions-asked” download for anyone 
who would like to play with APL. The unregistered version will show a pop up 
every 20-30 minutes to let you know that it is unregistered - and that you need to 
sign up for a free educational or a low cost (£50/$75) non-commercial licence to 
have access to a version without the pop-up. 
Initially the unregistered version will only be available as 32-bit Unicode Edition 
of Dyalog APL for Windows; other platforms are planned to be added during 
2012. The unregistered version will be available from http://www.tryapl.org/ 
and from the download zone of www.dyalog.com; the only field to be filled in is a 
checkbox acknowledging the terms and conditions of Dyalog’s non-commercial 
licence. 
From January 1st 2012, the tryapl.org site will also host a simple interactive “APL 
Timesharing System”, which will allow anyone to enter APL expressions 
interactively while learning the language. This will complement Gary Bergquist’s 
on-line APL Tutorial, which is already available at http://tutorial.dyalog.com. 
MiServer 
Observant users of the APL Wiki will have noticed a project which was started 
under the name “MildServer”, which has been an experimental framework 
developed with the goal of “making it possible for anyone who is able to write an 
APL expression to expose it as a web page”.  
Thanks to the APL Tools Group at Dyalog, which is headed by Brian Becker and 
includes Dan Baronet, Nicolas Delcros, Morten Kromberg and intern Brian 
McCormick, this project is now rapidly gaining momentum. In addition to 
acquiring a catchier name, the “MiServer” now contains a number of tools for 
creating very nice-looking interfaces using the “JQuery UI” library, a handful of 
sample web applications and an extensive User Guide. 
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The MiServer is designed to be an “open source” project; all of the source code is 
stored in Unicode text files, and a modular architecture is intended to allow 
straightforward participation by users who are keen to help add support for 
more JQuery widgets, database interface tools, security mechanisms and other 
more sophisticated versions of the simple mechanisms which are provided as 
samples. 
We hope that with the trial APL system and MiServer, students and other 
developers will find it much easier to take a first look at APL – and that the 
availability of a simple but effective web server framework will make APL an 
attractive platform for quickly delivering technical applications on the internet. 
New versions of MiServer will be released constantly in the future, and will also 
be available on the APL Wiki and the dyalog.com/library page. 
Dyalog’12 in Elsinore 

Reserve October 14th-18th 2012 
in your calendar – these are the 
dates for the next Dyalog 
conference, which will be held at 
LO-Skolen in Elsinore, Denmark! 
The conference is experiencing 
therefore decided to add one more 
day to the conference, bringing it 
to five days including training 
sessions before and after the main 
conference. We have also decided 

to add more training sessions during the main conference days, focusing on 
introductions to features added to Dyalog APL in the current millennium (but not 
necessarily in the last one or two releases). If you plan to attend, please send 
suggestions for course topics to conference@dyalog.com. See 
http://www.konventum.dk/arkitekturen for more images of the venue. 
The 2011 Dyalog conference was held on October 2nd-5th, at the John Hancock 
Conference Center in Boston, Massachusetts. As in with previous Dyalog con-
ferences, we recorded about half of the presentations and they will start to 
appear on the http://video.dyalog.com website in December, alongside the 
existing recordings from Dyalog ’08, ’09 and APL2010 in Berlin. 
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Dyalog Programming Contest 
One of the highlights of the Dyalog conference in Boston was the presentation of 
the grand prize to the winner of this year’s Dyalog Programming Contest (as it 
was in ’09 and ’10). This year, the puzzles had been set by last year’s winner, 
Ryan Tarpine from Brown University – and were well received by the contestants 
– 130 of whom downloaded Educational licenses. This year’s winner, Joel Hough 
from the University of Utah, came third last year and decided to try again – and 
this time he made off with the grand prize of USD 2,500 and a round trip with all 
expenses paid from Salt Lake City to Boston.  
Despite his age, Joel is already a veteran programmer, with (literally) dozens of 
programming languages under his belt – and he ranks learning APL as one of the 
more enjoyable experiences in his career.  
He will be speaking at the QCON conference in San Francisco on November 18th, 
together with Morten Kromberg, on “Why APL is Still Cool”. More details at 
http://qconsf.com/sf2011/presentation/Why+APL+is+Still+Cool. For more 
about Joel and the other prize winners, see http://www.dyalog.com/news.htm. 
We have prepared the 2012 Programming Contest and unveiled the next set of 
problems. As usual, anyone who introduces one of the winners will win the same 
amount of prize money as the winners themselves, so start thinking about which 
of your student friends you will put to work for you. 
Introductory APL Courses 
As this is being written, Bernard Legrand is conducting another of his highly 
rated introductory APL courses, based on his book “Mastering Dyalog APL” 
(which is available from Amazon or as a free PDF download from 
http://www.dyalog.com/intro). The frequency with which these courses are 
being conducted is slowly increasing, and we expect to hold another course in 
2012. If you or any of your colleagues could benefit from APL training, write to 
sales@dyalog.com for details. 
Version 13.1 
The target release date for Version 13.1 of Dyalog APL is 13 April 2012. Tune in 
again in the next issue to read more about that, the new “Dyalog File Server”, and 
a number of additional tools and products that Dyalog will be making available in 
2012. 
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NARS 2000 
The Next Major Release 
Bob Smith, Sudley Place Software, 24 March 2012 
Begun in September 2006, NARS2000 remains the only full-featured Extended 
APL Standard compliant free open source APL interpreter still in active 
development.  As an experimental APL interpreter, it contains a host of old, new, 
and borrowed ideas including these features from the past year: 
• Language bar:  All APL chars in easy view – no more fumbling with Ctrl- or 

Alt-key combinations. 
• User-defined keyboard layouts:  Change the keyboard to exactly where you 

expect the APL and non-APL characters to be. 
• Multiset operator: f� R and L f� R applies various primitive and user 

defined functions to vectors treating them as Multisets – sets with 
repeated elements. 

• Root primitive: √R and N√R – square root and Nth root. 
• Number factoring and number-theoretic fns: �R and L�R – factors 

numbers, tests for prime, finds Nth prime, number of primes�N, etc.  
• Support for Rational and VFP numbers: 

123x, 2r3, and 2v3 – Find the low-order ten digits of the sum of N to the 
Nth for N from  
1 to 1000 – ¯10��+/*�Ι1000x � 9110846700 

• Sequence function: 
L..R – ¯2..8 � ¯2 ¯1 0 1 2 3 4 5 6 7 8 

• Native File functions: &NCREATE, &NTIE, etc. 
NARS2000 runs on several platforms:  32- or 64-bit Windows XP and later, along 
with any OS that can run Wine (a translation – not emulation – layer) available on 
almost all Linux systems. 
Download either the 32- or 64-bit version from the website mentioned below.  
It's free – no forms to fill in, no permissions needed, and it comes with its own 
APL font or you can use an existing APL Unicode font. 
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If you like the idea of having an open source interpreter, please look for ways to 
help: 
• Promote it:  tell your friends and demo it to them. 
• Test it:  migrate your favourite code via .atf files or Copy & Paste Unicode 

characters; write test cases for various primitive functions. 
• Document it:  add to the Wiki. 
• Develop it:  write APL or C code to add new features or improve old ones – 

some new and old primitives have been implemented in APL using the 
language as a rapid prototyping tool and can be recoded in C if and when 
performance is a concern. 

Documentation: http://wiki.nars2000.org 
Downloads: http://www.nars2000.org/download/ 
Home Page: http://www.nars2000.org 
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http://tryapl.org 
During his speech at the Dyalog 2012 Conference in Boston Joel Hough, the 
winner of the 2012 Dyalog APL Programming Contest, explained how he 
normally approaches a new programming language. He mentioned a couple of 
things; one was: “Then I try the language online.”  
There is a simple reason why you can try Perl, Python or Ruby online: 
interpreted languages are perfect for this. However, not with APL. 
Until 2012 - now there is http://tryapl.org 

 

The right panel is a sort of session manager. One can try APL expressions and 
even define functions. Great! 
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M E E T I N G  

Iverson College, Cambridge, Aug 2011 
by Stephen Taylor (sjt@5jt.com) 

A score of APL programmers gathered in Cambridge this summer to 
spend a week living and working together. It proved popular and drew 
attention from luminaries at Microsoft Research. 

  
The FlipDB Team: Kai Jaeger, Phil Last & Paul Mansour 

We were, almost, eighteen. Two of us had been unable at the last minute to es-
cape our offices. The other sixteen made it to Trinity Hall in Cambridge for a 
‘working week’ – some kind of hybrid of a computer conference and a monastic 
retreat. We dubbed it Iverson College[1]. 
Actually, we were just working away from home. Not a big deal with a laptop and 
the Net. 
Some of us remembered working in offices decades ago, for companies such as 
the legendary I.P. Sharp Associates[2]. Even when not on the same project, there 
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was so much then to learn from each other, over lunch, over coffee, over drinks, 
or even just in a heart-felt cry from the keyboard: “How on earth do I…?” 

  
Taking meals together 

So we had reserved study bedrooms in ancient Trinity Hall[3] for the last week of 
August. The college gave us the Leslie Stephen Room as a workroom, some fast 
Net pipes, and a private dining room for our lunches and dinners. Breakfasts we 
took in the cavernous dining hall, beneath the disapproving expressions of 
generations of former college masters. 
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A q portal 

Who were we? Kx Systems assembled a crew from around the world: Arthur 
Whitney from California, Simon Garland and Charlie Skelton from Switzerland, 
Chris Burke from China and Arthur’s young collaborators from St Petersburg, 
Oleg Finkelshteyn and Pierre Kovalev. Kx customer Merrill Lynch in London took 
another four places, but at the last minute only James Garrett and Phil Beasley-
Harling were able to leave London. 
Morten Kromberg brought two implementors from Dyalog: John Scholes and Jay 
Foad. (John introduced himself as a C programmer who had only ever written 
one program, which he thought might be nearly finished.) Dyalog customer 
Joakim Hårsman joined us from Stockholm. 
Paul Mansour of The Carlisle Group, host of invited conferences in Tuscany and 
Cephalonia, came from Pennsylvania and met his England-based collaborators 
Phil Last and Kai Jaeger. Dyalog customers to a man, all three of them. 
And there was me. I booked the rooms. 
Apart from meals, we had no programme. Sometimes one worked in one’s room 
to avoid disturbance; sometimes in the common workroom for the chance of one. 
The workroom was usually silent but for key taps and a murmur of conversation. 
At other times a lively conversation would start and draw everyone in. 
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Scholes with pole  

 

  
Scholes without pole 



VECTOR  Vol.25 Nos.2&3 

 17 

When we gathered on the Sunday afternoon, we possessed ourselves of the two 
college punts and took to the Cam to explore the Backs of the Colleges. Jay Foad 
has a degree from Cambridge. This apparently includes handling a loaded punt. 
Others, like Morten Kromberg, learned fast. A wet August was ending in a warm 
and largely dry week. Late afternoon sun angled down between the colleges, 
through the trees and spread buttery-gold light over the river and lawns. 
Dinners were delicious, gusting to sumptuous, with generous portions. We had 
earmarked some bottles from the college cellars and made steady progress 
through them on our first few evenings, sitting and talking until late. Phil Last 
provided a range of good English ales in support. 
We had no programme. Or rather: we were the programme. At our first meal I 
welcomed everyone and announced my job was now done. People looked a bit 
bewildered. What was the plan? I insisted: we had no schedule of talks or 
activities. Only meal times were fixed. If we wanted talks, we could arrange some 
as we went along, perhaps at tea time. 

  
Andrew Kennedy 

Andrew Kennedy[4], of the F# team from Microsoft Research in Cambridge, 
dropped by to see what we were doing. (Don Syme[5] was out of the country at 
the time, but sent his regrets and his delight that a flock of functional 
programmers was nesting in his old college.) Andrew gave us a talk on his work 
implementing units-of-measure in F#, then sat next to me while Arthur Whitney 
presented his work in progress on k – a research version of the kdb+ interpreter. 
Arthur spent some time constructing and analysing versions of his famous 
expression that generates all solutions to a Sudoku puzzle, kicking off 
explorations that lasted the rest of the week, writing equivalent expressions in J 
and Dyalog. 
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Interesting expressions 

The k interpreter occasionally gave wrong answers. It would have been easy to 
suppose we were looking at a graduate project, did we not remember how Kx 
makes millions of dollars selling its programming language to a world in which 
programming languages are largely free. 
John Scholes ventured a question: “How do you do garbage collection?” — “No 
need to do garbage collection. I know where everything is.” 
The k binary weighs in at about 50Kb. Someone asked about the interpreter 
source code. A frown flickered across the face of our visitor from Microsoft: what 
could be interesting about that? “The source is currently 264 lines of C,” said 
Arthur. I thought I heard a sotto voce “that’s not possible.” Arthur showed us how 
he had arranged his source code in five files so that he could edit any one of them 
without scrolling. “Hate scrolling,” he mumbled. 
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Simon Peyton-Jones 

The following day brought us Haskell pioneer Simon Peyton-Jones[6], who 
graciously autographed a well-thumbed textbook proffered by the blushing John 
Scholes. “We had,” he said, “no idea what you guys have been doing. You are 
completely off our radar. You have to come to some of our conferences.” 
In the event it all seemed to work astonishingly well. Our first two evenings were 
spent socialising and drinking. Then the focus sharpened. People were using the 
late afternoon to exercise, so we reserved the time after dinner for talks in the 
Lesley Stephen Room. Simon Garland bowed to popular pressure and gave the 
current version of his always hilarious Kx technical presentation, showing kdb+ 
woofing down gargantuan tic volumes from the financial markets, as always, 
illustrated from his vast collection of cartoons. 
Days at the keyboard demand exercise. There was the Cam to run beside, a 
swimming pool at a nearby sports centre, and Cambridgeshire roads for biking. (I 
managed to stay with Morten for 20km before retiring hurt to celebrate my 
achievement.) 
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At Byron’s Pool 

  
At the Orchard Tea Gardens 
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We took one day as a play day, hiring punts and poling them upriver to 
Grantchester. Most punters were new to the business, but competitive. 
(Testosterone-fuelled punting: did you ever see anything so silly?) Two of the 
boats made it past Grantchester, turning back only on reaching the weir at 
Byron’s Pool. Returning to Grantchester, we partied over tea and scones with the 
wasps at the Orchard Tea Gardens, attended by the shades of Russell and 
Wittgenstein. 
The programmers were the programme. It was agreed the week was fruitful and 
inspiring, the format a success, and the venue a delight. (Nothing came of a 
scheme to scale a tower of neighbouring Caius & Gonville College and label its 
sun-dialled faces “London”, “Tokyo” and “New York”.) I have promised to mount 
another ‘working week’ next year. 
Many thanks to Arthur Whitney of Kx Systems, Mark Sykes of Merrill Lynch and 
Morten Kromberg of Dyalog for encouragement and advice. Many thanks to the 
generous donors of the Wine Committee. Most of all, thanks to everyone who 
came: I had one of the most rewarding working weeks of my life. 

References 
1.  ‘Iverson College’ website: sites.google.com/site/iversoncollege 
2. http://en.wikipedia.org/wiki/I._P._Sharp_Associates 
3. http://www.trinhall.cam.ac.uk/ 
4. http://research.microsoft.com/en-us/um/people/akenn/ 
5. http://research.microsoft.com/en-us/people/dsyme/ 
6. http://research.microsoft.com/en-us/people/simonpj/ 
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BAA Chairman’s Report (pre AGM) 
by Paul Grosvenor 

 

Time continues to pass at an ever increasing rate and another AGM is just round 
the corner. This time we look forward to seeing you all between 27th and 29th 
April at the Lee Valley YHA for both the AGM and a weekend of all things APL. I 
do hope that some of you will be able to make it (and Geek with the rest of us). 
Lively conversation, a barbie, a few libations and who knows even some 
programming will be the order of the day(s). 
I wanted to get some feedback from the membership on a few issues and so have 
included this report before the AGM is held. Hopefully my questions / comments 
will make some sense. 

1. As Stephen Taylor is no longer Editor of Vector we are looking to fill this 
post and continue to look for a suitable candidate. One of the suggestions 
made is for Optima Systems Ltd to put some resource in to assist the other 
members produce the journal. Whilst this is fine in some ways it would 
mean that the Chairman, Secretary and Editor roles of the committee 
would all come from the same organisation. My question therefore is; 
Would the members be happy for so many posts to be filled from a 
single organisation and would this compromise impartiality? 

2. Our issue with the BCS regarding our funds continues but their stance has 
not changed which is what we suspected would be the case from the 
outset. Circa £14,000 remains under their control and has been absorbed 
into their organisation. There was a vote of no-confidence in the BCS 
management 2 years ago now and an EGM was called as a result. We 
submitted some information to that meeting on behalf of the BAA. Rather 
then me repeating all that was said and done please follow the following 
link where all the information can be found; www.bcsegm.blogspot.com. 
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Since the BCS has not changed its views regarding the membership position of 
the BAA (and indeed other groups within the BCS) and there seems to be no 
documentary evidence to suggest that our membership was in any way different 
we now face a very hard uphill climb to pursue our claims. My question to you all 
is; 
Should we now formally accept that we will not get our funds back from the 
BCS and direct our efforts into more beneficial directions? 

3. In recent years we have had an Outstanding Achievement Award which 
last year went to Stephen Taylor. This time I would like to do things 
slightly differently and ask for nominations from the wider community 
with a view to awarding the trophy next year. My question; 
Are we happy to open up the nominations to such a community which 
may include APL, J, K, Q etc? 

4. Our membership year is tightly bound into the production of 4 issues of 
Vector and this can cause us problems when material or time is short. The 
question; 
Would the membership be happy to continue with their subscriptions 
if the number of issues of Vector was not necessarily 4 per year? 

 
I look forward to hearing any views you may have regarding the above (or indeed 
any other points). If you would like to send an email with your thoughts to; 
 

chairman@vector.org.uk 
or  

paul@optima-systems.co.uk 
 
Thank you and see you on the 27th 
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G E N E R A L  
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L E T T ER  

About infinity -1- 
by Norman Thomson 

Norman Thomson wrote this letter in response to Sylvia's article "What is it 
about infinity?" in Vector 25-1 

Dear Sylv, 
Following your article “What is it about infinity” in Vector vol. 25 No. 1, may I 
suggest that taking a slightly different viewpoint may help to clarify and simplify 
your thoughts concerning rearrangements of terms in the infinite series ln2 = 
1-1/2+1/3-1/4+? to infinity. First the term absolute convergence means that the 
sum of the absolute values (i.e. moduli) of all the terms in a series converges to a 
finite value. The ln2 series is not absolutely convergent since the sum of the 
reciprocals of the natural numbers is divergent. The issue of different sums 
arising from different arrangements of the terms is only a consideration for non-
absolutely convergent series, in which case some of the terms must be positive 
and some negative. The sum for any finite number of terms will be the sum of say 
p positive terms and n negative terms. Rearrangement of terms within either of 
these groups will make no difference to the overall sum once p and n are 
chosen. The ln2 series in standard ordering up to y terms is defined in J by 
   ra=.(_1&� * %@>:)@i. NB. reciprocals alternating in sign 
   ra 6 
1 _0.5 0.333333 _0.25 0.2 _0.166667  

and so two typical consecutive such sums in this somewhat slowly converging 
series are 
   (+/ra 1000),+/ra 1001 
0.692647 0.693646 

The positive and negative terms can be separated by 
   odds=.#-$&1 0@# 
   evens=.#-$&0 1@# 

Any possible rearrangement of terms of the series can be accomplished by taking 
p of its positive terms and n of its negative terms.  
For the unrearranged series p = n: 



VECTOR  Vol.25 Nos.2&3 

 26 

   s0=.odds ar 10000  NB. positives 
   s1=.evens ar 10000 NB. negatives 
   (+/s0)+(+/s1)  NB. sum of first 10,000 terma 
0.693097  

If p and n are chosen differently, a different result is obtained, for example : 
   s0=.odds ra 10000  NB. p=10000 
   s1=.evens ra 5000  NB. n=5000 
   (+/s0)+(+/s1)  NB. new sum 
1.03962   

Riemann proved that the sum of a non-absolutely convergent series can be made 
to have any arbitrary value by a suitable rearrangement of its terms; it can even 
be made oscillatory or divergent. Further it can be shown that in the case of the 
ln2 series this sum is 4ln(4p/n), so that a rearrangement can always be made 
to achieve any given sum S by choosing the ratio p/n to be 6exp(2S). For 
example, suppose S is required to be 1.5, 6exp(3) = 5.02, so take about 5 
times as many positive terms as negative: 
   s0=.odds ra 5020 
   s1=.evens ra 1000 
   (+/s0)+(+/s1) 
1.49936  

Choosing S=0 requires p/n to be 6: 
   s0=.odds ra 10000 
   s1=.evens ra 40000    
   (+/s0,s1),(+/s0),+/s1 
_1.24991e_5 5.24035 _5.24036  

which helps in resolving the algebraic paradox : 
      ln2  = 1-1/2+1/3-1/4+? to infinity 
 = 1+1/2+1/3+1/4+?,-2(1/2+1/4+?) 
              =  1+1/2+1/3+1/4+?,-(1+1/2+?) 
       = X 9 X    where X= the sum of the reciprocals 
                =  0    

Riemann’s theorem may seem extraordinary at first sight, but should be con-
sidered in the light of the defining property of a divergent series, namely that the 
modulus of its sum can be made to exceed any arbitrary value simply by taking 
enough terms. In an informal sense the Riemann theorem describes a ‘half-way 
house’ property between absolutely convergence and divergence. 
Yours sincerely, 



VECTOR  Vol.25 Nos.2&3 

 27 

About infinity -2- 
by Sylvia Camacho (sylviac@blueyonder.co.uk) 

Sylvia Camacho's answer to Thomson's letter on Infinity. 

Dear Norman, 
I read Cornelius Lanczos on classes of the number field some years before I was 
introduced to APL, so I was immediately receptive to Iverson's emphasis on 
improving the rigour of mathematical notation by distinguishing between the 
subtraction operator and the notation for a negative number. This made me 
hyper-sensitive to the ambiguity of the conventional expression for the infinite 
alternative of reciprocals. Your comment on the definition of 'convergent series' 
shows that the reciprocal series cannot converge as a simple sum but it does if 
every alternate value is subtracted. This, in conventional maths implies an order 
of evaluation: 
   (((((((9-8)+7)-6)+5)-4)+3)-2) NB.conv.maths evaluates lft to rt  
4  

and is insensitive to a change of sequence providing each term is assumed to 
include its preceding operator and that no term is omitted, which was how I read 
Derbyshire's "but only if you add up the terms in this order.": 
   (((((((9+7)-8)-6)+5)-4)+3)-2) NB.conv.maths: lft to rt 
4  

but, of course, an infinite series implies an infinite procedure and so any actual 
evaluation will be an approximation equivalent to a truncated series which will 
be sensitive to omissions. Graham, being a mathematician, appreciated this: 
hence his final table. Your reference to the need to balance the p and n of any re-
arrangement is a way of expressing the same restriction. 
If like Iverson we follow Lanczos and use notation which distinguishes the class 
of positive from that of negative numbers, the conventional expression contains 
only positive numbers and preceding addition and subtraction operators and will 
be sensitive to bracketing which can split an operator from the following 
number. Lanczos explains that the subtraction operator came to be accepted as 
the indicator of a negative number by giving it an implied left argument of zero. 
This is also the way that J interprets it: 
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   -3 NB. enter minus 3 
_3    NB. J returns negative 3  

Do you think that conventional mathematicians believe that making this 
distinction between operator and negative sign is to make a mountain out of a 
molehill? I have to accept that Lanczos did not use any special notation in his 
regular mathematical publications. 
Your explanation of Riemann's Theorem is intuitively clear, although I could not 
begin to prove it. The infinity of reciprocals of integers comprises all possible 
fractions of the unit, from which any number could be composed just as any 
number can be represented in base-2 (I think). 
Regards from sylviac@blueyonder.co.uk 

References 
1. Sylvia Camacho & Graham Parkhouse, “What is it about infinity?”, Vector 25:1, 

archive.vector.org.uk/art10500640 

 



VECTOR  Vol.25 Nos.2&3 

 29 

What is an array? 
by Roger Hui (rhui000@shaw.ca) 

In a recent e-mail [1], John Scholes reminded me of his last encounter with Ken 
Iverson, originally described as follows [2]: 

In Scranton in 1999 during one of the sessions I was sitting next to Ken, and he 
leaned over and said to me – in his impish way – John, what is an array? Now I knew 
better than to rush into an answer to Ken. I guess I’m still working on my answers to 
that question. 

Fools rush in where angels fear to tread… 

What is an array? 
An array is a function from a set of indices to numbers, characters, … A rank-n 
array is one whose function f applies to n-tuples of non-negative integers. A rank-
n array is rectangular if there exist non-negative integer maxima s = (s0, s1, …, sn-
1) such that f (i0, i1, …, in-1) is defined (has a value) for all integer ij such that 
(0≤ij)^(ij<sj). s is called the shape of the array. Etc. 
This definition accommodates: 
• APL/J rectangular arrays 
• J sparse arrays 
• infinite arrays 
• dictionaries (associative arrays) 

APL/J rectangular arrays 
A typical APL/J rectangular array: 
   2 2 3 Ρ 'ABCDEFGHIJKL' 
ABC 
DEF 
 
GHI 
JKL 

Listing the indices with the corresponding array elements makes the index 
function more apparent: 
0 0 0   A 
0 0 1   B 
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0 0 2   C 
0 1 0   D 
0 1 1   E 
0 1 2   F 
1 0 0   G 
1 0 1   H 
1 0 2   I 
1 1 0   J 
1 1 1   K 
1 1 2   L 

APL rectangular arrays to-date have been implemented by enumerating the array 
elements in row-major order (and employ the ‘implementation trick’ of not 
storing the indices). But there are ways to represent a function other than 
enumerating the domain and/or range of the function. 
J sparse arrays 
Sparse arrays were introduced in J in 1999 [3], [4]. In the sparse representation, 
the indices and values of only the non-‘zero’ elements are stored. 
   ] d=: (?. 3 5 $ 2) * ?. 3 5 $ 100 
 0 55 79 0  0 
39  0 57 0  0 
 0  0 13 0 51 
   ] s=: $. d   NB. convert from dense to sparse 
0 1 J 55 
0 2 J 79 
1 0 J 39 
1 2 J 57 
2 2 J 13 
2 4 J 51 
   3 + s 
0 1 J 58 
0 2 J 82 
1 0 J 42 
1 2 J 60 
2 2 J 16 
2 4 J 54 

Reference [3] has an example of solving a 1e5-by-1e5 tridiagonal sparse matrix 
in 0.28 seconds. 
Infinite arrays 
Infinite arrays were described by McDonnell and Shallit [5] and Shallit [6]. 
Having infinite arrays facilitates working with infinite series and limits of 
sequences. 
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   Ι4 
0 1 2 3 
 
   Ι∞ 
0 1 2 3 4 5 M 
 
   - Ι∞ 
0 ¯1 ¯2 ¯3 ¯4 ¯5 M 
 
   3 * - Ι∞ 
1 0.333333 0.111111 0.037037 M 
 
   +/ 3 * - Ι∞ 
1.5 
 
   O Ι∞ 
DOMAIN ERROR 
   OΙ∞ 
  � 

Infinite arrays can be implemented by specifying the index function as a function. 
For example, the index function for Ι∞ is the identity function, S or {Ω}. 
Let x and y be infinite vectors with index functions fx and fy. If s1 is a sca-
lar monadic function, then s1 x is an infinite vector and its index function is 
s1Wfx, s1 composed with fx. If s2 is a scalar dyadic function, then x s2 y is 
an infinite vector and its index function is the fork fx s2 fy, or the dynamic 
function {(fx Ω) s2 (fy Ω)}. 
In the following examples, the infinite vectors are listed with the index function, 
both as an operator expression (tacit function) and as a dynamic function. 
   Ι∞                   J  S 
0 1 2 3 4 5 6 7 M       J  {Ω} 
                        J 
   ∞ Ρ 2                J  SW2 
2 2 2 2 2 2 2 2 M       J  {2} 
                        J 
   - Ι∞                 J  -WS 
0 ¯1 ¯2 ¯3 ¯4 ¯5 M      J  {-Ω} 
                        J 
   3 * - Ι∞             J  (3W*)W-WS 
1 0.333333 0.111111 M   J  {3*-Ω} 
                        J 
   XYxY3*Ι∞             J  3W*WS 
1 3 9 27 81 243 729 M   J  {3*Ω} 
                        J 
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   XYyY(Ι∞)*2           J  *W2WS 
0 1 4 9 16 25 36 M      J  {Ω*2} 
                        J 
   x+y                  J  3W*WS + *W2WS 
1 4 13 36 97 268 765 M  J  {(3*Ω)+(Ω*2)} 

Dictionaries (associative arrays) 
The proposed string scalars are suitable for use as indices in dictionaries. For 
example: 
   ΡΡCaps 
1 
   Caps["UK" "China" "France"]Y'London' 'Beijing' 'Paris' 
   Caps 
"UK"     J London 
"China"  J Beijing 
"France" J Paris 
 
   Caps["China"] 
 Beijing 
 
   Caps["USA"] 
INDEX ERROR 
   Caps["USA"] 
  _ 
 
   Caps Ι 'Paris' 'Tokyo' 'London' 
"France" b "UK" 
 
   O Caps 
DOMAIN ERROR 
   OCaps 
  � 
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Introducing “Some Topics in Computing” 
by Keith Smillie (smillie@cs.ualberta.ca) 

History … interprets the past to understand the present and confront the future… . P. 
D. James, The Children of Men. 

Introduction 
On my eightieth birthday – which is now longer ago than I care to admit - a physi-
cist friend gave me quite unexpectedly a copy of Great Ideas in Physics by Alan 
Lightman[1]. The two aims of the book according to the author who holds 
appointments in both Humanities and Physics at MIT are “to provide a grasp of 
the nature of science, and to explore the connection between science and the 
humanities”. 
Using only elementary mathematics not including calculus, Lightman discusses 
the conservation of energy, the second law of thermodynamics, the theory of 
relativity, and quantum mechanics, and introduces illustrative excerpts from the 
writings of Newton, Kelvin and Einstein as well as many other scientists, poets, 
novelists and philosophers. 
I read the book with great pleasure and finished it feeling envious of the students, 
most of whom were in their first year, who had taken the course from which the 
book was developed. I particularly remembered the first page of the Introduction 
which began with a brief account of a visit Lightman had made to the Font-de-
Gaume prehistoric cave where the walls are covered with 15,000-year-old Cro-
Magnon paintings. After describing one painting of two reindeer, he continues: 

 ... The light was dim, and the colours had faded, but I was spellbound. Likewise, I am 
spellbound by the plays of Shakespeare. And I am spellbound by the second law of 
thermodynamics. The great ideas in science, like the Cro-Magnon paintings and the 
plays of Shakespeare, are part of our cultural heritage.  

Unfortunately most of our university science courses regardless of the discipline 
are intended for students majoring or intending to major in the subject or who 
wish to use the subject as a tool in their own discipline. Very little time is spent 
on the historical, literary or other cultural aspects of the subjects.  
 
These matters are often treated briefly in panels inserted in the text. There 
appear to be relatively few introductory courses intended for those persons with 
modest scientific and mathematical backgrounds wishing some knowledge of a 
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scientific discipline as part of a liberal education. There are certainly very few 
such courses or books written by specialists which introduce computers and 
computing as part of our culture to the general reader. 
Therefore, encouraged by Lightman’s book I decided to assemble a few chapters 
dealing with what I consider some of the more important ideas in computing as 
seen in historical perspective. To avoid having to define computer or computing 
science and to emphasize the undoubted incompleteness of the work I used the 
title “Some Topics in Computing”. As with Lightman’s book there is very little 
mathematics, and certainly no calculus. However, in addition to conventional 
mathematical notation J is used both as an executable mathematical notation and 
as a programming language. The first chapter gives a brief introduction to J and 
further aspects of J are introduced in subsequent chapters as they are needed and 
in an unobtrusive manner as possible. The Table of Contents is given as an 
Appendix to this paper, and the chapters are available as Web pages at 
http://goo.gl/39jq2 [2]. 
The purpose of this short article is to give a very brief description of the topics 
presented on the Web in the hope that some readers will be encouraged to make 
use of some of the material in their own work and may extend it in directions and 
with emphases which they consider necessary or desirable. 
Topics 
The first chapter introduces Kenneth Iverson and APL and then J as a “modern 
dialect” of APL. J is then illustrated by two short “dialogues”, annotated sessions 
with the computer, in which some of the J primitive verbs are introduced by 
means of simple examples, one of which finds the number of grocery items 
purchased in a shopping trip and the total cost of the items. This allows the 
introduction of both functional and explicit definition of verbs and a comparison 
with a BASIC program for the same problem. A final dice-rolling example allows 
the introduction of the very useful verb table /, and is the first of several dicing 
examples. 
Number systems are the subject of Chapter 0 which begins with the additive 
number systems of ancient Egypt and Greece and the multiplicative systems of 
China and Japan. This is followed by a discussion of our positional number 
system which is illustrated with several recreational examples including the 
game of Nim and an example from Alice in Wonderland to be mentioned later in 
this paper. The chapter ends with an extension of the dice-rolling example of the 
first chapter. 
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The first two chapters give a somewhat leisurely introduction to J which it is 
hoped will prepare a reader new to the language for the following chapters on 
the development of computing. In brief, these chapters discuss the work of John 
Napier, Charles Babbage, George Boole, Alan Turing, and some of the pioneers in 
early computing. J is used to provide illustrative examples such as a Windows 
form for a Difference Engine simulator and a simulator for a Turing machine, and 
a brief introduction to Boolean algebra. The dice-rolling example appears again 
in the discussion of programming languages where dice-rolling programs are 
given in twelve different languages including a machine-language simulator 
written in J. The final chapter makes some remarks on solvable and unsolvable 
computational problems and ends with a brief discussion of the on-going work 
on polynomial- and exponential-time problems and the P vs NP problem. 
Computing and literature 
Although we have taken an historical approach to the growth of computers and 
computing, we must not neglect other branches of the humanities as a source of 
examples which may illuminate and enrich computing topics. Indeed some of 
these examples may illustrate that we have been introduced to important 
concepts in computing and mathematics through books and stories we have 
known since childhood. In this section we shall give just a few examples from 
English literature. 
We shall begin with number systems, as we did in Chapter 1 of Topics, with the 
following from Thomas Hardy’s The Trumpet Major which takes place during the 
Napoleanic Wars as an illustration of the problems presented by the decimal 
number system to those with a limited formal education: 

Behind the wall door were chalked addition and subtraction sums, many of them 
originally done wrong, and the figures half rubbed out and corrected, noughts being 
turned into nines, and ones into twos. These were the miller’s private calculations. 
There were also chalked in the same place rows and rows of strokes and open palings, 
representing the calculations of the grinder, who in his youthful ciphering studies had 
not gotten as far as Arabic figures. 

Number systems to a varying base are illustrated at the beginning of Alice in 
Wonderland as Alice repeats the multiplication table shortly after having fallen 
down the rabbit hole: 

 Let me see; four times five is twelve, and four times six is thirteen, and four times 
seven is – oh dear! I’ll never reach twenty at that rate! 

A marginal note in Martin Gardner’s Annotated Alice[3] refers to an explanation 
which justifies Alice’s arithmetic since four times five is twelve to base eighteen, 
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four times six is thirteen to base twenty-one, … and four times twelve is nineteen 
to base thirty-nine. However, four times thirteen is not twenty to base forty-two 
so Alice does not reach twenty after all. 
A character much loved by children is A. A. Milne’s Winnie-the-Pooh who early in 
the stories illustrates the difference between the exclusive- and inclusive-or: 

 Pooh always like a little something at eleven o’clock in the morning, and he was very 
glad to see Rabbit getting out the plates and jugs; and when Rabbit said, ‘Honey or 
condensed milk with your bread?’ he was so excited that he said ‘Both,’ and then, so as 
not to seem greedy, he added, ‘But don’t bother about the bread, please.’ 

An excellent illustration of the indirect method of proof is given when Pooh is 
looking for companions to join himself and Christopher Robin in an Expedition to 
the North Pole. He meets Rabbit first and says: 

 ‘Hallo, Rabbit,’ he said, ‘is that you?’  
 
‘Let’s pretend it isn’t,’ said Rabbit, ‘and see what happens.’  
 
(Hello, Rabbit, is the number of primes infinite? ...) 

Charles Dickens, who knew Babbage well, got some of his ideas in Little Dorrit for 
the Circumlocution Office, the government office that did nothing, from 
Babbage’s experiences with the government and modelled Daniel Doyce in part 
on Babbage. 
Arrays with one or more dimensions of length zero occur in Douglas Adams’s The 
Hitch Hikers Guide to the Galaxy: “A hole had just appeared in the galaxy. It was 
exactly a nothingth of a second long, a nothingth of an inch wide, and quite a lot 
of millions of light years from end to end.” 
The problems associated with recursive processes and their termination are 
illustrated in Arthur C. Clarke’s “The Longest Science-Fiction Story Ever Told” 
which tells of an editor who writes a letter which ends by referring to itself and 
thus starts over again and again … . 
Many more examples could be cited but it is hoped that these few may suffice to 
show how fiction can provide a source of examples to illustrates important ideas 
in computing, and indeed in other fields of science. Moreover such examples in 
themselves may encourage the science student to put aside, if only briefly, the 
prescribed science texts and turn to literature for relaxation and renewal. The 
rewards of such actions are beautifully expressed in the Introduction to one of 
the several editions of Mrs Gaskell’s Cranford: 
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 … in that pleasantest hour of all where the toils of the day are over and business cares 
are forgotten, the last hour of the day before retiring, one reads again one chapter; or 
forgetful of the morrow one reads on along the peaceful river of gently flowing prose, 
of effortless charm, and tranquil truth. 
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Appendix: Table of Contents 
1. Introduction 
2. Kenneth Iverson, APL and J 

o Development of APL and J 
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o A longer dialogue with J 
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o Throwing dice 

3. Positional Number Systems 
o Introduction 
o Additive systems 
o Multiplicative systems 
o Arithmetic tables 
o Positional systems 
o Guessing numbers 
o The binary clock 
o Down the rabbit-hole 
o The game of Nim 
o A genealogical problem 
o A closer look at multiplication 
o Rolling more dice 

4. John Napier and Logarithms 
o Introduction 
o John Napier of Merchiston 
o Napier’s logarithms 
o Further development of logarithm tables 
o Napier’s rods 
o Slide rules 

5. Charles Babbage and his Engines 
o Charles Babbage 
o The method of differences 
o The Difference Engine 
o A simulator for the Difference Engine 
o The Analytical Engine 
o Other Difference and Analytical Engines 
o Prime numbers and coffee tables 
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6. George Boole and Logical Design 
o Aristotelian logic 
o George Boole 
o Boolean algebra 
o Truth tables 
o Binary addition 

7. Alan Turing and Computability 
o Mathematical foundations 
o Early life and education 
o Bletchley Park 
o National Physical Laboratory and Manchester 
o Turing Machines 
o Computability 
o A play and a novel 
o A Turing Machine simulator 

8. Early Computers 
o Introduction 
o Electromechanical computers I. Konrad Zuse 
o Electromechanical computers II Howard Aiken 
o Eletromechanical computers III. The Bell Telephone computers 
o Electronic computers I. ENIAC and EDVAC 
o Electronic computers II. NPL, Manchester and FERUT 
o Electronic computers III. Cambridge and EDSAC 
o Nim-playing computers; A machine-language simulator 

9. FORTRAN and Some Other Languages 
o Introduction 
o Before FORTRAN; FORTRAN; BASIC; ALGOL; Pascal; C, Java and 

Perl; MATLAB 
o Spreadsheets 
o Backus-Naur Form 
o Acknowledgements 
o Appendix - Example programs for dice frequencies 

10. Some Overwhelming Numbers 
o Introduction 
o Bubble sort 
o A couple of legends 
o Some problems from the real world 
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o A few notes on cryptography 
o Public key encryption 
o P vs NP 
o J programs 

11. Appendix. J4.06 Script File 
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Eight-way street 
Handling high-ranking arrays 

by Stephen Taylor (sjt@5jt.com) 

Describes techniques for handling arrays of rank much higher than three; also 
introduces a mnemonic for the left argument of dyadic transpose. 
When you sup with the devil, use a long spoon. (Proverb) 
One of the features of APL attractive to the learner is how functions work on 
conformable arrays without loops and indexes. When A×B can refer to arrays of 
arbitrary rank it is clear one has stepped into a world of new abstraction and 
generality. 
Later it can be surprising to find how little use one has made of higher-rank 
arrays. Interpreter writers track their usage to learn where optimisation would 
be valuable. Only a tiny fraction of arrays have ranks higher than 3. (Let us call 
such arrays ‘noble’.) 
Somehow this seems disappointing. When I started to write APL, I foresaw 
working in higher realms of abstraction and generality, free from the mental 
clutter of loops and indexes. The loops are mostly gone, but noble arrays remain 
tantalisingly rare. I conducted an informal survey of career APL programmers I 
know. The highest-rank array reported used in commercial software was 5. 
The dreams of youth are notoriously prone to disappointment. But is useful to 
understand the sources of disappointment. 
In contrast to youthful dreams, much of life is quotidian, spent brushing one’s 
teeth and washing dishes. So with programming. Even with much looping swept 
away there is much to be done that resists abstraction. Life and programming 
both are less tractable than our dreams. 
Another source I can own to is a combination of my own laziness and others’ 
pressure for results. It takes time and effort to master techniques of higher 
abstraction and generality. Suppose one is faced, say, with multiplying a table 
through a rank-4 array. One has perhaps a hazy idea of a short expression that 
would do it. But writing two loops solves it faster than working out the 
unfamiliar expression. Repetition of the problem might prompt one to stop and 
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study. Peer pressure from more experienced colleagues might also do it. 
Otherwise one is pressed always toward the road more travelled. 
Visual Basic is famously easy to start writing in. It is also notoriously quick to 
mire a writer’s ambition in repetitive code. We might call this the ‘VB effect’. But 
APL writers are also vulnerable to it, and for similar reasons. Both languages 
favour the self-taught, enabling domain experts, untrained in the orthodoxies of 
software development, to produce usable code. Without support from writers 
more experienced in abstractions, autodidacts are liable to miss available coding 
abstractions. 
Sometimes this has profound consequences. I was recently asked to rewrite a 
core section of an application developed and maintained in just this way over 
twenty years. The chief developer, a domain expert, was soon to retire. Faced 
with changes required by regulatory changes he advised that he could not patch 
in further changes with any confidence. The algorithms should be rewritten as 
they would have been had the eventual requirements been known twenty years 
earlier. After years of ‘cut and paste’ patching, the code base had, as some de-
velopers put it, “gone sour”. It could no longer be amended with confidence. 
Going sour is terminal. Code goes sour when its developers can no longer 
navigate its exceptions, tricks and redundant parts. Sour code has to be 
rewritten. 
“Software is a constant battle against complexity.”[1] Developers aim to defer as 
long as possible the souring of code. Abstraction is a weapon in this battle. When 
short, abstract code has to be revised, it encourages ‘clean’ reformulation that 
preserves the rigour of the original. It is less susceptible to the accumulation of 
‘cut-&-paste’ patching that sours code. 
Reading the soured application code I was able to see the traces of cut–&-paste 
work. Pages of code that looked something like this: 
NRRUBBLE Y RATER × NRUBBLE 

NSRUBBLE Y RATES × NRUBBLE 

NTRUBBLE Y RATET × NRUBBLE 

NURUBBLE Y RATEU × NRUBBLE 

MRRUBBLE Y RATER × MRUBBLE 

MSRUBBLE Y RATES × MRUBBLE 

MTRUBBLE Y RATET × MRUBBLE 
MURUBBLE Y RATEU × NRUBBLE 
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Tracing execution revealed the RUBBLE arrays to be vectors. One could see 
within the verbose solution a terse, higher-rank solution struggling to emerge. 
Factor arrays 
Analysis revealed the bulk of this code allocated a sum of money. The vectors 
were time series, created by applying interest rates, inflation rates and other 
time-related factors. The money was split other ways as well. In some cases the 
money was allocated to one of a choice of categories. In others, it was 
apportioned between categories. 
All of these allocations could be represented by multiplication. To apply an 
interest rate R across valuation years Y: 
   fTime Y (1+R)*ΙΡY 

To allocate to one of a list of categories CATS according to category C: 
  fCat Y CATS=C 

To apportion across periods according to dates D1 D2 D3: 
  fPeriod Y apportionPeriod(D1 D2 D3) 

Since these ‘business rules’ are defined orthogonally, we can use Cartesian 
(outer) products to construct a rank-3 array that allocates, apportions and 
revalues: 
  VAL Y AMT × fTime W.× fCat W.× fPeriod 

Or, to remove the repetition: 
  VAL Y AMT × f W.×/fTime fCat fPeriod 

The result VAL has 3 axes: valuation years, category and period. 
Sadly, the problem does not admit of so satisfyingly simple a solution. The outer-
product reduction works only because the factors are mutually independent. But 
some business rules work across multiple axes. 
For example, a set of rates apply across time, but differ between categories. The 
rate table RT has ΡY rows, and columns corresponding to the categories of 
CATS. That is to say, RT has the time and category axes. We can conveniently 
insert it into our combination of factors: 
  VAL Y AMT × (RT × fTime W.× fCat) W.× fPeriod 
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Where the old code had a plethora of similar names, the new has everything 
stacked in a rank-3 array, from which we can select what we need by indexing. 
There turns out to be a good deal of this ahead. It is inconvenient for the reader 
to remember that, for example, the first index on the period axis denotes pre-
1988 and the second post-1988. We shall do better with enumerators: 
   (iM iN iO iP) Y ,¨Ι4 h enumerate category axis 
   (iPr8 iPo8)   Y ,¨Ι2 h enumerate period axis 

Thus we can select the pre-1988 value in 2013 for category N a 
VAL[YΙ2013;iN;iPr8] or tabulate the post-1988 values for categories O and P as 
VAL[;iO,iP;iPo8]. Note that the index enumerators are vectors, so indexing in 
this way preserves rank: the result too has rank 3. This is not very valuable for a 
rank-3 array, but will turn out to be helpful as we add axes to VAL. 
VAL still has three axes. We suspect it will need more before we’re done. 
It turns out we need VAL calculated both with and without the rates in RT. We 
can accommodate this with another axis. First we extend the rate table to apply 
and not apply: 
   fRates Y RT W.* 1 0 

fRates has 3 axes: valuation years, categories and a new axis: with and without 
rates. We want some more enumerators: 
    (iWth iWto)   Y ,¨Ι2 h enumerate: with & without rates 

Folding fRates into the expression for VAL requires a little care now. We could 
jam the extra axis onto the fTime fCat outer product: 
   VAL Y AMT × (fRates × (fTime W.× fCat) W.× 1 1) W.× fPeriod 

Or we could enclose rank-3 RT into a table of 2-element vectors. This can then 
be multiplied by the fTime fCat outer product: scalar extension multiplies each 
element of fTimeW.×fCat by a 2-element vector: 
   VAL Y AMT × (f (fTime W.× fCat) × k[3]fRates) W.× fPeriod 

We can think of the enclose on the third axis as ‘hiding’ it, leaving only the time 
and category axes exposed. Disclosing the result of the multiplication ‘restores’ 
enclosed axes at the end of the shape – in this case exactly where the enclosed 
axis had been before. 
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VAL now has four axes: valuation year, category, with/without rates, and period. 
Still we think there will be more axes before we’re done. 
Switching axes 
APL developers often write to explore the problem domain. In working with a 
noble array one might find oneself adding and removing axes as one’s view of the 
domain improves. Having index enumerators and axis enumerators (see below) 
are a great help in revising the code as the shape of VAL changes. 
There is a particular problem with the approach used above to generate the 
factor arrays. While exploring the domain, their shapes change. (In the example 
above, we saw the rate table shifted from two axes to three.) Some of the axes of 
the factor arrays match some others, some will not. 
Combine factor arrays into a single array of factors by successively enclosing 
along selected axes, multiplying and disclosing – as above. Each time a factor 
array changes shape, this sequence has to be revised. (Sadly, axis enumerators 
are no help here, as they refer only to the axes of VAL.) 
Worse, as the combination of factor arrays gets revised, so the shape of the result 
alters. Every axis will be there, but not necessarily in the order you want. Each 
revision of the combination is liable to change the sequence of axes. We know 
dyadic transpose will re-order the axes of an array. Now is the time to get a grip 
on its left argument. 
Suppose that VAL is to be a rank-8 axis. Let’s define eight enumerators for its 
axes. 
   (aTIM aCAT aPRD aSEX aRAT aBNS aYRS aPLS)YΙΡΡVAL henumerate axes 

We have combined the various factor arrays we defined from the business rules. 
The resulting factor array has all eight axes, but not in the order above. How do 
we get them into the right order? Start by identifying the axes in the combined 
factor array. Suppose they have emerged from the combination in this order: 
      aYRS aRAT aTIM aPRD aSEX aBNS aCAT aPLS 

Very good. Then we use this array as the left argument of our dyadic transpose: 
      aYRS aRAT aTIM aPRD aSEX aBNS aCAT aPLSl 

puts the axes in the order they are to be in VAL. 
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From using axis enumerators in this way we see that the left argument of dyadic 
transpose functions as an address list – where the corresponding axes of the 
right argument are to end up. 
Summing and selecting 
In reading values from VAL the business logic sometimes needs categories and 
periods distinct, sometimes summed. 
Tabulating with-rate values for all years and categories, summed across period: 
   +/VAL[;;miWth;] 

The m is required to collapse the third (with/without rates) axis, as the 
enumerators are all length-1 vectors. (We shall see shortly why this is so.) The 
sum defaults to the last axis and removes it. The result is a table of valuation 
years by category. 
Tabulating with-rate values for all years and periods: 
  +/[2]VAL[;;miWth;] 

Here the axis operator applies the summing to the category axis. Reading the 
expression requires us to remember that the second axis is for categories. Again, 
we will do better with enumerators: 
  (aTIM aCAT aRAT aPRD)YΙ4 h enumerate axes 

This enables us to write the previous tabulations as 
  +/[aPRD] VAL[;;iWth;] 
  +/[aCAT] VAL[;;iWth;] 

with some gain in legibility. Now we see the value of using vector index 
enumerators so that indexing does not reduce rank. It allows us to use the axis 
enumerators for reduction. (A drawback above is that the rates axis remains, 
with length 1.) 
Nor is this is an approach that scales well to nobler arrays. Suppose our array has 
grown to 8 axes. We wish to index some of them and sum others. The reader’s 
primary interest is to see what has been selected and what axes are in the result. 
We can use successive summations providing we sum axes in descending order. 
For example, for axes 
  (aTIM aCAT aPRD aSEX aRAT aBNS aYRS aPLS)YΙΡΡVAL h enumerate axes 
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we could get a table with rows and columns corresponding respectively to aSEX 
and aCAT something like: 
   sel Y VAL[iThis;;;;;iThat;;iTher] 

   l+/[aTIM]+/[aPRD]+/[aRAT]+/[aBNS]+/[aYRS]+/[aPLS] sel 

The indexing makes the selection clear enough, but it still takes some work to see 
that the axes not summed are aCAT and aSEX and thus the result is a table with 
rows and columns corresponding to those axes, then transposed. For 
maintenance one would worry that changes in the order of axes will change the 
result of the successive summations without necessarily breaking execution. 
Better if we could write something like: 
  aSEX aCAT SUMSOF VAL[iThis;;;;;iThat;;iTher] 

This it turns out we can do quite neatly: 
    n ZYresultaxes SUMSOF array 

[1]  h array summed across all axes except resultaxes 

[2]  h result has axes in order of resultaxes 

[3]  ZY(p,resultaxes)l+/¨,¨k[(ΙΡΡarray)-resultaxes] array 

    n 

The expression in line 3 encloses all the axes that are to be ‘hidden’, producing an 
array whose shape contains the axes in resultaxes, but in ascending order. 
Each cell of this is then ravelled and summed. The dyadic transpose then shuffles 
the axes into the desired order. 
While any change to the shape of VAL would still require a change to the 
indexing, provided the aSEX and aCAT axes persist, they may remain as the left 
argument of SUMSOF. 
Conclusion 
Using index enumerators considerably improves readability when selecting from 
noble arrays. Using axis enumerators makes it easier to put axes of intermediate 
arrays into a desired order. The left argument of dyadic transpose may be 
thought of as an ‘address list’ of where you want the corresponding axes of the 
right argument to be ‘sent’. 
The dyadic function SUMSOF improves the readability and robustness of what 
would otherwise be a sequence of sum functions vulnerable to shape changes in 
VAL. 
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Co-operators 
by Phil Last (phil.last@ntlworld.com) 

Based on a presentation given at Dyalog’11 in Boston on 5 Oct 2011, Phil Last 
develops some demonstrative operators to solve some common programming 
problems. 

Preamble 
I’ve been developing user-defined operators since a time when it was only 
possible to simulate them by executing prepared expressions that include a 
function name passed as left argument to another function. The following 
allowed first-generation APLs to use reduction with any dyad: 
    n RYF RED W 

[1] h RYFqW 

[2]  RY''ΡΡW 

[3]  RYr(Ρ,F)s,((R,Ρ,F)ΡF),' ','W','[',(t(ΙR)W.+,0),((R,-1-

ΡΡW)Ρ';'),']' 

    n 

   'f' RED Ι6 

( 0 f( 1 f( 2 f( 3 f( 4 f 5 ))))) 

   'u' RED 2 5Ρ'aeiou','vowel' 

0 1 0 1 0 

So when IBM announced a mechanism for users to define their own operators in 
about 1983 I had a queue of them awaiting proper implementation. 
When Dyalog announced D-fns with lexical scope in 1997 I unashamedly 
switched to using that as my standard notation for all new functions and 
operators and embedding D-fns for most amendments to old ones. So without 
apology I’ll warn you that almost everything you’ll see here is in D-notation. Also 
that some coding techniques might be new to you. 
In the original paper to the Boston presentation I included a short note about 
those techniques. This time I refer you to a companion article that appears in the 
same edition of Vector as this: “A way to write functions”. If you see anything 
here that is confusing or appears to make no sense at all you’ll probably find it 
explained there. 
Application-specific operators tend to be rare, often restricted to two or three in 
a large application while I currently have a collection of over forty more-or-less 
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general purpose ones. It’s always mystified me that so few APLers seem to write 
or even use them at all. 
A simple piece of code that maps or operates on one or two input arrays of 
known domain and structure can be extracted and encapsulated into a function 
that can be called upon whenever needed and this perhaps should almost always 
be done. An extension of that where different but syntactically congruent 
operations were to be applied would encourage us to write an operator and pass 
the operation in as a parameter along with the arrays. 
I should mention here that strictly speaking when we write an operator what we 
are writing is the definition of the derived function of that operator. When we say 
an operator returns a function the operator does nothing. The parser merely 
binds it with its one or two operands. All the work specific to that operator is still 
to be done by the derived function and that after it has one or two arguments to 
operate on. In what follows I’ll almost certainly forget this distinction between 
the derived function and the operator and refer to the operator’s doing things 
which are actually the province of the derivation. I doubt that this will confuse. 
Co-operators 
A class of operator that I’ve become interested in comprises those that are 
designed to be called multiple times within the same expression: 
    [a] f op g op h op j op k op l w  

where a and w are arrays; f, g, h, j, k and l are functions [see Appendix 
A]; and opp is the operator in question. The first and most obvious thing to 
notice about this is that the operator is dyadic – it takes two operands – making 
the number of operands in the expression one more than the number of calls to 
the operator. I’ll mention here that I’ll use Iverson’s names for monadic and 
dyadic operators – adverb and conjunction – if I need to distinguish them. 
Although without an awful lot of messy code an operator can’t examine its 
operands – it just runs them on trust – in this context we need to know 
something about them. I’m calling these co-operators because in order to be 
useful they must take account of the likelihood that they are not operating alone. 
An examination of the calling sequence of the above expression will help. Redundant 
parentheses show how it’s parsed: 
    [a]     f op g op h op j op k op l w 
    [a](((((f op g)op h)op j)op k)op l)w  



VECTOR  Vol.25 Nos.2&3 

 53 

In first generation APL this was explained as operators’ having ‘long left scope’ as 
opposed to functions’ having ‘long right scope’. Along with strand-notation and 
the generalisation of operators came the idea of ‘binding strength’. The above 
parsing is now explained on the basis of right-operand binding’s being stronger 
than left – so an operand between two conjunctions is bound by the one whose 
right operand it is; that to its left. 
In the case above g is bound by op to its left, h by that to its left and so on to 
the rightmost op that has the whole function expression to its left f...k as its 
left operand – ‘long left scope’. A corollary to this is that all but the leftmost call to 
op have left operands derived from op itself, that exception being the greatest 
complication in all that follows; we need to identify what is that ‘leftmost call’ 
because we’ll have to treat it differently. We also can be sure that the right 
operand of every instance of op is one of the original operands of the 
unparenthesised expression. The arguments to the expression become the 
arguments to the first call, the rightmost. 
Function Selection 
Here’s a simple operator to start us off. I never got into writing case statements 
like: 
   :Select whatever 

   :Case this v ... 

   :Case that v ... 
   ...    

because I’d already started using operators to control program flow before 
control structures were implemented in APL and D-fns don’t permit them even if 
I wanted to. Instead consider an operator – call it or – to be used as: 
   0 0 1 0 f or g or h or j w Yw 0 0 1 0(((f or g)or h)or j)w  

I hope you can guess what this is intended to do. In the specific case above I want 
the result to be the result of h w, the boolean vector being used as a mask to 
select from the four operand functions which to apply to argument w. 
We could imagine this as being implemented something like: 
    (0 0 1 0 / (f g h j))w  

where a boolean compression is applied to an isolated list of functions but such a 
list is not recognised by APL as something it can deal with in any way let alone 
being able to apply compression to it. More about this later. 
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I’ll allow only the first, leftmost, one to select the function, effectively treating the 
boolean as if it’s its own less-than scan <\. If the mask is all zeros we shouldn’t 
actually want to run any function at all; we should merely return the argument. 
So here are the first two lines: 
   orY{ 
         -z/Α:Ω  

Looking at the parenthesised version above we can see that the rightmost or 
has: 
   ΑΑ Yw f or g or h 

   ΩΩ Yw j  

So if only the final element of Α is a one we can run j: 
   </Α:ΩΩ Ω  

If this isn’t the case then we need to do something with ΑΑ. We need to call it 
without the final element of Α that applied to j. So: 
   orY{ 

         -z/Α:Ω 

         </Α:ΩΩ Ω 

         (¯1sΑ)ΑΑ Ω 

   } 

   0 0 0 0 f or g or h or j 23 

23 

   0 0 0 1 f or g or h or j 23 

(j 23 ) 

   0 0 1 1 f or g or h or j 23 

(h 23 ) 

   0 1 0 0 f or g or h or j 23 

(g 23 ) 

   1 0 0 1 f or g or h or j 23 
( 1 f 23 )  

These all look right except for f. I mentioned the complication of the leftmost call 
in the eponymous section above. In this we’ve called f as dyad ΑΑ in the final 
line of or. Another statement is needed to call ΑΑ when it’s the leftmost of the 
supplied operands. We know that by then our expression is f or g so Α must 
have a length of 2. If it were 0 0 we should have returned Ω unchanged on line: 
    [1] -z/Α:Ω  
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If it were 0 1 we should have run g on line: 
    [2] </Α:ΩΩ Ω   

So it must be 1 0 or 1 1 and in either case we should run f: 
    [2.1] 2=ΡΑ:ΑΑ Ω  

So: 
   orY{ 

         -z/Α:Ω 

         </Α:ΩΩ Ω 

         2=ΡΑ:ΑΑ Ω 

         (¯1sΑ)ΑΑ Ω 

   } 

   1 0 0 0 f or g or h or j 23 

(f 23 ) 

We can make an alternative version of this that, rather than selecting the function 
indicated by only the first 1, will select all corresponding functions: 
   0 1 0 1 f or g or h or j 23 
(g(j 23 ))  

We need to look at the last item of Α whether it’s the only one or not and use the 
power operator to run ΑΑ and ΩΩ conditionally: 
   orY{ 

         -z/Α:Ω 

         gYΩΩ|(S/Α) 

         2=ΡΑ:ΑΑ|(}/Α)g Ω 

         (¯1sΑ)ΑΑ g Ω 

   } 

   1 0 1 0 1 1 f or g or h or j or k or l 45 
(f(h(k(l 45 ))))  

Function Sequence 
If we look at the reduction operator we see: 
   f/12 23 34 45 

 ( 12 f( 23 f( 34 f 45 )))  

the function is inserted between the items of the argument. If the function could 
be a list then perhaps we could do: 
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    (f g h j)/12 34 56 78 90 
 ( 12 f( 34 g( 56 h( 78 j 90 ))))  

Again we can’t do this because f g h j is illegal in APL. J implements this 
concept with the tie conjunction ` to bind the functions in a list of ‘gerunds’ 
that it applies with /: 
   +`-`*`% / 1 2 3 4 5 
0.6  

But we can interpose a defined operator both to bind the functions and insert 
them: 
   f seq g seq h seq j 12 34 56 78 90 

         Yw ((f seq g)seq h)seq j 12 34 56 78 90 
         Yw 12 f 34 g 56 h 78 j 90  

Notice we have one more item in the argument than there are operands in the 
expression and one more of them than there are calls to the operator. Also that 
the operands are dyads while the derived function is a monad. The first (right-
most) call will have: 
   ΑΑ  Yw  f seq g seq h 

   ΩΩ  Yw  j 

   Ω   Yw  entire right argument  

so we can run j between the last two items using reduction and catenate its 
result to the rest running ΑΑ on that result: 
   seqY{ 

         ΑΑ(¯2sΩ),ΩΩ/¯2mΩ 

   } 

   f seq g seq h seq j 12 34 56 78 90 
(f 12  ( 34 g( 56 h( 78 j 90 ))) )  

Visually scanning from the right looks good until we get to f. Again it’s the left-
most function that adds the complication. When f is the left operand, f seq g 
must be the sub-expression, there must be three items in Ω so we do almost the 
same but we apply ΑΑ between rather than to the remaining pair after doing the 
same with ΩΩ: 
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   seqY{ 

         3=ΡΩ:ΑΑ/(¯2sΩ),ΩΩ/¯2mΩ 

              ΑΑ (¯2sΩ),ΩΩ/¯2mΩ 

   } 

   f seq g seq h seq j 12 34 56 78 90 

 ( 12 f( 34 g( 56 h( 78 j 90 )))) 

   + seq - seq × seq ÷ 1 2 3 4 5 
0.6  

and get our expected result. 
Function Arrays 
Another meaning that could be attributed to an isolated list of functions was in 
fact my first accidental encounter with them after about three months of APL. I 
had to solve the simple problem of the dimensions of a matrix formed from three 
others; one above the juxtaposition of the other two: 
.----------------------------. 

|              A             | 

|-------------.---------------------. 

|             |         C           | 

|      B      |                     | 

|             |---------------------' 

'-------------'  

APL seemed so good at doing whatever I hoped it would that what I wrote was: 
      (ΡA)(+�)(ΡB)(�+)(ΡC)  

expecting the pairs of functions to be distributed between the pairs of 
dimensions of the three matrices: 
           .----.-------.----.-------. 

           |    |       |    |       | 

      (ΡA)[0 1](+�)(ΡB)[0 1](�+)(ΡC)[0 1] 

             |   |        |   |        | 

             '---'--------'---'--------'  

Of course it didn’t work for the same reason that the other constructs above 
didn’t work. Although in this case there are only two functions in each list we can 
extrapolate this to a list of functions corresponding to a vector of any length. If 
we define conjunction fv (function vector) we’ll want: 
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   a b c d (f fv g fv h fv j) w x y z       h [0] 

   a b c d (f fv g fv h fv j) kw            h [1] 

   (ka)    (f fv g fv h fv j) w x y x       h [2] 
            (f fv g fv h fv j) w x y z      h [3]  

Our perennial problem of identifying the leftmost operand will depend on the 
length of the argument(s) as they must conform to the number of functions. We 
can check for a monad and for the two-item final call. But in cases [1] and [2] 
above Α or Ω is a scalar so before the length check we’ll resolve scalar ex-
tension with laminate and split creating A as 0 if Α isn’t supplied. If that’s the 
case we won’t use it anyway but it’s easier to do it redundantly than to skip it: 
   fvY{ 

         ΑYS 

         mY1�Α 1 

         (A W)Ys(Α}0),[-0.1]Ω 
         tY2=ΡW  

For the two-item monad we want the two functions ΑΑ and ΩΩ applied to the 
two items of W: 
         t_m:(ΑΑ 0fW)(ΩΩ 1fW)  

If it’s a monad and this doesn’t run it must have more than two items. We apply 
ΩΩ to the last item of W and ΑΑ to the rest: 
         m:(ΑΑ ¯1sW),ΩΩ¨S/W  

If it’s still two items it must be a dyad so we do similar to the t_m: case but 
using A also: 
         t:((0fA)ΑΑ 0fW)((1fA)ΩΩ 1fW)  

We must be left with the dyad with more than two items so we do similar to the 
m: case but with A also: 
         ((¯1sA)ΑΑ ¯1sW),(S/A)ΩΩ¨S/W 
   }    

Putting this all together: 
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   fvY{ 

         ΑYS 

         mY1�Α 1 

         (A W)Ys(Α}0),[-0.1]Ω 

         tY2=ΡW 

         t_m:(ΑΑ 0fW)(ΩΩ 1fW) 

         m:(ΑΑ ¯1sW),ΩΩ¨S/W 

         t:((0fA)ΑΑ 0fW)((1fA)ΩΩ 1fW) 

         ((¯1sA)ΑΑ ¯1sW),(S/A)ΩΩ¨S/W 

   } 

 

   1 2 3 4 f fv g fv h fv j 5 6 7 8 

 ( 1 f 5 )  ( 2 g 6 )  ( 3 h 7 )  ( 4 j 8 ) 

   1 2 3 4 f fv g fv h fv j 5 

 ( 1 f 5 )  ( 2 g 5 )  ( 3 h 5 )  ( 4 j 5 ) 

   1       f fv g fv h fv j 5 6 7 8 

 ( 1 f 5 )  ( 1 g 6 )  ( 1 h 7 )  ( 1 j 8 ) 

           f fv g fv h fv j 5 6 7 8 

 (f 5 )  (g 6 )  (h 7 )  (j 8 ) 

   1 2 3 4 + fv - fv × fv ÷ 5 6 7 8 

6 ¯4 21 0.5  

Conditionals 
   :If f w 

   :AndIf g w 

       rYh w 

   :Else 

       rYj w 
   :End   

As I mentioned above I really can’t do with having to do stuff like that. It was 
always easy to write operators that did: 
   f then g w              h if f w then rYg w else rYw 

   t g else h w            h if t then rYg w else rYh w 
                           h see *else* below  

But putting them together to form something like: 
   f then g else h w       h if f w then rYg w else rYh w   

was never going to be so easy. The two conjunctions then and else need to co-
operate, f then g being an operand of else, and introducing interdependen-
cies should be avoided whenever possible. So how about a single co-operator 
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that fulfils both tasks? The biggest problem is what to call it. I believe at least one 
language uses ? for this – not a bad choice: 
   antecedent ? consequent ? alternative arg  

I’ll use cond which I also believe is used elsewhere so that in: 
   f cond g cond h w  Yw  ((f cond g)cond h) w  

we apply f w first then g w if f w proves true or h w otherwise. The length 
of the argument isn’t going to help as it could be anything at all. One thing we do 
know is that there’s no left argument. It wouldn’t make any sense if there was. 
The right call has: 
   ΑΑ  Yw  (f cond g) 

   ΩΩ  Yw  h  

We can’t do anything with h yet as that’s the alternative we want to run if f 
returns false so we need to run ΑΑ and we need to do it in such a way that it 
runs one or other of f and g. We can use that missing left argument as an 
internal flag to tell the left call what to do. Arbitrarily we’ll give it a one to tell it to 
run f and a zero for g if f returns true: 
   condY{ 

         ΑYS 
         1 ΑΑ Ω:0 ΑΑ Ω  

but this is no good because as soon as we call it it’ll just call itself again 
unconditionally. We actually need to test Α for being a 1 or 0 before we use it! 
Please see the companion article if lines [2] and [3] below confuse: 
condY{ 

         ΑYS 

         1=Α}0:ΑΑ Ω     h if Α is 1 run f Ω 

         0=Α}1:ΑΑ Ω     h if Α is 0 run g Ω  

If Α is ever going to be 1 or 0 we need to make it so, so now we run the line 
higher up with the two calls to ΑΑ. If 1 ΑΑ Ω which calls f Ω is true we run 0 
ΑΑ Ω that calls g Ω 

      1 ΑΑ Ω:0 ΑΑ Ω  

but if f w isn’t true we run h Ω instead. 
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         ΩΩ Ω 

   } 

 

   condY{ 

         ΑYS 

         1=Α}0:ΑΑ Ω     h if Α is 1 run f Ω 

         0=Α}1:ΩΩ Ω     h if Α is 0 run g Ω 

         1 ΑΑ Ω:0 ΑΑ Ω  h if f Ω then g Ω 

         ΩΩ Ω           h else h Ω 

   } 

 

   >W0 cond j cond k 23 

(j 23 ) 

   >W0 cond j cond k ¯45 

(k ¯45 )  

else: now if we look at the else expression that we saw a couple of pages back; 
I’ve copied it here for convenience: 
   t g else h w            h if t then rYg w else rYh w  

and just out of interest we try it with cond we find: 
   1 g cond h 67 

(g 67 ) 

   0 g cond h 67 

(h 67 )  

that cond is indeed a working else and we can see why on those lines [2] and [3] 
above. This isn’t the way we should have written else because lines [4] and [5] 
won’t run in either case but it’s quite nice that the co-operator also works as a 
stand-alone: 
   f cond g cond h w       h if f w then rYg w else rYh w 
        t g cond h w       h if t then rYg w else rYh w  

It turns out that that arbitrary 1 and 0 were not so arbitrary after all. 
And if we want the usual semantics we can define: 
   thenY{ΑYS v Α ΑΑ cond ΩΩ Ω} 

   elseY{ΑYS v Α ΑΑ cond ΩΩ Ω} 
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More conditionals 
I started the previous section with an :If construct that included :AndIf. It 
turns out that conjunctions and and or are very easy to write. They aren’t co-
operators. They just happen to work together: 
   andY{ΑΑ Ω:ΩΩ Ω v 0}     h if ΑΑ Ω then rYΩΩ Ω else rY0 

   orY{ΑΑ Ω:1 v ΩΩ Ω}      h if ΑΑ Ω then rY1 else rYΩΩ Ω 

   f and g or h Yw (f and g)or h  

This is not the same as (f Ω)_(g Ω)z(h Ω) that would run all functions, f, g 
and h and determine the result in the usual APL right to left mode. Operands 
here are run in left to right order and then only if they are capable of changing 
the result exactly as a series of :AndIf or :OrIf clauses in an :If clause. 
We can now construct the statement at the very top of the “Conditionals” section: 
   f and g then h else j w Yw 

         (((f and g)then h)else j)w 
         h if f w and g w then rYh w else rYj w  

but unlike the exclusivity of :AndIf and :OrIf control clauses and remem-
bering that those operands that run will do so in a strictly left to right order we 
can write: 
   f or g and h and j then k else l w Yw 
         (((((f or g)and h)and j)then k)else l)w  

Forks 
J refers to lists of functions as trains and parses them in a very particular way: 
A train of 2 functions (2-train) is called a hook, which counts as a function in its 
own right; an APL equivalent would be: 
   (f g)       Yw fWg��   

so that: 
   a(f g)w     Yw a f(g w) 
   (f g)w      Yw w f(g w)  

A 3-train constitutes a fork (another function) where: 
   a(f g h)w   Yw (a f w)g(a h w) 

    (f g h)w   Yw (  f w)g(  h w)  
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Beyond the 3-train a fork peels off from the right and becomes the right tine of 
the next construct, hook or fork, recursively: 
   (g f h j)         Yw (g(f h j)) 

   (g f h j k)       Yw (g f(h j k)) 
   (g f h j k l)     Yw (f(g h(j k l)))  

Even-trains above 2 that simulate a hook whose right tine is a fork aren’t possible 
with a single defined operator but we can simulate an odd-train with a fork 
operator fk. The only difference will be that due to operand binding as men-
tioned above forks will be bound from the left: 
   f fk g fk h fk j fk k   Yw (f fk g fk h)fk j fk k  

We’ll only consider a ‘simple’ fork of three functions here: 
   a(f fk g fk h)w   (a f w)g(a h w) 
    (f fk g fk h)w   (  f w)g(  h w)  

Again at the first call we have: 
   ΑΑ Yw f fk g 
   ΩΩ Yw h  

so can do something with h, but we need to pass its result along with the original 
argument(s) to the next call where f and g will be available: 
   fkY{ 

         ΑΑ(Α Ω)(Α ΩΩ Ω) 
   }   

But at that next call we don’t want to do the same thing at all. 
   ΑΑ Yw f 
   ΩΩ Yw g  

We want to apply g between the results of f and h. This is the same problem 
as ever identifying the subsequent call but this time we can’t rely on the length of 
the argument(s) to tell us when we are there. We need to pass in a flag to the 
second call to tell it – as with cond above - and we might as well have two; one 
for the monad and one for the dyad. In the first monadic call we present the flag 
as left argument to the next call. We have to hope no-one ever calls our fork with 
these flags as supplied arguments: 
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   fkY{ 

         ΑYS 

         (m d)Y'left monadic fork' 'left dyadic fork'  

if it’s a monad, Α will be assigned S so for all x – x � Α x – so we pass m, Ω 
and the result of h to the left call: 
         Ω�Α Ω:m ΑΑ(Ω)(ΩΩ Ω)  

If we get past here we know Α exists so if it’s our monadic flag we run g 
between results of f applied to the origin Ω and that of h which we computed 
above as (ΩΩ Ω): 
   fkY{ 

         ΑYS 

         (m d)Y'left monadic fork' 'left dyadic fork' 

         Ω�Α Ω:m ΑΑ(Ω)(ΩΩ Ω) 

         Α�m:(ΑΑ 0fΩ)ΩΩ 1fΩ 

   } 

   f fk g fk h 23 
((f 23 )g(h 23 ))  

So far so good. The dyad should be very similar. If Α is d – the dyadic flag – we 
run f between our original arguments and g between that result and h: 
         Α�d:(fΑΑ/0fΩ)ΩΩ 1fΩ  

If not we’d better make it so passing d, Α Ω, and Α h Ω in the right dyad: 
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         d ΑΑ(Α Ω)(Α ΩΩ Ω) 

   } 

 

   fkY{ 

         ΑYS 

         (m d)Y'left monadic fork' 'left dyadic fork' 

         Ω�Α Ω:m ΑΑ(Ω)(ΩΩ Ω) 

         Α�m:( ΑΑ 0fΩ)ΩΩ 1fΩ 

         Α�d:(fΑΑ/0fΩ)ΩΩ 1fΩ 

         d ΑΑ(Α Ω)(Α ΩΩ Ω) 

   } 

   f fk g fk h 23 

((f 23 )g(h 23 )) 

   +/fk÷fkΡ 12 23 34 45 56 67 78 

45 

   12 f fk g fk h 23 

(( 12 f 23 )g( 12 h 23 )) 

   12 34 56 78 90 >fkzfk= 98 76 54 32 10 

0 0 1 1 1 
  

Afterword 
If it were decided to allow APL to acknowledge an isolated list of functions as a 
valid syntactic construct it would remain to be decided how it should be applied 
and how the individual members should interact. 
The designers of J decided to go for hook and fork. 
There is currently discussion that Dyalog might make the same decision. 
It isn’t necessary to go for a single solution except as a default. The selection of 
hook and fork as default behaviour wouldn’t need to preclude the introduction of 
operators that apply the list in some other way. The co-operators described here 
hint at some of those other ways. Instead of building up a derived function by 
alternating with their operands, they could take the list as a single operand and 
apply its members appropriately. 
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Appendix A 
Functions used to demonstrate calling sequences: 
   fY{ΑYS v '(',Α,'f',Ω,')'} 
   gY{ΑYS v '(',Α,'g',Ω,')'} 
   hY{ΑYS v '(',Α,'h',Ω,')'} 
   jY{ΑYS v '(',Α,'j',Ω,')'} 
   kY{ΑYS v '(',Α,'k',Ω,')'} 
   lY{ΑYS v '(',Α,'l',Ω,')'} 
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A way to write functions 
by Phil Last (phil.last@ntlworld.com) 

A companion article to Phil Last’s Co-operators paper to explain some of his more 
unusual or obscure programming techniques. 

Someone recently stopped to look at my Dyalog development session. But only 
for a moment. He made a gesture to indicate his bewilderment and moved on. 
This is a man who writes most of his code in the direct (formerly known as 
“dynamic”) functional subset of Dyalog APL (D-fns or D:). 
As do I. 
So what was the problem? 
Having bewildered many more in a presentation at Dyalog’11 at Boston and 
having been rebuked by a number of them since, I’ve come to the conclusion that 
it’s because I’ve discovered and use various techniques for doing common tasks 
in APL that have more verbose and perhaps more familiar counterparts. 
As I’ve come to value all of these idioms and now find them highly recognisable 
I’d come to assume their self-explanatory nature but now accept that they 
present a relative impenetrability to many. This is hopefully to counter the latter 
and realise the former. As mentioned above almost all of my code is in D notation 
about which you can read in John Scholes' paper, “Dynamic Functions in Dyalog 
APL” [1] so I’ll only mention here the parts whose possible unfamiliarity is the 
reason for this article. 
Ambivalence 
I probably should start where most of my functions do. All D-fns are potentially 
ambivalent: they can be called with or without a left argument. Whether the code 
actually refers to that argument is another matter. The simplest D-fn is: {} that 
doesn’t refer to either of its arguments or anything else for that matter. 
Nevertheless most functions need to do something and if they expect a left 
argument the avoidance of a value error is something to be considered. 
Traditional ways of doing this mostly check the name-class XNC of the argument 
name for zero and conditionally assign an array value. 



VECTOR  Vol.25 Nos.2&3 

 68 

When I started using IBM’s APL2, which was the first time the problem arose for 
me, an earlier observation made me realise that a more generally useful course 
would be to attempt to fix a right identity function with the argument name: 
      n RESYLARG F00 RARG 

   [1]  0 0ΡXFX,k'RYLARG R' 

   ... 

      n 

If LARG is supplied, XFX fails gracefully returning XIO because it won’t fix a 
function in place of an array. But if LARG has been elided then XFX creates it as 
an identity function and any use of the name within F00 as a left argument 
behaves as if it isn’t there. In [2] below if LARG is an identity function, F01 has 
no left argument and its result is passed to RES. So for elided LARG: 
   [2] RESYLARG F01 RARG 

is exactly the same as: 
   [2] RESYF01 RARG 

I went so far as to create a utility function whose argument was the left 
argument-name of the function that called it: 
      n AMBIVALENT AMBIVALENT 

   [1]  AMBIVALENTYXFX,k'RY',AMBIVALENT,' R' 

      n 

It reassigns its eponymous argument with the result of XFX possibly having 
created a semi-global identity function with the name contained in that 
argument. 
      n RYLEFT F02 RIGHT 

   [1]  AMBIVALENT'LEFT' 

   [2]  RYLEFT F03 M 

   M 
      n 

It was published in Vector 6.2 as a tongue-in-cheek response to something much 
worse in Vector 5.4 but didn’t go down well with the other correspondents. I 
thought it was nicely declarative and self-documenting. 
I have to admit there are some who are surprised by the fact that what they 
expect to be an array could be a function instead. Given the flexibility of infix 
notation what surprises me is that most will immediately assume the expression 
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e t y, which constitutes three letters randomly chosen from the line above, to 
represent a three item vector rather than any of the other eleven valid three-fold 
array or function expressions that can be formed from permutations of arrays, 
functions or operators. 
Ambivalence in D-fns 
The D method to accommodate an elided left argument Α  is a single assignment 
that is executed conditionally on the argument’s absence. 
I believe John Scholes was surprised to find that the equivalent of the above: 
   [1] ΑY{Ω} 

actually worked. It has exactly the same effect creating the identity function as 
XFX did. I used this until Dyalog Version 13.0 finally introduced the right function 
S that implements the right identity as a primitive. Thus many of my functions 
now start with the even more terse but equally useful and recognisable: 
   [1] ΑYS 

In twenty-five years I’ve found no situation where this technique fails to work 
and none where any other excels it. 
Assigning a default 
Some might object here that it’s easier to assign a known value to the argument 
as default. 
   [2] ΑYdefault 

This can still be done after [1] above if we are content to use another name: 
   [2] largYΑ}default 

This uses the other new identity function of Dyalog 13.0, left } that returns its 
left argument if it has one or its right otherwise – following the J implementation 
of left [ that I believe was Ken Iverson’s later preference, rather than that of 
SAPL and APLX that don’t return a result from the monad. Thus in our D-fn if Α  
is supplied then } in the above expression gets its value as left argument and 
returns it to be assigned as larg; if not then Α is S from [1]; } is called as a 
monad and returns its right argument default instead, to be passed by S and 
assigned to larg. 
Very often though, assigning a default to be passed to another function is not the 
best thing to do. If a called function f04 is designed to be ambivalent we can 
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assume it must be able to take care of its own defaults. Were an ambivalent caller 
f03 to provide another default it would override whatever was the intention of 
the author of f04. This must be decided case by case. 
All this becomes much more important in the case of operators. If a derived 
function, an operator with its operand(s), is called without a left argument it very 
reasonably can be inferred that, all else being equal, the function operand is also 
expected to be called as a monad. Each ¨ is a primitive case in point. 
More ambivalence 
We usually apply the word ambivalent to functions permitting the optional 
elision of left argument Α: argument ambivalence. The dichotomy above where 
Α can be an array or a function (supplied or assigned) also occurs in operators' 
accepting either an array or a function as operand ΑΑ and/or ΩΩ. Hence: 
operand ambivalence. The left operand of the /operator of APL2 and the right of 
the power | operator of Dyalog both have this property. 
In: 
   [4] ... ΑΑ}Ω 

the use of left } allows us to supply left operand ΑΑ as either a function or an 
array without our having to code separate cases for either of them. If ΑΑ is an 
array then ΑΑ}Ω is just ΑΑ, the left argument of }. If it’s a function then it’s 
applied to the result of monadic } which is Ω. 
Differential processing 
Perhaps unusually, different processing is sometimes required for the monadic 
case of a function than the dyadic. Unusually in defined functions, that is; we 
should be surprised if primitives didn’t exhibit this behaviour. In a D-fn this 
would probably entail the using a guard. What should be the condition? 
In: 
   [2] ΑYS 

   [3] 1�Α 1: expression 

1�Α 1 returns true and invokes expression if the value 1 matches the value of 
Α 1. This might seem unlikely. How can a scalar 1 match a two item vector? 
Obviously it can’t but if Α is S then Α 1 is S 1 which is just 1. In fact this 
works equally well for any array replacing the 1 on both sides of the equality so, 
for instance, to make it more explicit: 
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   [3] 'monad'�Α'monad': expression 

Scripting languages from very early on have permitted similar constructs: 
   If . = . %1 Then expression-for-missing-%1 

which behaved identically after parameter substitution for optional %1 though 
the explanation would be somewhat different. 
Conditions and multi-line expressions 
It’s possible to break any D-fn inside its enclosing left or right brace. The next two 
D-fns are equivalent: 
   {single expression} 

 

   { 

         single expression 
   } 

Not only this but long lines embedding anonymous D-fns can also be broken: 
   {this long line{embeds another D-fn}within it} 

 

   {this long line{ 

         embeds another D-fn 

   }within it} 

Guards sometimes present a problem in that a quite long line is required for the 
terminating expression to run when the condition is true. By embedding the 
expression in an anonymous D-fn we can extend the statement onto more than 
one line: 
   conditional expression: Α{ 

         long terminating expression to be triggered when true 
   }Ω 

Sometimes we want to run an expression conditionally or perhaps one 
expression or another to extract the value within, rather than terminating, the 
current function. In this case embedding the entire guard with its conditional, 
consequent and alternative expressions in an anonymous D-fn serves very well: 
   valueYΑ{condition: expression if true 

         expression if false 
   }Ω 
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In both these cases it’s worth supplying the original arguments so that all names 
and tokens inside the inner D-fn reflect those outside. 
Commented one-liners 
The following doesn’t define a D-fn: 
   f03Y{expression h comment} 

SYNTAX ERROR 

   f03Y{expression h comment} 
                                _ 

The reason is that the final brace is a part of the comment and doesn’t actually 
close the D-fn. This has unfortunately and unjustifiably caused some to claim that 
D promotes uncommented code. The ability to create functions – D-fns or 
otherwise – without comments; believing them to be unnecessary; or that one 
doesn’t have time to write them promotes uncommented code. 
Fortunately the left } function comes to the rescue yet again. We can use: 
   f03Y{expression}'comment'} 

or the prettier: 

   f03Y{expression}'h comment'} 

or even: 

   nbY} 
   f03Y{expression nb' comment'} 

Naming operands 
This is something I’ve relearned to do only very recently having gone perhaps too 
far down the road of designing algorithms that required no assignments 
whatsoever. 
It’s always useful and very often necessary or desirable to be able to define 
anonymous D-fns embedded within the coding of a D-fn or D-op. This entails 
another level of parameter substitution so for instance, operator where, that 
needn’t be understood, contains two levels of embedded operations: 
   whereY{ 

         (ΡΩ)ΡΑΑ{Ω ΑΑ{Ω�Α,[-0.1]Ω\ΑΑ Ω/Α},ΩΩ}Ω}ΩΩ,Ω 

   } 

                m                             m 
                     m                  m 

In order that the operands ΑΑ and ΩΩ continue to refer to the same thing they 
must be passed in as operands at each level making the inner operations 
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operators also. It is also quite difficult to see that the innermost operation is a 
monadic operator deriving a dyadic function while the next out is a dyadic 
operator deriving a monadic function as is the outer, named, D-op. The following 
version appears much simpler merely by naming the operands: 
   whereY{fYΑΑ v gYΩΩ 

         (ΡΩ)Ρ{Ω{Ω�Α,[-0.1]Ω\f Ω/Α},g}Ω},Ω 
   } 

Lexical scope rules mean that named items are visible to any D-fn or D-op 
defined within the one wherein they are named. Thus they don’t have to be 
respecified for the inner levels so we actually reduce the number of tokens in the 
line as well as avoiding the added complication of the embedded operations’ 
being promoted to D-ops. 
Separating operands and arguments 
Operator operands can be either functions or arrays. The power | operator 
takes either a terminating function or an iteration count as its right operand. In 
the latter case we have an array (scalar integer) operand and an array right 
argument. This brings up the question of the relative strengths of operand- 
versus vector-binding. Implementors chose differently in this regard, vector 
binding being the strongest of all in Dyalog APL and NARS2000, while both 
bracket- and right-operand binding exceed it in APL2 and APLX. 
Consequently we have the following dichotomy. The expression: 
   f dop a b c 

where f is a function, dop is a dyadic operator and a, b and c are arrays, is 
parsed as follows: 
APL2, APLX &c.: 
   f dop a b c Yw (f dop a)(b c) 

an array expression; function with argument; a is the operand and b c is the 
argument. 
Dyalog, NARS2000 &c.: 
   f dop a b c Yw f dop(a b c) 

a function expression without an argument; a b c is the right operand. 
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This difference adds an extra complication to Dyalog which is well worth the cost 
considering the alternative: 
APL2: 
   f dop 1 2 3 Yw (f dop 1) 2 3 

what appears to be a numeric vector is treated as a scalar separated from the 
remainder. 
So in Dyalog we need to separate the array right operand from the argument. The 
surest way to do it is to parenthesise the entire function expression: 
   (f dop operand)argument 

But a neater way is to insert an identity function between the operand and 
argument. Right-operand binding is stronger than left-argument so the identity is 
parsed as monadic: 
   f dop operand+argument 

   f dop operand,vector 

Until recently plus + as above was common as a separator because its monadic 
definition was to return the right argument unchanged. But Dyalog 13.0 has com-
plex numbers and monadic plus is now redefined as conjugate for that domain: 
   + 12J34 'zxc'  w  12J¯34 'zxc' 

so it is no longer a reliable identity in all cases. Fortunately and in part con-
sequently Dyalog 13.0 also includes the two new identities mentioned above: } 
and S; either of which suffices for our purpose: 
   f op operandSargument 
   f op operand}argument 

Boolean equivalents 
We learn that there are ten scalar dyadic boolean functions in APL: &lt; � = � 
> � z _ � �. Each one maps each of the four pairs (0 0)(0 1)(1 0)(1 1) onto one 
of the pair 0 1 in a different way. So there should be exactly sixteen such 
functions; there are six others missing from APL. And given that there is that 
mapping it must be possible to enumerate them in a standard way. 
Applying r Y ,0 1 W.f 0 1 gives us the four results. Applying 2�r gives us a 
number between 0 and 15. Here they are put into the order dictated by that 
result: 
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   .---.--------------.---------.----. 

   | _ | ,0 1 W._ 0 1 | 0 0 0 1 |  1 | 

   | > | ,0 1 W.> 0 1 | 0 0 1 0 |  2 | 

   | < | ,0 1 W.< 0 1 | 0 1 0 0 |  4 | 

   | � | ,0 1 W.� 0 1 | 0 1 1 0 |  6 | 

   | z | ,0 1 W.z 0 1 | 0 1 1 1 |  7 | 

   | � | ,0 1 W.� 0 1 | 1 0 0 0 |  8 | 

   | = | ,0 1 W.= 0 1 | 1 0 0 1 |  9 | 

   | � | ,0 1 W.� 0 1 | 1 0 1 1 | 11 | 

   | � | ,0 1 W.� 0 1 | 1 1 0 1 | 13 | 

   | � | ,0 1 W.� 0 1 | 1 1 1 0 | 14 | 

   '---'--------------'---------'----'   

Alternatively we can define the operator or adverb: 
   fnumY{2�,0 1 W.ΑΑ 0 1} 

   _fnum 0 

1 

   zfnum 0 

7 

      ... 

The six missing would be scalar pervasive equivalents of: 0: {0}; 3: }; 5: S; 10: 
{-Ω}; 12: {-Α}; and 15: {1}. 
Given so many boolean dyads it seems odd that much of the time only two of 
them get used. We’ve all seen such as: 
   :If pz-q v ... 
   :If (-p)_q v ... 

Applying fnum to each of these: 
   {Αz-Ω}fnum'' 

11 

   {(-Α)_Ω}fnum'' 
4 

we find that {Αz-Ω} is function 11, � while {(-Α)_Ω} is function 4, < so why 
don’t we see: 
   :If p�q v ... 
   :If p<q v ... 

for boolean p and q? I’ve been told that they’re unfamiliar in this context. But so 
was most of APL to each one of us when we started. Nevertheless many such 
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equivalences exist. And the reason we don’t automatically associate them with 
the logical domain is because of their common names. 
Most people refer to � as greater than or equal and some as not less than; just 
two obvious ways to say the same thing. Very few if any call it or not or implied 
by but if the comparands are propositions or logicals with boolean values 1 or 0 
then it makes complete sense. 
Below are some of the more common boolean equivalents many of which I’ve 
seen in use. This is not just a matter of terseness versus verbosity. If p and q 
are large then applying two, three or even four functions to them rather than one 
is significant. 
   .-------------.--------------.----.---.-----. 

   | expression  | D-fn         |fnum| f | exp | 

   |-------------+--------------+----+---+-----| 

   | -p_q        | {-Α_Ω}       | 14 | � | p�q | 

   | -pzq        | {-ΑzΩ}       | 8  | � | p�q | 

   | p_-q        | {Α_-Ω}       | 2  | > | p>q | 

   | pz-q        | {Αz-Ω}       | 11 | � | p�q | 

   | -p_-q       | {-Α_-Ω}      | 13 | � | p�q | 

   | -pz-q       | {-Αz-Ω}      | 4  | < | p<q | 

   | (-p)_q      | {(-Α)_Ω}     | 4  | < | p<q | 

   | (-p)zq      | {(-Α)zΩ}     | 13 | � | p�q | 

   | (-p)_-q     | {(-Α)_-Ω}    | 8  | � | p�q | 

   | (-p)z-q     | {(-Α)z-Ω}    | 14 | � | p�q | 

   | -(-p)_-q    | {-(-Α)_-Ω}   | 7  | z | pzq | 

   | -(-p)z-q    | {-(-Α)z-Ω}   | 1  | _ | p_q | 

   | (pzq)_-p_q  | {(ΑzΩ)_-Α_Ω} | 6  | � | p�q | 

   | (p_q)z-pzq  | {(Α_Ω)z-ΑzΩ} | 9  | = | p=q | 
   '-------------'--------------'----'---'-----' 

Iteration 
It’s often necessary to be able to repeat a function sequentially with one 
argument different but each time using the result of a previous iteration as the 
other argument. Say we have prototype p and vector v of items to be applied in 
order a b c d e. Depending which way round our function requires its argu-
ments this will be: 
   ((((p flr a)flr b)flr c)flr d)flr e 

or: 
   e frl(d frl(c frl(b frl(a frl p))))    
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where: frl Yw flr� 
Given the likely variable length of our vector most will code this as: 
   :For i :In v 

         pYp flr i   h or: pYi frl p 
   :End 

but look again at the expression with repeated frl. Not everyone will recognise 
it immediately but this is a precise definition of reduction: 
   ffrl/e d c b a p 

The right argument of the reduction is merely v reversed and with p stuck on 
the end: 
   ffrl/(Ov),kp 

Applying a monad to one of a pair 
Given a 2-vector it’s required occasionally to keep the first item intact while 
running a function between the two preferably without having to prise the two 
apart beforehand. The description might not immediately suggest scan but that’s 
exactly what it requires: 
   f\x y Yw x(x f y) 
   f\two Yw (0�two),f/two 

At least as often I find that what I really want to do is to keep the first while 
applying a monad to the second. All D-fns are ambivalent. But in this case I want 
the monadic definition of the function to apply. If the function ignores its left 
argument then the above is all we need: 
   {2×Ω}\two Yw (0�two),{2×Ω}/two 
             Yw (0�two),{2×Ω}1�two h for a de facto monad 

But if our function is properly ambivalent and works differently in the two cases 
this will always use the dyad. We need a way to force an ambivalent function to 
act as a de facto monad. Composing it with right S as SW{M} pushes the left 
argument out to become that of S which it will ignore. Our function never sees 
the argument at all: 
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   minusY{ΑYS v Α-Ω} 

   minus 5           h monad: negate 

¯5 

   8 minus 5         h dyad: subtract 

3 

   8 SWminus 5       h de facto monad: negate 

¯5 

   minus\8 5 

8 3 

   SWminus\8 5 
8 ¯5 

Afterword 
We all have our own favourite tricks and tips. The first version of this was a 
preamble to a presentation I gave at Dyalog’11 in Boston and this lengthier 
version is designed to accompany a re-presentation of that paper that appears in 
the same edition of Vector as this. I hope it’s been of some use. 
References 

1. http://dyalog.com/download/dfns.pdf 
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Sharing code - the APLTree project 
by Kai Jaeger (kai@aplteam.com) 

The APLTree project is an attempt to make general tools available to the Dyalog 
programmer. This article discusses the motivation of the project and its details. 

Overview 
Sharing code is something that never gained popularity in the APL community, 
and for good reasons: without having a proper tool for modularising code 
(classes or at the very least namespaces) sharing code is virtually impossible in 
APL due to the danger of name clashes. 
With the introduction of namespaces in Dyalog APL things got better but there 
were still some obstacles. Namespaces don’t allow hiding implementation details: 
dotting into a namespace means you see everything that’s contained in that 
namespace. In a complex namespace that could mean you see a hundred 
functions although only, say, 10 of them are the actual “public interface”. So in 
order to use the functionality provided you need to worry about just 10 functions 
while looking at a hundred. 
There is also the problem of how to prevent your dear colleagues from calling 
functions they are not supposed to call. If like me, you worked on teams who 
were supposed to follow such rules then you know how difficult a task that is. 
Classes to the rescue: one advantage of the object-oriented paradigm is that you 
can see only the public interface when you dot into a class or an instance of that 
class. In other words, while namespaces allow you to modularize code and 
therefore to structure it, classes offer true encapsulation: a programmer only 
interested in using a class will see just the fields, properties and methods that 
constitute the public interface. 
That does not mean that all the rest which is called implementation details 
cannot be investigated: You can still edit the class script, which allows you to 
investigate everything, not only the public interface. The code editor’s new tree 
structure emphasizes whether fields, properties and methods are public or not, 
and it allows fast navigation, too. Last but not least you still can trace into a class 
or even an instance, and you can look at everything you want. 
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Of course it is a big advantage when the implementation details are hidden: it 
makes using a class much easier. That one cannot call functions which are not 
supposed to be called from outside is very important, too. 
Since the introduction of classes in Dyalog APL Version 11 there is no technical 
reason why developers should not share tools and utilities. However, this has not 
become popular so far. One reason is that many APLers still think along the lines: 
“If I can write it myself in a couple of hours why should I bother to learn the 
public interface of somebody else’s code?” Or in other words: if the amount of 
time it takes to master somebody else’s class is equal to the amount of time it 
takes to implement it yourself there is no point in sharing code, right? 
Even if we ignore the simple fact that programmers tend to underestimate the 
time it needs to implement something by at least a factor of two this is also a 
short-sighted view: in total it needs much more time than simply implementing 
it: you also need to spend time on documentation and, even more important, on 
test cases. In fact these two tasks quite often take longer than writing the code in 
the first place. 
It is also an important question who is providing the tools. Are they maintained 
regularly? Are bugs published openly? Can you buy support? These are all 
questions one might well ask when considering using third-party tools. But when 
all these questions are answered satisfactorily then you should remind yourself 
that there is no point in reinventing the wheel. 
Documentation 
If you are a one-man-band you might be able to abandon the idea of spending 
time on documentation. You know how to use your tools, don’t you? However, 
things are different in a team. Since software development is normally done in 
teams these days you can’t escape spending time on documentation. 
In practice old APL hands sometimes find themselves mixed into a team with 
other old hands at the start of a project. All APLers have their own set of tools. 
None is actually documented; they all wrote them for their own purposes. So 
from the start you have as many toolsets as there are team members, none of 
them documented. Not a good idea of course. 
Test cases 
Test cases are considered mandatory nowadays in the IT industry despite the 
fact that the amount of resources consumed by the implementation of test cases 
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is significant. Occasionally it exceeds the time spent on the implementation of the 
software. 
Software projects become more and more complex. We know from experience 
that changing a complex system has all sorts of unforeseen and unwelcomed 
consequences. All of us have said more than once “I don’t understand why it’s 
crashing: I haven’t changed anything near this code.” 
There is only one way to escape this problem: after a change, before making it 
available to the other team members, let alone the customer, run test cases. 
Improved quality 
The most important reason for having test cases is that they are designed to 
improve the quality of any piece of software. This is always an important issue of 
course, but it is particularly important in projects which evolve dynamically, with 
a large number of software releases. By changing code you will inevitably break 
code but if you have a full-blown test suite ready to run against your changes you 
have a much better chance of discovering these problems. 
That alone is a very good reason to spend the resources on implementing test 
cases. In the long run this will actually save time and money for that very reason. 
Test cases as examples and documentation 
An implicit advantage of well-written and documented test cases is that they 
provide examples of how to use the software. That is a real time-saver for 
anybody supposed to understand and use a class. 
This is more important for APLers than for other people. The reason is 
readability. 
As a matter of fact APL is harder to read than code written in other languages. 
This is mainly owing to the fact that in one line of APL there is much more going 
on than in one page of COBOL, but it’s also due to the usually higher abstraction 
level. 
Now APLers often argue that one can always work out easily what a function is 
doing by using a debugger and simply watch what the lines are doing with the 
data. Due to the outstanding debugging facilities of modern APLs this is certainly 
true. However, by definition it can be true only if correct data is provided to the 
function in question. 
Now there’s a problem: when you get a bug report on your plate it’s quite likely 
to be caused by unexpected data, ill-formed data or data the application was 
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never intended to deal with. With improper data you might have a hard time to 
find out what the code is supposed to do. It might be very costly or even virtually 
impossible. 
By definition test cases provide valid data, so it is not a big deal to find out what 
the code is actually doing. 
The big problem with written documentation is that nobody debugs it. Implicit 
documentation gathered from test cases is actually both, debugged and up-to-
date. What an asset that is! 
The idea of test cases has been around for a long time but only with the Agile 
Software Development paradigm did the idea really take off. The obvious reason 
is that in agile projects software is constantly updated in production, often every 
week or so. Whenever a developer has finished a task she is supposed to check in 
the updated code into the code repository. Before she is allowed to do so she 
must run the test cases. Only then does she stand a chance not to break the code. 
Conclusion 
So, in total, when considering writing a utility which is already available 
somehow, one has to compare the time it needs to implement the software, write 
proper documentation, implement appropriate test cases and the time spent on 
making the software stable and reliable with the time it takes to master the 
interface of an already existing piece of software. 
In total it’s fair to say that software coming without a proper documentation 
and/or without test cases should not even be considered a potential source. 
There are no technical reasons any more which prevent Dyalog programmers 
from sharing code. It makes sense to provide solutions for typical every-day 
problems APL programmers are likely to face. With the APL Wiki the APL 
community has the platform to host such tools and utilities. 
The APLTree project 
The APLTree project was introduced on the APL Wiki in 2009 without any effort 
to “sell” it: the idea was to get some flesh on the bones first. 
APLTree is a pure Dyalog project: The OO features implemented by the different 
APL vendors are incompatible: something that was written for, say, Visual APL 
cannot be used in either Dyalog APL or APLX. 
In July 2011 the project consisted of 10 utility classes and 4 tools. Note that all 
members of the APLTree project… 
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• come without any sort of copyright 
• are documented at length 
• come with test cases 

These are in fact preconditions for becoming a member of the APLTree project. 
There is a page listing all of them: http://aplwiki.com/CategoryAplTree 
There are two different types of tools available: 
• Those supporting an APL programmer in the development process 
• Those designed to be used within an application 

All members of the APLTree project belong to one of these two groups. The page 
is reflecting this by dividing them into Tools and Utilities. 
I. The Tools 
The tools are designed to support a programmer during her work somehow, so I 
am going to give a short overview about what the tools are actually doing. 
a) ADOC 
ADOC is a self-contained class which extracts information from scripts, compiling 
an HTML page with all the pieces of information found. 
b) APLCode2HTML 
APLCode2HTML is a simple tool which takes either a line of APL or the name of 
an APL function or operator or script and compiles an HTML page in order to 
display that code. 
c) Compare 
Compare offers methods designed to compare functions, operators, namespaces 
and scripts or even workspaces with other functions, operators, namespaces and 
scripts located either in the workspace or on file. It can also be used as a merge 
utility. 
It makes use of the brilliant third-party-software CompareIt! [1] if available. 
d) ScriptManager 
ScriptManager deals with scripts only. It allows loading, saving, comparing, 
editing and updating scripts. ScriptManager can deal with SALTed scripts and 
supports SubVersion [2] as well as acre [3]. 
ScriptManager’s GUI shows ... 
• which scripts are different from their file version 
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• which scripts point to an invalid location 
• which scripts differ from their SubVersion base version 
• which scripts have SALT backup files, and how many 

 
The most important actions you can perform from within ScriptManager are: 
• Compare a script with the file version with CompareIt! 
• Compare a script with any SALT backup files 
• Compare a SubVersioned script with its SubVersion base file 
• Compare a script managed by acre with the workspace version or an older 

version in the repository. 
• Update all or selected scripts in the workspace with their file version 
• Loading and saving scripts 
• Delete a script from the workspace and/or from file 
• Edit a script 
• Manage scripts with the built-in Favorite Manager. 

II. The Utilities 
All utilities in the APLTree project solve every-day problems almost all APLers 
come across during their daily work, at least potentially: 
• Deal with the Windows Registry with #.WinReg 
• Deal with files and directories with #.WinFiles 
• Deal with INI files with #.IniFiles 
• Get information closely related to Windows with #.WinSys 
• Start programs with #.Execute 
• Write log files with #.Logger 
• Manage key-value pairs with #.Hash 
• Display compiled help files (*.CHM) with #.ShowChmHelp 
• Write to the Windows Event Log with #.WindowsEventLog 
• Create CHM files from APL with #.APL2XML; requires the third-party-

software "HelpAndManual"[4]. 
I was asked many times why #.WinFiles was implemented at all; after all we have 
.NET at our finger tips. Well, create a folder with 90,000 files in it and then try to 
get a directory listing first with #.WinFiles and then with .NET and you know the 
answer. 
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Documentation can be created by the means of ADOC; that makes ADOC the most 
important of the tools. That’s the reason why ADOC has its own article in this 
issue of Vector. 
The code repository 
All APLTree projects are saved in two or maybe three different locations. The 
URL is: http://download.aplwiki.com/APLTree/ 
This page offers links to three sub pages: 
Latest stable version 
This is the latest production release. It only contains the script(s). 
History 
Every version which was once a “Latest stable version” is supposed to be 
represented here. However, because some members of the APLTree project are 
older than the project itself they are not represented with all their versions in the 
“History” folder. 
Note that here the full project is saved, including all test cases. 
If you want to get hold of the full project, in particular the test cases, this is what 
you want to download. 
Development 
As soon as any development is carried out on a certain project it’s supposed to be 
saved in the development folder. Again the full project is saved. Note that only 
code that has passed the test cases successfully is allowed to be saved. That also 
means that no matter what you have changed you are supposed to execute the 
full test suite first. 
As soon as a development branch is promoted to the “Latest stable version” 
folder all files belonging to that project are deleted from the “Development” 
folder. 
Contributions 
Any kind of contribution is welcome, even if it’s just fixing a typo. However, for 
the time being it is only possible for a restricted number of administrators to 
save anything directly in the folders mentioned above. If you want to contribute 
please download the current branch or, if there is no such branch, the latest file 
from the “History” folder. When you’ve made a change somewhere and the test 
cases still execute fine than send your changes via email to kai@aplteam.com 
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I would love to get overworked by dealing with a wealth of contributions but 
right now I can handle it. 
References 

1. CompareIt! is an outstanding comparison utility. 
Seehttp://www.grigsoft.com/wincmp3.htm for details 

2. SubVersion is a widely used version control system. 
Seehttp://en.wikipedia.org/wiki/Apache_Subversion for details 

3. acre is a version control system written in Dyalog for Dyalog by Phil Last 
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Generating documentation with ADOC 

by Kai Jaeger (kai@aplteam.com) 

One of the important advantages of the object-oriented (OO) paradigm is 
that implementation details are hidden from the user of a class. All one 
can see is the public interface. There is a problem as well: without having 
created an instance you cannot see anything of the public interface that is 
not shared. For creating the instance you might have to look at the 
documentation. With ADOC this can be achieved effortlessly. 
Dyalog’s APL Tools Group recommends the use of ADOC for documenting 
classes and intends to do so itself as appropriate. Therefore you are likely 
to find ADOCable information in classes delivered by Dyalog in the future. 

Introduction to ADOC 
ADOC offers two services: 
• Gather all the built-in information available in any class by definition: fields, 

properties and methods of both types, shared and instance. 
• Collect information added by the programmer. 
It then compiles an HTML file which not only displays all these pieces of infor-
mation; it also allows you to print it. Let’s take a look at an example: 
:Class Sample_01 

:Field Public Instance CRLFYXUCS 13 10 

n rYVersion 

  :Access Public Shared 

  rY'1.0.0' '2011-09-25' 

n 

n make2(arg1 arg2) 

  :Implements Constructor 

  :Access Public Instance 

n 

n rYHello 

  :Access Public Instance 

  rY'World' 

n 

PrimY{{Ω/�2=+q0=ΩW.|Ω}ΙΩ 
:EndClass 
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The script  Sample_01 has one shared and two instance methods. It also has a 
field of type Instance and one private method. If ADOC is installed as a User Com-
mand (discussed in a second) then this statement: 
]ADOC.Browse Sample_01 

shows this in your default browser: 

 
As you can see ADOC has gathered all the information provided by the public 
interface of the class Sample_01. That is certainly useful but ADOC can do much 
more than that. Let us introduce a namespace script NS_01: 
:Namespace NS_01 
n rYHi 
  :Access Public Instance 
  rY'There' 
n 
n rYSum vector 
  :Access Public Shared 
  rY+/vector 
n 
n rYa Times b 
  rYa×b 
n 
:EndNamespace 
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Note that the namespace script comes with one private method, one shared 
method and one instance method. Now let’s introduce a class Sample_02 which is 
a copy of Sample_01 plus one more statement right after the :Class line: it 
includes the namespace script NS_01: 
:Class Sample_02 
:Include NS_01 
:Field Public Instance CRLFYXUCS 13 10 
M 

Now let’s execute: 
      ]ADOC.Browse Sample_02 

Note that ADOC has included the two public methods that come from the 
included namespace: 

 
ADOC has also added a table-of-contents (toc) with links to fields, instance 
methods and shared methods. ADOC not only deals with included namespaces, it 
can also handle inheritance. In order to prove that let’s introduce a class 
Sample_03 which inherits from Sample_02: 
:Class Sample_03 : Sample_02 
:Include NS_01 
:Field Public Instance CRLFYXUCS 13 10 
n rYTheAnswerIs 
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  :Access Public Instance 
  rY42 
n 
n TidyUp 
:Implements Destructor 
n 
:EndClass 

After executing ]ADOC.Browse Sample_03, this is what the browser shows: 

 
ADOC has added a kind of sub-toc underneath the Instance methods heading, 
providing links to the three methods. Now this may look a little bit over the top 
right now, but with more methods these links will prove to be useful. 
Note that the header declares that Sample_03 is inheriting from Sample_02. 
Note also that the method Hello is listed as an instance method, together with 
the information that it was inherited from Sample_02. 
This is all well and good, but to become really useful it needs more information 
than just the method signatures. 

Adding content (documentation) 
Information regarding the type and structure of the arguments a method is 
expected, and what is returned as a result is naturally something that needs to be 
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added by a human being. By following a set of simple rules you can make ADOC 
insert such pieces of information into the HTML page generated by ADOC. 

Adding public comments 
Let’s introduce a class Sample_04 which has just one shared method but a couple 
of paragraphs: 
:Class Sample_04 
h This is a single-line paragraph. 
h This is a paragraphs that spans _ 
h over two lines in the script. 
 
h This is a third paragraph. 
  n rYHello 
  :Access Public Shared 
  rY'World' 
n 
:EndClass 

This is what ADOC makes of this: 

 
As you can see, a blank followed by an underscore at the end of a line is treated 
by ADOC as glue this line together with the next one. But how does ADOC 
determine what it should take into the HTML page and what it shouldn’t? To find 
out we process Sample_05: 
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:Class Sample_05 

n rYTheUltimateAnswer 

h This method is a homage to Douglas Adams. 

  :Access Public Shared 

h We don't need millions of years in order to calculate _ 

h the - somewhat surprising - result. 

 

h As you can see, empty lines don't change a thing. 

  rY42 

h We simply assign it. 

n 

:EndClass 

And this is what ADOC is making of that: 

 
Note that the :Access Public line is ignored, and so are any blank lines. All 
comment lines until the very first APL statement are processed by ADOC. In 
ADOC terms they are public comments. 

Adding Lists 
# can be used for marking up numbered lists, and * for marking up bulleted 
lists: 
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:Class Sample_06 

h We have numbered lists: 

h # This is the first topic 

h # The second one which in the code spans _ 

h    over two lines 

h # And number three. 

 

h And we also have bulleted lists: 

h * One topic 

h * Just another topic 

 

n rYTheUltimateAnswer 

h This method is a homage to Douglas Adams. 

  :Access Public Shared 

  rY42 

n 
:EndClass 

And this is the result: 

 
Note that the underscore at the end of a list element is treated the same way as it 
is within paragraphs. 

Adding headers 
There are headers available as well: 
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:Class Sample_07 

h === Header of level 3 

h ==== Header of level 4 

h ===== Header of level 5: {{Ω/�2=+q0=ΩW.|Ω}ΙΩ} 

h ====== Header of level 6 ====== 

:EndClass 

Note that the headers only need to be marked up to their left – see level. Level 1 
header shouldn’t be used: they are reserved for the main header of the document 
as such. All the entries make it into the table of contents: 

 
Last but not least, investigate the level-5 header. Although it is not set in a 
monospaced font, it is actually a special version of APL385 Unicode that allows us 
to display APL characters in a header. 

Showing APL characters 
There are two different ways to show APL characters: you either embed APL 
code in an ordinary paragraph or you create stand-alone APL code, also called a 
code block. 

Embedded APL characters 
In order to embed APL characters within an ordinary paragraph, the APL code 
needs to be enclosed by two double-quotes: 
:Class Sample_08 

h == Embedding APL chars 

h This is an ordinary paragraph with ""{{Ω/�2=+q0=ΩW.|Ω}ΙΩ}"" _ 

h some APL code embedded in between. 
:EndClass 

And this is how the result looks like: 
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A block of APL code 
Not surprisingly, the HTML pre tag is used in order to insert a block of APL code: 
:Class Sample_09 

h The following is a kind of "APL paragraph": 

h <pre> 

h h This is an example how not to calculate prime numbers in APL: 

h {{Ω/�2=+q0=ΩW.|Ω}ΙΩ} 

h h There are better (faster) ways of doing this in APL. 

h </pre> 

h Note that code marked as <pre> is not wrapped: it is up to _ 

h you to provide code in reasonably sized chunks. 
:EndClass 

The result: 

 
Note that code blocks are not wrapped: it is up to the author to take care of 
reasonably long lines. 

Embedding HTML 
Within paragraphs you can embed HTML tags into your documentation: 
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:Class Sample_10 

h Note that you can include _ 

h <i><b>ordinary</b> HTML code</i> _ 

h into your documentation easily. 

:Property Hello 

:Access Public Shared 

 n rYget 

   rY'World' 

 n 

:EndProperty 

n rYVersion 

  :Access Public Shared 

  rY'1.0.0' '2011-09-25' 

n 

:EndClass 

This has actually the desired effect: 

 
However, this has a drawback if you actually want any of the special HTML chars: 
<, > or &. In other words if you would like them to appear in your 
documentation you must include them as HTML entities[1] rather than as the 
characters themselves. Note that this is not true within a block of APL code. 
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The number of tags you can make use of is naturally limited because most HTML 
tags are created by ADOC automatically anyway. That leaves <b> and <i> an 
<em>. 
One speciality needs to be mentioned in this context. Look at this class: 
:Class Sample_11 

h More information regarding ADOC is available at _ 

h http://aplwiki.com/ADOC 

:Property Hello 

:Access Public Shared 

 n rYget 

   rY'World' 

 n 

:EndProperty 
:EndClass 

It contains an external link. You don’t need to worry about this because this is 
handled for you: 

 
Note that this is not done by ADOC – it’s actually the browser which is adding the 
link. Sometimes however you don’t want a particular string to appear as a 
hyperlink at all. Look at the following example: the text tries to explain what the 
file:// entry means. In this case you don’t want this string to be a hyperlink 
because the link would get you nowhere anyway. The only reasonable way to get 
around this is to specify the two slashes trailing the word file: as &amp;#47;. 
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:Class Sample_12 

h The format can be either file:///localhost/foo.html or, as a _ 

h shortcut, file:&amp#47;&amp#47;/foo.html 

:Property Hello 

:Access Public Shared 

 n rYget 

   rY'World' 

 n 

:EndProperty 
:EndClass:EndClass 

This is the result: 

 
A bunch of classes 
If it happens that the complexity of a given project forces you into writing a 
bunch of classes rather than a single one then most likely we want to generate a 
document that contains all these classes. You can achieve this by specifying more 
than one class to the Browse method: 
refYSample_03 Sample_02 Sample_01 Sample_11 

csY#.ADOC.CreateBrowseDefaults 

cs.CaptionY'Complex example' 

cs #.ADOC.Browse ref 

This is the result: 
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As you can see ADOC has compiled 
a kind of main table-of-contents 
listing all the classes involved. There 
is still a problem: when dealing with 
a bunch of classes having a reference 
of some sort for every class involved 
is not enough: in order to get 
something done you need to know 
the workflow. For example, quite 
often you start with an instance of a 
certain class, and then you add 
instances of other classes to 
properties of this main instance. 

To create all-singing, all-dancing 
documentation you need to add 
information explaining the 
workflow, which I like to call 
‘the big picture’. This can be 

achieved by adding ordinary functions to the list provided to ADOC via the right 
argument which contain nothing but comments. If it is just one function at the 
start of the list that’s fine, but you can add such functions pretty much 
everywhere. 
ADOC considers all of them but the first one as containers: all references after 
such a function name pointing to classes are going to become children of the 
function in the hierarchy built up by ADOC. That is reflected in the table-of-
contents inserted at the top. See this example: 
lY'' 
l,Yk'#.BigPicture' 
l,Yk'#.Workflow' 
l,YkSample_09 
l,YkSample_04 
l,YkSample_02 
l,Yk'#.Container' 
l,YkSample_07 
l,YkSample_08 
l,YkSample_11 
csY#.ADOC.CreateBrowseDefaults 
cs.CaptionY'The big picture' 
cs.withColorY0 
cs #.ADOC.Browse l 
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These are the three functions BigPicture, Workflow and Container: 
n BigPicture 

h Get the idea 

h This bunch of classes allow you to ... 

n 

n Workflow 

h The work flow - how to start 

h To start create an instance of the class "Presentation". 

h You can than add instances of the class "Slide" and _ 

h add such an instance to the "Slides" property of your _ 

h instance of the "Presentation" class by calling the _ 

h "AddSlide" method and passing a ref to an instance of _ 

h the "Slide" class. 

n 

n Container 

h In-between container 

h This is a kind of 'container'; Sample_07, Sample_08 & _ 

h Sample_11 are all ... 
n 

This is the result: 
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Note that the first line of the three functions is converted into a header. Note also 
that ADOC restricts you to just one level of nesting: a container ‘contains’ all the 
refs until the next container arrives. 
The first function (BigPicture) stands on its own: by definition it never has 
children. The second one (Workflow) has three children. The remaining scripts 
then by definition all become children of Container. 

ADOC as a User Command 
ADOC can be made available as a User Command. There are two options available 
when calling ADOC.Browse as a User Command: 
]ADOC.Browse {refToScript} 9caption='My caption' 
]ADOC.Browse {refToScript} 9browser='C:\Programs\Opera\opera.exe' 

Of course they also can be specified together. 
In order to define a list of scripts note that they must be comma-separated with 
no blanks in between: 
]ADOC.Browse ADOC,WinFile 

This is because a blank is treated as an argument separator. 

Conclusion 
ADOC is a powerful tool that allows you to create proper documentation on 
scripts. By following a set of simple rules one can add comments to a script which 
are extracted and prepared by ADOC appropriately. 
The further away documentation is from the actual code the less likely it is to be 
up-to-date when you look at it, so I strongly recommend keeping it as close to the 
code as possible. ADOC allows you to do just that. 
ADOC is available on the APL Wiki [2]. 

References 
1. www.w3schools.com/html/html_entities.asp 
2. aplwiki.com/ADOC 
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Letter 

The ruler’s edge 
by Norman Thomson 

It is a pleasure to be able to respond my old partner in education Ray 
Polivka [1] on the subject of programming rulers. Readers may like to compare 
the different style of approach which might be taken in J to this problem, which, 
to remind readers, is to write a program for a ruler of length y. with numbers 
and tick marks at intervals of x. . 
First pre-define an adverb index 
   index=.1 : '(i.@$*x.)@]' 

which identifies elements where a criterion verb such as ‘equals zero’ is met, for 
example: 
   t 
0 1 0 1 
0 0 1 1 
1 0 1 1 
   (=&0)index t             NB. give indices of 0s 
0 0 2 0 
4 5 0 0 
0 9 0 0 

This can be used in conjunction with the adverb amend ( } ) to provide a general 
purpose replacement facility, for example: 
   99(=&0)index}t                NB. replace 0s with 99 
99  1 99 1 
99 99  1 1 
 1 99  1 1 

This is used in the final line of the verb numbers, which supplies the formatted 
numeric parts of the ruler: 
   numbers=.4 : 0 
t=.x.*>:i.>.y.%x.                NB. multiples of x.up to y. 
t=.|:10 10 #:t              NB. digitise and transpose 
t=.y.{."(1)x.":t                 NB. put in spaced char form 
t=.(' '(=&'0')index}{.t),:{:t    NB. blank ldng 0s 
) 
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   3 numbers 17 
           1  1 
  3  6  9  2  5 

Adding the tick marks, both, horizontally or vertically, is now straightforward: 
   rulera=.4 : 0 
t=.x. numbers y. 
t,(y.$((<:x.)#0),1){'-�'         NB. add tick marks 
) 
   rulerc=.4 : 0 
t=.x. numbers y. 
(|:t),.(0=x.|>:i.y.){'|+'        NB. add tick marks 
) 
   3 rulera 17 
           1  1 
  3  6  9  2  5 
--�--�--�--�--�-- 
   3 rulerc 11 
  | 
  | 
 3+ 
  | 
  | 
 6+ 
  | 
  | 
 9+ 
  | 
  | 

References 
1. “The ruler’s edge revisited”, Ray Polivka, Vector Vol.23, No.4 
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J-ottings 55 

Combination Lists 
by Norman Thomson 

I enjoyed R.E.Boss’s article on lists of combinations [1] because, like him, I have 
been fascinated both by their patterns and by algorithms which generate them. In 
both APL and J systematic permutation lists are easier to generate than those for 
combinations. In J the former are available directly through the primitive A. so that 

   A. 1 2 0 
3  

says that 1 2 0 is permutation 3 (in index origin 0) of i.3 in lexical order, a 
process which is reversed by dyadic A. : 
   3 A. 0 1 2 
1 2 0  

A full list of such permutations is given by e.g. 
   (i.@! A. i.)3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0  

Analogously with monadic A. , any combination of r integers from i.n can be 
put into one-to-one correspondence with the counting integers by adding 
appropriate values of kCr ,where the k’s are the integers in the combination 
and r=1,2,.. , e.g. for the combination 1 3 4, 1C1 + 3C2 + 4C3 = 8. Unlike 
permutations, the value of n need not appear in a combination, and so its number 
is independent of n  . The following verb gives unique combination numbers: 
   ctoi=:monad : '+/(>:i.#y)!y'  NB. combination to integer 
   ctoi 1 3 4 
8  

A challenge is to produce itoc such that 8 itoc 3 is 1 3 4 . 
The emphasis in [1] is on the pragmatic matter of how to generate combinations 
more efficiently using lines such as [:(,.&.><@:\.)/ >:@-- [\i.@] . This on 
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deconstruction shows that orderly lists of combinations are a little closer to 
primitives in J than might at first sight be imagined. The key is the combination of 
box, stitch, infix and suffix, for which a preliminary note on the “fix” family of 
adverbs is in order, namely prefix ( \ monadic), suffix ( \. monadic), infix 
( \ dyadic) and outfix ( \. dyadic). These have the general effect of making 
objects larger either by increasing rank as in 
   (,\i.5);(,\.i.5)  NB. ravel prefix;suffix 
��������������������� 
J0 0 0 0 0J0 1 2 3 4J 
J0 1 0 0 0J1 2 3 4 0J 
J0 1 2 0 0J2 3 4 0 0J 
J0 1 2 3 0J3 4 0 0 0J 
J0 1 2 3 4J4 0 0 0 0J 
���������������������  

or by repetition with amendment : 
    <\.i.5   NB. box suffix 
������������������������������� 
J0 1 2 3 4J1 2 3 4J2 3 4J3 4J4J 
�������������������������������  

The dyadic form infix delivers overlapping x-lists and outfix delivers the result of 
progressively removing them: 
   (2,\i.5);(2,\.i.5) 
����������� 
J0 1J2 3 4J 
J1 2J0 3 4J 
J2 3J0 1 4J 
J3 4J0 1 2J 
�����������  

An informal rule is that without dots (that is prefix and infix) things proceed from 
the left, with dots they do so from the right. 
Combinations 
A deconstruction of comb2 in [1] for the orderly listing of combinations begins 
with 
   |:3 ,\i. 6  NB. dyadic infix 
0 1 2 3 
1 2 3 4 
2 3 4 5  

Apply box-ravel suffix to the final row above: 
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   <@,\.2 3 4 5 
��������������������� 
J2 3 4 5J3 4 5J4 5J5J 
���������������������  

and then stitch the numbers in the penultimate row on an item by item basis: 
   Each=.&.> 
   1 2 3 4 ,.Each<@,\.2 3 4 5 
����������������� 
J1 2J2 3J3 4J4 5J 
J1 3J2 4J3 5J   J 
J1 4J2 5J   J   J 
J1 5J   J   J   J 
�����������������  

Call this form of stitching Stitch with an upper case S to distinguish it from 
the name of the primitive stitch : 
   Stitch=.,.Each <@;\.  

so that the preceding display is obtained as 
   1 2 3 4 Stitch 2 3 4 5  

By applying this successively to the columns of 3 ,\i.6 , everything is in place 
to generalize this to a verb for generating combinations of x from y . (The 
name comb2 is chosen because this is the technique described by that name 
in [1].) 
   comb2=:dyad : 'z=.Stitch/|:x,\i.y' 
   3 comb2 6 
������������������������� 
J0 1 2J1 2 3J2 3 4J3 4 5J 
J0 1 3J1 2 4J2 3 5J     J 
J0 1 4J1 2 5J2 4 5J     J 
J0 1 5J1 3 4J     J     J 
J0 2 3J1 3 5J     J     J 
J0 2 4J1 4 5J     J     J 
J0 2 5J     J     J     J 
J0 3 4J     J     J     J 
J0 3 5J     J     J     J 
J0 4 5J     J     J     J 
�������������������������  

A final ; (raze) could be used to transform the above into normal unboxed lists 
– retaining the boxes both helps appreciation of the structure, and also reduces 
the number of print lines required. 
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The integer representations of the combination list 3 comb2 6 in the order 
given above are 
   ;ctoi each<"1 ;3 comb2 6 
0 1 4 10 2 5 11 7 13 16 3 6 12 8 14 17 9 15 18 19  

which shows that combinations generated by comb2 are not in their ‘natural’ 
order. 
The boxed result of comb2 suggests that reduction could equally well have been 
applied from the right rather than the left by repeated use of the primitive verb 
reverse: 
   comb=.dyad : 'z=.|."1 Each Stitch/|.|."1 |: x ,\ i. y' 
   3 comb 6 
������������������������� 
J3 4 5J2 3 4J1 2 3J0 1 2J 
J2 4 5J1 3 4J0 2 3J     J 
J1 4 5J0 3 4J0 1 3J     J 
J0 4 5J1 2 4J     J     J 
J2 3 5J0 2 4J     J     J 
J1 3 5J0 1 4J     J     J 
J0 3 5J     J     J     J 
J1 2 5J     J     J     J 
J0 2 5J     J     J     J 
J0 1 5J     J     J     J 
�������������������������  

As a bonus comb delivers the combination list in reverse counting order: 
    ;ctoi each<"1 ;3 comb 6 
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  

Relationship to the Pascal Triangle 
The number of boxes in r comb n is one more than d=.n-r and the numbers of 
combinations in the various boxes are directly derivable from the Pascal Triangle 
whose first few numbers are: 
   !/-i.10 
1 1 1 1 1  1  1  1  1   1 
0 1 2 3 4  5  6  7  8   9 
0 0 1 3 6 10 15 21 28  36 
0 0 0 1 4 10 20 35 56  84 
0 0 0 0 1  5 15 35 70 126 
0 0 0 0 0  1  6 21 56 126 
0 0 0 0 0  0  1  7 28  84 
0 0 0 0 0  0  0  1  8  36 
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0 0 0 0 0  0  0  0  1   9 
0 0 0 0 0  0  0  0  0   1  

3 comb2 6 and 3 comb 6 both consist of 20 combinations displayed in 4 boxes, 
the numbers in which are obtained from the right as the first four non-zero items 
in row 2 counting in origin 0. More generally r comb n has d+1 boxes in which 
the numbers of combinations are given by the first d+1 non-zero integers in row 
r-1. For example for 6 comb 9 read a total of 84 combinations from the Pascal 
triangle, then go one up along the diagonal and read 1+6+21+56 along the row. 
When r is large relative to n it is more efficient to use complementary 
combinations as suggested by the symmetry of the Pascal triangle, for example 
   time=.6!:2 
   time Each '2 comb 55';'53 comb2 55' 
����������������������� 
J0.000388038J0.0130343J 
����������������������� 
   time '(<i.55)-."1 Each 2 comb 55' 
0.00245115  

Defining an itoc verb 
This challenge stated earlier requires the delivery of a unique combination, given 
an r and an integer i. If n is also given i must be in the range 0 .. nCr -1. 
To do this, first find the largest k such that kCr does not exceed i. 
Subtract kCr from i and carry on repeating this process for (i- kCr) and (r 
9 1) . For example, to find combination number 8 of 3 comb n , 5C3 = 
10 which exceeds 8, but 4C3 = 4 does not, so select 4 as rightmost element. 8 
9 4 = 4 which exceeds 3C2 , so catenate 3 to the left of 4. 4 9 3 = 1 which is 
less than 2C1 but equals 1C1 , so that the final digit is 1 and the required 
combination is 1 3 4. Here is this process expressed in J: 
   lgstk=.4 :0 
i=.<:y                  NB. increase k up to lgst y!k <x 
while. x>: y!>:i do. i=.>:i end. 
) 
   itoc=.4 :0 
x=.x-y!r=.x lgstk y 
while. y>1 do. 
   y=.<:y               NB. decrement y 
   r=.(x lgstk y),r     NB. catenate new value to left of r 
   x=.x-y!{.r   end. r  NB. reduce x for next iteration 
) 
   8 itoc 3 
1 3 4  
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Another iterative algorithm 
comb and comb2 are not the only methods for constructing combination lists. 
For example[1] starts by describing another such algorithm, and without worry-
ing too much about the J details, tracing the iterative steps can be used to 
illustrate how alternative techniques reach the same goal by different routes. 
   trace=.monad : 'y(1!:2)2' 
   combi=.4 : 0       NB. d is n-r for any given nCr 
k=. i.>:d=.y-x                   NB. k is a list of integers 
z=.(d$<i.0 0),<i.1 0       NB. initially z is d+1 empty boxes 
for_j. i.x do.       NB. loop thru items of i.x 
trace z=. k Stitch >:Each z  end. 
) 
   3 combi 6 
��������� 
J0J1J2J3J 
��������� 
����������������� 
J0 1J1 2J2 3J3 4J 
J0 2J1 3J2 4J   J 
J0 3J1 4J   J   J 
J0 4J   J   J   J 
����������������� 
������������������������� 
J0 1 2J1 2 3J2 3 4J3 4 5J 
J0 1 3J1 2 4J2 3 5J     J 
J0 1 4J1 2 5J2 4 5J     J 
J0 1 5J1 3 4J     J     J 
J0 2 3J1 3 5J     J     J 
J0 2 4J1 4 5J     J     J 
J0 2 5J     J     J     J 
J0 3 4J     J     J     J 
J0 3 5J     J     J     J 
J0 4 5J     J     J     J 
������������������������� 
������������������������� 
J0 1 2J1 2 3J2 3 4J3 4 5J 
J0 1 3J1 2 4J2 3 5J     J 
J0 1 4J1 2 5J2 4 5J     J 
J0 1 5J1 3 4J     J     J 
J0 2 3J1 3 5J     J     J 
J0 2 4J1 4 5J     J     J 
J0 2 5J     J     J     J 
J0 3 4J     J     J     J 
J0 3 5J     J     J     J 
J0 4 5J     J     J     J 
�������������������������  
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Other methods are described in [2]. The relative efficiencies of algorithms are 
parameter dependent. These can be tested informally by e.g. 
   time Each '9 comb 23';'9 comb2 23';'9 combi 23' 
���������������������������� 
J0.251543J0.173648J0.199808J 
���������������������������� 
(n.b.  combi had the trace removed for fair comparison)  

References 
1. R.E.Boss, Vector Vol.24 Nos. 2 &3, pp. 75-88 Generating Combinations in J efficiently. 
2. Norman Thomson , Vector Vol. 22 No.4, pp. 99-105, J-ott 
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Bicubic Interpolation in J 
by Cliff Reiter (reiterc@lafayette.edu) 

Prolog 
In 2008 there was a query on the J Programming forum about whether bicubic 
interpolation had been implemented in J[4]. This is a standard technique for 
resizing images. I was doubtful that there were many situations for bicubic 
interpolation to be noticeably better than resizing by sampling pixels. However, 
when I created the hiking guide[6] as a PDF, I found the palette based topo-
graphic maps were very washed out after conversion until I selected the bicubic 
interpolation option. Perhaps more is going on in creating the PDF, but I put ta-
king a closer look at bicubic image interpolation onto my "to do" list. Recently I 
implemented Keys[3] convolution bicubic algorithm. In this note I share the 
implementation and some experiments. A script with the functions defined here 
may be found at[7]. Other versions of bicubic interpolation exist[1, 5]. 
Bicubic Interpolation 
Bicubic interpolation uses four-by-four patches of equally spaced discrete data 
points to obtain cubic polynomials in two variables that can be used to approx-
imate data that falls within the interior two-by-two patch. This is done inde-
pendently in the two image directions and for colour planes in the case of RGB 
images. Thus, we begin by considering the one dimensional version. 
Keys type interpolation can be described in terms of matrix multiplication on the 
four data (pixel) values by the matrix acon shown below. The entries in the 
matrix are derived by Keys[3]. The entries do not arise from interpolating all the 
points. The coefficients arise from interpolating the central pair and using some 
high order derivative approximations and boundary conditions. We refer the 
reader interested in the details to Keys[3]. It is convenient to think of the inde-
pendent points where the data is known as _1 0 1 2. Multiplying the values at 
those four points by acon results in the coefficients of Keys cubic polynomial. It 
is designed to approximate the data on the interval from 0 to 1. At the end 
points it gives the appropriate data values. 
For example, if we want to use a Keys type interpolation of the data that has 
values 2 3 5 7 at the points _1 0 1 2 respectively, we can do that as shown 
below. We see that it exactly returns correct values at 0 and 1 and a cubic 
interpolation of 3.9375 at 0.5. 
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   acon 
   0    1    0    0 
_0.5    0  0.5    0 
   1 _2.5    2 _0.5 
_0.5  1.5 _1.5  0.5 
 
   mp=: +/ . *    
 
   acon mp 2 3 5 7 
3 1.5 1 _0.5 
 
   (0 0.5 1�/i.4) mp acon mp 2 3 5 7 
3 3.9375 5  

A two dimensional version of this interpolation is given by the verb bicuev 
below. Consider the four-by-four patch, p, of primes given below and inter-
polation in two variables. Note that the input values are between zero and one 
and matrix oriented coordinates are used with the origin being at the upper left 
of the two-by-two central patch. Thus evaluating at 0 0 gives 13 and 0.1 0.9, 
which is near 0 1, gives a value near 17. 
   bicuev=: 4 : 0 
'X Y'=.y�"0 1 i.4 
Y mp"2 acon mp X mp"3 acon mp"3 x 
) 
 
   ]p=:p: i.4 4 
 2  3  5  7 
11 13 17 19 
23 29 31 37 
41 43 47 53 
    
   p bicuev 0 0 
13 
   p bicuev 1 0 
29 
   p bicuev 1 1 
31 
   p bicuev 0.1 0.9 
17.9766  

Resizing Images 
Before discussing bicubic interpolation on a larger array, we consider the re-
sizing verb from the image3 add-on shown below. That verb uses subsampling or 
resampling as necessary to obtain the resized image. The local variable szi 
gives the size (height-width) of the input image while szo gives the size of the 
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output image which is the largest image that fits inside a window specified by the 
left argument while respecting the aspect ratio of the input image. We cheat a bit 
displaying ind since it is actually a local variable, but we see the indices are 
repeated (or not) in a smooth way obtaining an array of the desired size by over 
(or under) sampling the rows and columns of the array as necessary. 
   resize_image=: 4 : 0 
szi=.2{.$y 
szo=.<.szi*<./(|.x)%szi 
ind=.(<"0 szi%szo) <.@*&.> <@i."0 szo 
(< ind){y 
) 
    
   6 6 resize_image p 
 2  2  3  5  5  7 
 2  2  3  5  5  7 
11 11 13 17 17 19 
23 23 29 31 31 37 
23 23 29 31 31 37 
41 41 43 47 47 53 
 
   ind 
+-----------+-----------+ 
|0 0 1 2 2 3|0 0 1 2 2 3| 
+-----------+-----------+  

The verb bicubic_resize_image, shown below is similar in many regards. How-
ever, the floating point arithmetic used in the interpolation uses substantial 
space, so that is mitigated by updating one row at a time in the array z. Also, a lo-
cal function get_patch is defined to facilitate obtaining the four-by-four patches 
needed for the interpolation. Due to the patch sizes of four-by-four we need to 
enlarge the input array by increasing the number of rows and columns by 3. We 
do that by constant extensions: by two copies on the leading edges and one on 
the trailing edges. We again cheat and display some local variables. Below is the 
result of applying the boundary conditions. The last value computed depends on 
the indices 3.5 3.5. Thus, the last patch used is determined by 3 3 and that 
patch is used to obtain the bicubic interpolation at 0.5 0.5. The result of that 
interpolation is given. One might not prefer these boundary conditions, but they 
are fairly simple and appear reasonable in practice for image data. Also, for 
image data using a scale of 0 to 255, we will want to clamp (or round) the data 
into the desired range. 
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   conext0=:{.,{.,],{:  
 
   conext3=:conext0"_1@:conext0 
 
   clamp=:0>.255<.<. 
 
   bicubic_resize_image=:4 : 0 
szi=.2{.$y 
szo=.<.szi*<./(|.x)%szi 
get_patch=.(( [:<((i.4)+{.);(i.4)+{:)) { (conext3 y)"_ 
'indj indk'=:(>:(<:{.szi)*(i.%[){.szo);>:(<:{:szi)*(i.%[){:szo 
z=.(szo,2}.$y)$0 
for_j. i.#indj do. 
  inds=.(j{indj),.indk 
  as=.get_patch"1 <.inds 
  t=.clamp as bicuev"_1 1 ]1&| inds 
  z=.t j}z 
  end. 
z 
) 
 
   6 6 bicubic_resize_image p  
 2  2  3  3  5  6 
 5  6  7  8 10 11 
11 11 13 15 17 18 
16 18 20 22 23 25 
23 25 29 30 31 34 
32 34 37 38 39 43 
 
   conext3 p 
 2  2  2  3  5  7  7 
 2  2  2  3  5  7  7 
 2  2  2  3  5  7  7 
11 11 11 13 17 19 19 
23 23 23 29 31 37 37 
41 41 41 43 47 53 53 
41 41 41 43 47 53 53 
 
   indj 
1 1.5 2 2.5 3 3.5 
 
   indk 
1 1.5 2 2.5 3 3.5 
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   get_patch <.3.5 3.5 
13 17 19 19 
29 31 37 37 
43 47 53 53 
43 47 53 53 
 
   (get_patch <.3.5 3.5) bicuev 1|3.5 3.5 
43.1797  

Image Experiments 
First we apply bicubic interpolation to a tiny randomly chosen four colour image. 
   $b=:(?.5 8$4){?.4 3$255 
5 8 3 

   view_image 720 720 resize_image b 
720 450 
 
   view_image 720 720 bicubic_resize_image b 
720 450  

 
Figure 1. Sampling and Bicubic Interpolation of a Random Image 

In the bicubic image we see that the "super" pixels blend into one another in a 
fairly natural way and that the blending near the boundaries is visually unbiased 
with respect to which edge is chosen. 
As a second example we consider a thumbnail sized zoom into an image of Ken 
Iverson at Kiln farm from the image3 addon that is expanded to create a web 
sized image. 
   B=:read_image jpath,'-addons/media/image3/atkiln.jpg' 

   view_image B 
468 700 
 
   ken=:100 100{.120 210}.B 
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   view_image 720 720 resize_image ken  
720 720 
 
   view_image 720 720 bicubic_resize_image ken 
720 720  

The original image quality is poor, but the contrast between the pixilation of 
sampling and the smoother bicubic interpolation can be observed in Figure 2. 

 
Figure 2. Sampling and Bicubic Interpolation of an Image Piece 
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5 – a stack-based array language 
by Bernd Ulmann (ulmann@vaxman.de) 

5 is a portable and extensible stack-oriented array language that combines the fea-
tures of APL and Forth and some ideas from Perl to yield a highly interactive 
environment for the professional developer as well as students of computer science. 
The interpreter is very lightweight (about 650 Kb all in all, including documentation) 
and runs readily on a variety of operating systems including Windows, LINUX, Mac 
OS X and even OpenVMS (VAX, Alpha, Itanium). 5 is Open Source and resides on 
SourceForge[1]. 

What is 5 and why was it developed? 
The development of 5 started in August 2009 during a boring train ride when I 
programmed my beloved HP48GX pocket calculator to kill some time. As much as 
I love the stack-oriented approach of HP’s calculator-language RPL, I always 
thought that one could have done better by not combining Forth and LISP but 
Forth and APL instead. I wondered what such a language inheriting the main 
ideas of APL and Forth (and some bits from Perl) would look like and started 
writing a simple interpreter as a proof of concept. Since this new language looked 
like ‘Forth on steroids’ the name 5 seemed quite natural (quickly abandoning the 
idea of ‘Fifth’). 
It turned out that a stack-based array language yielded very concise code and 
during the next six months the language was steadily extended until it turned out 
that this first interpreter was indeed too limited in its design to incorporate all of 
the new ideas that popped up. Thus Mr Thomas Kratz and I decided to restart 
from scratch and implement a more flexible interpreter. (Most of the interpreter 
has been written since by Mr Kratz, whom I would like to thank for this truly 
great work). 
First steps 
The 5 interpreter is quite mighty and thus the following sections can and will 
only give a brief overview by showing and explaining a couple of typical 5-pro-
grams – much more information can be found in the introductory manual[2]. 
Getting and installing 5 
The 5 interpreter and its accompanying documentation can be downloaded from 
SourceForge. The only prerequisite for installing 5 is a Perl interpreter, which is 
already found on most UNIX systems and easily installed on Windows machines 
(ActiveState Perl works fine). Since the 5 interpreter does not need any special 
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Perl-packages, its installation does not require any changes on an existing Perl 
installation. To install 5 all you need to do is to unzip the distribution kit, which is 
only about 330 Kb in size to any suitable location and make the file 5 executable. 
On UNIX systems you might want to extend your environment variable PATH by 
the directory into which you unzipped the distribution kit. On Windows and 
OpenVMS systems the interpreter can be started most easily from the command 
line by typing perl 5 (although one would normally define a foreign command 
on OpenVMS to make 5 directly callable). 
The distribution kit not only contains the interpreter itself but also detailed 
documentation, as well as many examples which will help one get used to the 
language and the interpreter. 
Using 5 interactively 
Let us use the 5 interpreter interactively to simulate dice being thrown 100 times 
and computing the arithmetic mean of the outcomes: 
6 100 reshape ? int 1 + '+ reduce 100 / .  

There is not much to say about this simple program which would not be obvious 
to people inclined to work in APL and other array languages. The most note-
worthy thing is the stack-oriented operation of the interpreter, so all programs 
are read strictly from left to right. (As a result there are neither parentheses nor 
operator precedence rules in 5.) 

1. First two scalars, 6 and 100, are pushed onto the stack. 
2. These values are used for the operator reshape which removes both 

from the stack and pushes an array containing 100 elements back onto the 
stack: [6 6 6 M 6] 

3. To this array, the unary ? operator is applied, which generates pseudo-
random numbers in a range between 0 and a given maximum value (exclu-
sively). Since this operator is unary it is applied to all elements of the vec-
tor automatically and yields a new vector on the stack containing 100 
elements between 0 (inclusively) and 6 (exclusively). Applying the unary 
int operator to this vector yields a vector of integer values which are then 
incremented all by one due to 1 + . 

4. The next step pushes the name of the binary addition operator onto the 
stack, '+ , and applies the reduce function, which in turn sums all vector 
elements into a scalar. 

5. Dividing this result by 100 and printing it to the console is accomplished 
by 1 100 / . 
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Although one has to get used to the reverse-Polish notation style of 5 it turns out 
to be very efficient and intuitive after a short time of playing with the interpreter. 
The main advantage of the stack-based nature is that one can build complex 
expressions iteratively and ‘watch’ the results of a computation through the 
different stages step by step. (Using the word .s one can generate a pretty 
printed view of the stack without destroying its contents, which is quite handy 
for understanding the actions of a program.) 
More complex examples 
The following examples introduce some of the more sophisticated features of 5 – 
due to the complexity of the language many concepts will be mentioned only 
briefly – a comprehensive description of the language and its many operators and 
functions can be found in the documentation (see above). 
Generating a list of primes 
One of the archetypical examples found in nearly every introductory text for APL 
is the generation of a list of primes without any explicit loops or the like. The 
following program shows how this is done in 5: 
: prime_list 

1 - iota 2 + dup dup dup 

'* outer swap in not select 

; 
100 prime_list .  

This example is much more complex than the one before and could be run from a 
file using 5 in batch mode. To accomplish this just call the 5 interpreter with the 
name of the source code file as a command line parameter. (5 also supports quite 
a lot of qualifiers to get statistical information about program runs and the like, 
which are described in the documentation.) Assuming that there is a file named 
prime.5 containing the code shown above, it can be run by typing 5 prime.5 
or perl 5 prime.5. 
This example introduces the concept of so called ‘user defined words’ (‘UDW’ or 
just ‘word’ for short) that effectively extend the language itself and can be used in 
exactly the same way as built-in functions and unary or binary operators (in that 
respect they are much more powerful than the traditional words of Forth which 
have no provisions for acting as unary or binary operators extending their 
usability to nested data structures). 
First a word named prime_list is created – the colon starts a word definition 
that ends with a semicolon. This user-defined word is neither unary nor binary, 
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so it just sees the stack as it is and operates on it. (In contrast to that, unary and 
binary words get a local stack with only one or two elements on it to operate on 
when they are being called. When such a unary or binary word terminates only 
the top most stack element of its local stack is copied back to the main stack of 5 
thus unary or binary operators are side-effect free with regard to the main stack.) 
The basic idea of generating a list of primes up to some value n is to generate two 
vectors [2 3 4 M n] and generate a matrix by applying an outer product 
operator to these two vectors. Since this matrix obviously contains only non-
primes, it can be used to select all primes from a copy of such a vector. The vector 
itself is generated by 1 - iota 2 + which expects a number like 100 on the 
stack: Subtracting one yields 99, applying iota yields a vector [0 1 2 M 98], 
adding two to this vector yields the desired vector [2 3 4 M 100]. The 
command sequence dup dup dup creates three copies of this vector which will 
be needed soon. 
In the next step the name of the multiplication operator, '* , is pushed onto the 
stack and outer is called, which expects an operator’s name (*) and two vectors 
on the stack and creates a matrix as the result of an outer product in this case. 
swap swaps the two topmost stack elements, so now one of the remaining copies 
of the vector is on top and the matrix is the second element from top. Applying 
the in function generates a vector containing a 1 in every place corresponding 
to an element of the vector that exists in the matrix and a 0 otherwise. Inverting 
this vector with not yields a selection vector which is then applied to the last 
copy of the original vector by select. This yields a vector containing prime 
numbers between 2 and n only. 
The main program only consists of  100 prime_list. This places the value 100 
onto the stack, calls the word prime_list and prints the resulting vector using 
the dot. 
Sum of cubes 
The following two-liner computes all natural numbers less than 1000 that equal 
the sum of the cubes of their digits: 
: cube_sum(*) "" split 3 ** '+ reduce ; 

999 iota 1 + dup dup cube_sum == select .  

The first line again defines a word but this time it is a unary word – denoted by 
(*) following the name of the word. This has the effect that this word will not 
only work on scalar values but will be automatically applied to all elements of 
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nested data structures. (So applying this word to a vector like [1 2 3] will 
implicitly and automatically apply it to the three vector elements 1, 2 and 3 
and return another three element vector containing the particular results.) The 
star denotes that the type of the argument is not relevant (a later example will 
show the ability of 5 to ‘dress’ data structures – the 5 way of overloading 
operators etc.). 
What does the word cube_sum do? First of all it pushes an empty string onto the 
stack and calls the split-function. This function expects a regular expression on 
the stack and splits the scalar found below on every place where this expression 
matches. Since the expression is an empty string in this case, it will perform a 
split after each character of a value. The nice thing is that this naturally extends 
to numerical values, too – if there was the value 123 on the top of the stack prior 
to performing "" split the result of this operation would be a vector [1 2 3]. 
This vector is then cubed element wise by 3 ** and summed (element wise) 
yielding a scalar value by '+ reduce, so the word cube_sum expects a value on 
the stack and returns the sum of the cubes of its digits. 
The main program is equally simple: First a vector running from 1 to 999 is 
generated by 999 iota 1 + . This vector is then copied two times with dup 
dup before cube_sum is applied. Since cube_sum is a unary word, it will be 
applied in an element wise fashion to the elements of this vector and yields 
another vector with 999 elements which are the sums of the cubes of the digits of 
the numbers of the original value. This cube-sum-vector is then compared 
element wise with one of the copies made before, which yields another vector 
with 999 elements being 1 or 0 reflecting the result of the comparison 
operator. This vector is in turn used to select only those elements from the last 
copy of the original vector that equal their digit-cube-sum, which is then printed 
with the dot. 
Dressed data structures 
If that were about all that 5 can do, it would not be too worthwhile but there is 
more: 5 allows one to "dress" data structures – i.e. mark some data as being of a 
certain type like a complex number, a quaternion, a matrix, whatever. The 
following example shows how to use this feature in the generation of a 
Mandelbrot set: 
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: d2c(*,*) 2 compress 'c dress ; 

: iterate(c) [0 0](c) "dup * over +" steps reshape execute ; 

: print_line(*) "#*+-. " "" split swap subscript "" join . "\n" . ; 

75 iota 45 - 20 / 

29 iota 14 - 10 / 

'd2c outer 

10 'steps set 
iterate abs int 5 min 'print_line apply  

What is a Mandelbrot set anyhow? It is the result of applying an iterative 
calculation to points of the complex plane, so first of all we will need a matrix of 
complex numbers. The 5 interpreter has no idea what a complex number might 
be but it is easy to extend the language by overloading operators to handle data 
dressed in a special way. So the basic arithmetic operators are already 
overloaded in mathlib.5 to handle complex numbers, which are dressed by the 
letter c. This ‘dress code’ is just a convention – one could have chosen anything 
but in order to keep 5 code short and concise, a single letter was chosen to 
denote complex numbers (m denotes a matrix, v a vector and p a polar coor-
dinate). 
Generating a matrix from two vectors by creating an outer product was already 
shown in the prime number example above. We will use this technique to 
generate a matrix consisting of complex numbers. Therefore we need a binary 
word which takes two scalar values and returns a complex number made from 
these two values. This word is called d2c in the code shown above, short for 
“dupel to complex”. Since the name of the word is followed by (*,*) it is a 
binary word which does not care about the type of its arguments. All that it does 
is to compress the two values found on its local stack by 2 compress into a 
simple two-element vector. This vector is then dressed by 'c dress to form a 
complex number. Let us assume that d2c is called with 1 2 d2c, so it finds the 
values 1 and 2 on its local stack. Executing 2 compress yields the vector [1 
2] which is then dressed to return [1 2](c) – a complex number. 
To see how this word is used, let us look at the three lines in the middle of the 
program: 75 iota 45 - 20 / generates a vector [-2.25 -2.2 -2.15 M 1.3 
1.35 1.4 1.45] while 29 iota 14 - 10 / yields [-1.4 -1.3 M 1.3 1.4] 
respectively. These two vectors are then combined into a matrix by using d2c as 
the binary operator for the outer-function. The result of this is a two 
dimensional matrix of complex numbers – the basis of our Mandelbrot set. 
Now that we have a complex matrix, a unary word is needed that operates on 
complex numbers and performs the necessary iteration for a Mandelbrot set. 
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This iteration has the form zi+1=zi2+c, where c is a point of the complex plane with 
z0=0. If this series is non-divergent, the point c belongs to the Mandelbrot set. In 
the program shown above this iterative formula is applied 10 times and the 
resulting value is used to choose a display character for the point c in question. 
To compute this iterative formula, the word iterate is defined, which is a 
unary operator expecting a complex number which is denoted by the start of the 
word definition: : iterate(c). In a first step this word pushes the complex 
number [0 0](c) onto the stack which serves as z0. A single iteration step can 
now be performed by the instruction sequence dup * over +. The function dup 
makes a copy of the value on the top of the stack, * multiplies the two topmost 
stack elements, effectively computing zi2 while over fetches the element below 
the top of stack, which is c, so zi2+c is computed with + . 
To perform a given number of iterations a sequence of these steps must be gene-
rated. A traditional language like C or Java would need an explicit loop for this, 
but array languages like APL or 5 have the means to express this much more 
elegantly. (“Look Ma – no loops!”) The main program sets a variable named 
steps to 10 which is used in this word to control the number of iteration steps 
being performed. The result of "dup * over +" steps reshape in this case 
yields a one-dimensional vector with 10 elements, looking like this (effectively 
unrolling the loop): ["dup * over +" M "dup * over +"]. This vector is then 
used as an instruction stream by means of the execute function, which 
effectively computes the iterative sequence desired. 
The main program now calls iterate, which is implicitly applied to all elements 
of the complex matrix built before. The result of this is another complex matrix, 
which is transformed into a matrix of simple scalars by applying the abs-
operator to it (abs has been already overloaded in mathlib.5 to work on 
complex numbers and returns simple floats). The resulting elements are then 
capped by 5 min and then another unary user defined word, print_line, is 
applied in a row-like fashion to the matrix by using it as an argument to the 
apply-function. 
print_line is now called for every row of the matrix. It first generates a vector 
["#" "*" "+" "-" "." " "] by splitting the string "#*+-. " on an empty 
regular expression and then uses the elements of the line vector, which are 
integers between 0 and 5, as an index into this character vector. The result is a 
vector containing as many characters as the line contained integer values. This 
vector is then concatenated into a simple string b joining it with an empty 
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string. This resulting string is then printed with a newline character appended. 
The resulting picture looks like this: 
                                         # 

                                          * ** 

                                          ##* 

                                        *##### 

                                       +*####*-     * 

                                 *###############*#*#* 

                                #*################### 

                    *          *#####################-* 

                    -##*###*..*####################### 

                    *################################# 

                 *################################### 

     +*#*#*#***####################################* 

                 *################################### 

                    *################################# 

                    -##*###*..*####################### 

                    *          *#####################-* 

                                #*################### 

                                 *###############*#*#* 

                                       +*####*-     * 

                                        *##### 

                                          ##* 

                                          * ** 

                                         #  

Conclusion 
Although there is much more to say about 5, I hope that the few examples given 
above made you curious about this language and I would like to refer you to the 
extensive documentation which comes with the installation kit. Why should one 
use 5 when there are APL, J, K etc. implementations available? Some things that 
may speak in favour of 5 are listed below: 

1. 5 is Open Source and easily portable to any architecture for which a Perl 
interpreter exists. 

2. Since 5 does not need any special characters there is no need to install 
additional fonts, which makes its installation even simpler. 

3. Installing 5 does not require any special rights – even end-users can install 
it locally in any directory, even C:\Temp on Windows systems, which 
makes the interpreter an ideal tool for ad-hoc analyses and experiments at 
customer locations. 
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4. The interpreter is very well structured, which makes extensions to the 5 
code quite straight forward, thus facilitating experiments in language 
design etc. (The complete interpreter consists of only 2895 lines of Perl 
code and 457 lines of 5 code contained in the standard libraries stdlib.5 
and mathlib.5.) 

5. 5 is an emerging language where the individual can have a real impact on 
the directions of future developments. The development of the interpreter 
is still ongoing and we would love to hear about your suggestions and 
needs. 

Some of the areas which will see future developments are those listed in the 
following: 

• The mathematical library mathlib.5 needs to be extended to overload 
more operators for complex numbers, polar coordinates, quaternions and 
the like. Also the library is still lacking most of the common linear 
algebraic operators and functions. 

• The interpreter currently lacks powerful operators for transposing and 
rotating matrices etc. 

• We need more test cases for the interpreter – although there are a lot of 
test cases defined, which are run every time changes to the interpreter 
have been made, these are no longer sufficient and need to be extended 
heavily. 

• We need example programs from the field to learn more about the power 
of 5 and to enhance the interpreter. 

We would love to hear from you and I hope that I could interest you in this new 
array language. Have fun with 5 and happy array programming. 
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Subscribing to Vector 
Your Vector subscription includes membership of the British APL Association, 
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I authorize you to debit my American Express/MasterCard/Visa account 
Number:  ____________________________________   Expires: ____/____ 
for the membership category indicated above. 
Signature: ___________________________________   Date: ___________ 
3. By electronic transfer.  
Our account details are: Barclay's Bank; Cambridge, Chesterton Branch; Sort 
code: 20-17-35; Account number: 63955591; Account name: British APL 
Association; SWIFTBIC: BARCGB22; IBAN: GB86 BARC 2017 3563 9555 91. 
4. Use PayPal to credit account treasurer@vector.org.uk (no account needed – 
ask for details). 
If you pay by cheque or credit card, please send the completed form to: 
BAA, c/o Nicholas Small, 12 Cambridge Road, Waterbeach, Cambridge CB25 9NJ 
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