
VECTOR Vol.25 No.4

 1

Contents

Editorial 3
News
Dyalog 5
Kx 10
Optima 11
General
BAA: Chairman’s Report Paul Grosvenor 14
BAA: AGM Minutes Chris Hogan 16
Report on BAA London Phil Last 18
Phil Last reports from his moot Phil Last 20
APL
Three blind mice Paul Grosvenor 24
Our first steps into the APL world Greeley, Gutsell, Sidiki 26
User Commands in Dyalog Dan Baronet 30
Dyalog’s public User Commands Dan Baronet 41
Regular Expressions in Dyalog ([]R and []S) Dan Baronet 61
Bayesian modelling in APL Devon McCormick 72
Hui juggles with 88 hats Roger Hui 84
Function design Kai Jaeger 90
J
Backgammon tools in J:
3. Two-sided bearoff probabilities Howard Peelle 104
Savitzky-Golay interpolation for smoothing
values and derivatives Porter & Reiter 107

VECTOR Vol.25 No.4

 2

Quick reference diary
20-24 October 2013 Florida Dyalog User Conference

Dates for future issues
Vector articles are now published online as soon as they are ready. Issues go to
the printers at the end of each quarter – as near as we can manage!
If you have an idea for an article, or would like to place an advertisement in the
printed issue, please write to editor@vector.org.uk.

VECTOR Vol.25 No.4

 3

EDITORIAL

August 1985, I was handed my first copy of Vector Vol.1 No.1. I had just joined BUPA, an
escapee from a COBOL environment, where an analyst at a keyboard was deemed time
wasting. An incidental exposure to VSAPL led to lunch times learning the language, and
a subsequent career switch.
Coming from that relative isolation into a proper APL shop the wide and active
community of APLers soon became apparent. Since then I have not been disappoin-
ted. APL has given me some great friends; work experiences; intellectual stimulation;
and pleasure. The fun just goes on with other array-processing languages such
as J and K offering another rich vein to explore.
Stephen Taylor will be a tough act to follow. He has set the bar very high but has also
given Vector the means and methods to continue producing an outstanding journal.
Stephen’s efforts have been immense, taking on the role of an entire editorial
committee. As editor he went beyond writing editorials, actively trying to obtain
material to support series or collect related articles; as webmaster he built the website
and archive to support online publication; as typesetter he also rebuilt the production
process to get Vector in print.
Meet the three young apprentice APL Programmers in their article ‘Our first steps into
the world of APL’. Funded by Optima Systems (UK) and Dyalog Limited in an initiative
to introduce new people to the APL community. The apprentices were given a warm
welcome in October by delegates at the Dyalog conference in Elsinore, Denmark. Here,
as part of a presentation ‘Three Blind Mice’ by Paul Grosvenor, delegates heard the
apprentices describe their first experiences and impressions of APL. I am reminded of
my own early journey.
In the archive is a wealth of material and amongst that material are some gems that are
worthy of being reprinted, hopefully stimulating further interest and work. In this
edition I have begun with a reprint of ‘Bayesian financial dynamic linear modelling in
APL’ in Vector 21.2 by Devon McCormick, and hope that Devon will follow this up with
implementation in J. I will welcome suggestions for other candidate reprints.
This year sees the fourth anniversary of the BAA London symposia, these well fit either
definition of a meeting in which the participants form an audience and make presen-
tations" or the alternative "convivial meeting for drinking and intellectual discussion".
From a personal point of view I have never attended one where I haven’t learned
something useful. Phil Last gives a potted history in his article "BAA London" in this
issue.
 John Jacob

VECTOR Vol.25 No.4

 4

N E W S

VECTOR Vol.25 No.4

 5

Industry news

Dyalog Ltd

Looking East and West
The Annual Dyalog Programming Contest is in its 4th year. In the first three
years, we have had entries from all over the world, with winners and runners-up
coming from New Zealand, the USA and Germany. This year, the best submissions
were from the East (as seen from the United Kingdom): we are very pleased to
announce that the winner of the Grand Prize in 2012 (USD 2,500 and an
expenses-paid trip to the Dyalog’12 Conference in Denmark) is 橋本隼人
(Hayato Hashimoto), a 21 year old undergraduate student at Kyoto University in
Japan – and the runner-up Татьяна Иванова (Tatiana Ivanova) from Russia.
At the same time, we are delighted to announce that Pat Buteux has joined
Dyalog Ltd as VP of Sales & Marketing for the USA. Pat joins Dyalog Ltd with one
of the finest pedigrees in software development and software consulting, and she
is particularly experienced in working with business development, strategic
branding and positioning. Pat’s career started at General Electric in the
timesharing days. She helped transform STSC into an independent software
vendor and was responsible for development, marketing and sales of APL*PLUS.
She also built STSC’s international network of resellers. We’re incredibly pleased
to have Pat join the Dyalog team and we’re looking forward to working with her
on expanding the APL market to our West.

Dyalog APL Versions 13.1 and 13.2
We are currently about halfway between Version 13.1, which was released in
April, and 13.2, which is due to be released at the end of January 2013. As the
decimals suggest, these are incremental updates, with particular focus on
performance or capacity enhancements, and (ahem) the odd bug fix – while we
work on version 14.0 (targeting end of 2013) which is intended to add very
significant new core-language features and more fundamental performance
improvements and features to support parallel hardware.
That being said, versions 13.1 and 13.2 will not be without new functionality:

VECTOR Vol.25 No.4

 6

Summary of Version 13.1 enhancements
• New system function �FHIST – The new File History system function

reports information about which user created and most recently updated
the file (and when it happened). This feature has been added to support
clients who have previously been running the SHAREFILE/AP system on
mainframes.

• New system constant �DMX – Version 13.1 adds significant new error
reporting functionality, in the form of a system variable which has been
named �DMX. �DMX is designed to make error handling simpler, more
complete and more accurate.
The key benefits of �DMX are: the provision of more detailed information,
including the relevant operating-system error where appropriate; that it is
thread safe (�DMX is local to each APL thread – which is not the case for
�DM and �EN) and that it is local to the code which is invoked to handle an
error, in such a way that successfully handled (trapped) errors will leave
no trace of the handled event.

• Performance Improvements: including much faster processing of lines
which contain no code, speedups to most cases of dyadic iota (Index Of), a
couple of new idioms 0=�Ρ and 0≠�Ρ , and finally significant speed-ups to
the performance of expressions of the form (n�1).

• URL string support: URLs in the session or tracer/editor are underlined.
Control- and left-click on the URL string will cause the URL string to
appear in the default browser (or the default e-mail client for mailto:
URLs).

• Enlist in selective assignment: Enlist (�) may be used in selective assign-
ment expressions.

• Large arrays: version 13.1 marks the final step in adding support for un-
limited array sizes. All primitives and the component file system now
support arrays of any size.

Release Notes for version 13.1 (and all other releases) can be viewed online at
http://help.dyalog.com, and can be downloaded in PDF format from
http://docs.dyalog.com.

VECTOR Vol.25 No.4

 7

Planned v13.2 Features
We would like to thank the participants of the 2012 BAPLA AGM & Moot, which
was held at the YHA Lee Valley Youth Hostel, Cheshunt, in April
(http://moot.aplwiki.com/). In 2006, version 11.0 of Dyalog APL introduced
support for object-oriented programming in APL, and this included support for
editing both classes and namespaces in the form of a single script. As the use of
scripted APL code has slowly spread in the APL community, it has become
apparent that the editor needs further enhancements (and some bug fixes). The
participants of the moot were invited to discuss these issues, and we would like
to acknowledge this valuable input, which will be a driver for work going into
both 13.2 and future releases. Other candidates for new functionality to be
delivered as part of 13.2 include:
• A number of new GUI features to provide support for gradient colouring,

transparent effects, and other modern GUI features (in order to allow
clients a bit more time to see which way the Microsoft.NET cookie is going
to crumble).

• Speedups to scans, summations, and the regular expression operators
�R/�S.

• Support for all the selective assignment syntax allowed by IBM APL2.
• Callbacks into APL from �NA calls.

The planned release date for Version 13.2 is January 31st, 2013

The Dyalog File Server
Due to be released shortly after version 13.2, the Dyalog File Server (DFS), will
provide secure, multi-user access to APL component files and native files –
similar to the functionality provided by products like SHAREFILE/AP which was
used with mainframe APL systems. The TCP-based client/server architecture
employed by DFS avoids the need for direct network access to the underlying
component files, doing away with the need for network shares.
DFS provides significantly enhanced security, compared to the use of component
files in the form of shared files on a LAN. DFS supports username/password style
authentication as well as Integrated Windows Authentication (IWA) on Windows
platforms. Secure communications can be used between the client and server
using Conga’s Transport Layer Security (TLS) support. As a fringe benefit of this
project, recent versions of Conga allow you to provide single-sign-on

VECTOR Vol.25 No.4

 8

functionality in your own application, if your organization uses Windows
domains.
In many typical scenarios the DFS also performs better than the existing com-
ponent file system. Multiple file services can be configured to help balance the
usage loads, and a web-based console will provide logging, usage/performance
monitoring, and administrative functions – including the ability to perform full
and incremental backups and restore operations without taking the system
down.
The DFS will be sold separately from Dyalog APL, and targets enterprise systems.
It will initially only be available for Microsoft Windows, but is designed to be
portable.

TryAPL.ORG
As announced in our previous news item, we released an on-line interactive APL
workbench at http://tryapl.org, early this year. We are not quite seeing Google-
sized numbers but the site has seen an average of 10-20 distinct user sessions
per day, and at times the numbers have been spectacular, as they were in the
days following the discovery of TryAPL by “reddit”.
We had about 8,000 distinct sessions over a weekend following
http://www.reddit.com/r/programming/comments/uu2br/try_apl_is_weird_but
_fun/. The server crashed a few times due to a WS FULL in our log file handling
code, but increasing MAXWS quickly resolved that! In June, the site was used to
teach an afternoon’s APL workshop for a group of students running a variety of
operating systems including Windows, Linux and Apples OSX, without requiring
the installation of any software!

APL Training Courses
Speaking of workshops: as was the case the last time we submitted a news report
to Vector, Bernard Legrand has just completed another introductory APL course
at our head office in Bramley. We are very pleased to be able to report a steady
increase in demand for APL training, and expect to be running a minimum of two
courses per year in Bramley, in addition to the in-house courses that Bernard
regularly teaches at client sites. If you have an APL-related training requirement
anywhere in the world, please contact Karen Shaw in Europe or Pat Buteaux in
North America or reach all the relevant people at once with an e-mail to
sales@dyalog.com.

VECTOR Vol.25 No.4

 9

Karen and Pat’s email addresses are <firstname>@dyalog.com as indeed is
almost everyone else at Dyalog too.

More Details
In-depth articles on many of the issues mentioned above are available in the last
two issues of the Dyalog newsletter, which can be viewed at
http://dyalog.com/news.htm – look for the “newsletter” links in the left column.
The best place to catch up on all things Dyalog is of course to attend our annual
User Conference. The next conference will be held at the Embassy Suites Hotel on
Deerfield Beach, between Boca Raton and Ft. Lauderdale on Florida’s Gold Coast,
October 20-24, 2013. Recordings of talks from the recent conference in Denmark
will be posted to http://videos.dyalog.com and on YouTube (search for ‘Dyalog
Conference’).

VECTOR Vol.25 No.4

 10

Kx releases new version of kdb+
Palo Alto (24 Sep 2012) – Kx Systems, the leader in high-performance database
and timeseries analysis, has announced the release of kdb+ v3.0. The key benefits
of the new version include a considerable improvement in processing speeds
when running on Intel’s recent processors, support for WebSockets,
GUIDs/UUIDs (unique identifiers, which facilitate the design of distributed
systems) and simplified storage of billions of records.
The optimized code in kdb+ utilizes the processor specific instructions available
at run-time: testing saw very significant speed increases when running
calculations using Intel’s Advanced Vector Extensions (AVX) and SSE
instructions, available on Intel’s latest generation of Sandy Bridge family of
processors.
The growing volumes of derivatives and trading volumes in FX and equity
markets, as well as regulatory requirements, all result in institutions having to
store and analyse vast quantities of data. The simplified storage in v3.0 makes
the design and implementation of large systems much less complex. While kdb+
has always been able to handle far more than 2 billion records, this has been
made much simpler in the new release.
Kx chief strategist, Simon Garland, explains: “This enhancement in v3.0 simplifies
the design and implementation of large systems which have to handle more than
a trillion records, allowing for a more elegant architecture.”
The addition of UUIDs as a basic data type means that distributed systems are
now easier to write. UUIDs can be used to uniquely identify distinct records and
are a valuable tool for managing distributed systems. In highly complex systems,
which are spread across different regions and continents, UUIDs make
distributed processing more efficient and system design more straightforward.
At the same time, storing and processing transaction IDs, such as order and
confirmation IDs, is easier and more efficient.
Garland continues: “Managing multiple servers across different countries and
continents can be a challenge and requires some complex programming. UUIDs
make this much more straightforward, as individual records can be uniquely
identified; combined with the speed enhancements in v3.0 and ease of handling
hundreds of billions of records, more efficient systems can be designed. This is an
important step forward, especially in the face of ever-growing data volumes.”

VECTOR Vol.25 No.4

 11

Another new feature in kdb+ v3.0 is the introduction of support for WebSockets,
which allow for a direct, bi-directional, full-duplex connection between a browser
and an application. This is a much more efficient approach than HTTP/AJAX,
offering greater scalability and much faster processing. It is particularly useful
for high-performance browser-based applications, for example applications
visualizing real-time data.
Daryan Dehghanpisheh, global director, Financial Services Team at Intel, says:
“The increased complexity of the markets and continued race towards
automation, across more asset classes and venues, mean that the enormous
growth of data will continue. The new version of kdb+ running on the latest Intel
processors, such as the Intel Xeon Processor™ server platforms - which are
optimized to support AVX instructions, to further increase overall performance -
provides market participants and technologists with new capabilities, levels of
performance and flexibility. The result is a powerful tool in the hunt for Alpha,
while ensuring maximum stability and reliability.”

VECTOR Vol.25 No.4

 12

Optima Systems Ltd
Firstly, I am pleased to be able to welcome John (Jake) Jacob to Optima as a full-
time member of staff. Many of you will already know John for his work with
Vector and within BAA London. We have a few more challenges for him now and
we hope to keep him very busy.
Secondly, as you may already heard, we have in collaboration with Dyalog taken
on three trainee APL programmers; James Greeley, Samuel Gutsell and Shaquil
Sidiki. They started with us in August and have attended their first APL course
and APL conference already. Take a look at their blog[1] and see how they are
getting on.
We have had a fantastic year and have never been busier. Our COSMOS product
which some of you have seen me demo looks like it has found its first customer
and we are hopeful of a number of others in the UK and US. Development
proceeds apace and is keeping us focused shall we say.
Interest in our products and proposals is currently at an all-time high and we
have now just started to work with UK Trade & Investment and market ourselves
properly outside of the UK. There will be more news on this in the next edition of
Vector.
Other work, coming in from new clients, is becoming increasingly web based and
we are now actively looking at the new technologies to see how they might help
us. APL remains very much the cornerstone of our work but now we find
ourselves interfacing to an ever increasing toolset.
These days it’s all about finding enough hours in the day. With this in mind I am
also very pleased to be able to announce that Peter Merritt is now our APL Team
Leader and Gilgamesh Athoraya our R&D and Technical Analyst.

References
1. http://threeblindmiceapl.wordpress.com

VECTOR Vol.25 No.4

 13

G E N E R A L

VECTOR Vol.25 No.4

 14

BAA: Chairman’s Report
October 2012

Paul Grosvenor (paul@optima-systems.co.uk)

Well here we go again. Another Vector falls off the production line but this time
we have recruited a number of new people to assist with the process and now
hopefully we can get more regular issues out to you all.
We are all aware of the worldwide recession we find ourselves in but even so the
activity within the APL community remains very high. It has been a few years
since I can recall quite so many good things going on.
At our AGM this year in the Lee Valley we made a few decisions regarding the
way in which Vector was to be produced and managed;
• We would not be bound to 4 issues per membership year. Instead we

would produce editions as and when we could but aim for no fewer than
three.

• With the Chairman, Secretary, Editor and many of the Vector production
crew all coming from Optima Systems staff I asked the attendees if there
was any objection to Optima taking on such a large role in the production
of Vector. There were no objections. However it is only right that I reaffirm
that Optima will keep Vector running as an independent publication and
not as a mouthpiece for its own purposes.

I have been very fortunate in the past year to be able to attend a number of the
APL meetings and conferences around the world;
In April APL2000 ran their annual conference in New York. As always we were
met by the friendly face of Sonia and her crew. The presentations were
interesting and lively, food was good and APL speak went on long into the night –
no surprises there then.

VECTOR Vol.25 No.4

 15

In September Stephen Taylor ran his Iverson College workshop in Cambridge. A
fantastic time was had by all with twenty-four keen APLer’s chewing the fat,
writing code, putting the world to rights, punting, cycling and oh yes, talking long
into the night [1].
October saw Dyalog holding their conference in Elsinore Denmark. The group
met, consumed vast quantities of fine food, listened to fascinating presentations
even danced the Samba! then talked long into the night.
And every month of course BAA London meets at the Albion pub to hear what is
going and give their opinions – yes, long into the night.
I feel sure you are picking up a consistent theme here and I am sure I’m getting
too old for it !
Nevertheless it is so nice to have such a friendly and accommodating community;
something that is very rare these days. So let me finish with a comment from
Devon McCormick after his trip to Lee Valley in April;
“The day I got back to NYC, I was in a bar talking to someone who was very
knowledgeable about beer. When I told him I was just back from England where
I'd attended a gathering of APLers, he told me that his wife used to program in
APL. I joked that I probably knew who she was. Of course, as it turned out, I did”
References

1. sites.google.com/site/iversoncollege/home

VECTOR Vol.25 No.4

 16

Minutes of the British APL Association
Annual General Meeting

by Chris Hogan (chris.hogan@4xtra.com)

The 2012 AGM was held as the opening session of the APL Moot held at the Lee
Valley Youth Hostel (Windmill Lane, Cheshunt, Hertfordshire, EN8 9AJ) which is
situated within the River Lee Country Park.
The Minutes of the 2011 AGM were accepted by general consensus of those
present.
Report from the Chairman:
Vector Production Team: Stephen Taylor is willing to continue in some form as
long as he isn't full time editor. Kai Jaeger is now in charge of production of the
printed Vector and John Jacob is webmaster. Assistance is given by Phil Last,
Beau Webber and to a lesser extent by Chris Hogan and others.
Dyalog and Optima are willing to contribute to ensure the continued production
of Vector, as is (probably) Kx systems according to Stephen Taylor.
There is a need for sub-editors for the different flavours, APL2000, Dyalog,
MicroAPL, K, J etc. to ensure the quality of submitted material and resultant
articles.
The trend is an increase in articles on KDE, Q and Dyalog and a decrease in J.
The Annual Award was not given at the AGM. The meeting voted to extend the
recipients of the award to any of the array languages, e.g. J, K, Q, etc. It was also
decided to poll the membership for nominations for next year's award.
Issues of Vector published each year: We normally expect 4 issues per volume of
Vector. In the past there has been precedent for double issues, which meant
fewer physical issues. The membership has been tied to this number so
subscriptions have been collected every 4 printings rather than annually. It was
decided that the physical printing of Vector was important, rather than simply
having the articles published to the website, but that we should print 3 issues per
year to ensure the association's ability to meet this commitment from its current
income.

VECTOR Vol.25 No.4

 17

Monies owed by the BCS to the BAA: The BCS suffered a vote of no confidence
from other special interest groups suffering in the same way as the BAA. The BCS
committee spent further funds to fight this vote, which to those present at the
meeting didn't seem within their powers. Their attitude is that any monies given
to the BAA was general BCS funds. This will cost too much to fight in court. Chris
Hogan to write one last time on behalf of HMW Computing as a sustaining
member. The matter will be kept open, but this is a drain on the committee's time
given the result of other similar actions taken against the BCS.
Financial Situation: A brief statement was made by the Treasurer/Membership
Secretary (before the official end of year so full audited accounts are not
available). Three sustaining members have yet to pay their dues, but assuming a
schedule of three print runs of Vector per annum the treasurer can see no reason
why the association cannot continue in its current state. No details of
membership were available at present.
Reappointment of Committee: As everyone in a position was willing to continue
and no one put forward any other names Paul suggested the the same committee
continue, proposed by Jane and seconded by Ray.
Appointment of Auditor: The current auditor (Chris Hogan) was proposed by
Paul Grosvenor and seconded by Ray Canon. Accepted by those present.
AOB: One question was raised about sustaining membership and it was clarified
that a SM can nominate up to 5 individuals to represent them at meetings.
The meeting closed. It was followed by two presentations:
• Jeremy Sutton - Park Ranger: The history and background of the park.
• Kai Jaeger - Independent Consultant: FiRe: a FInd and REplace utility for

Dyalog APL

VECTOR Vol.25 No.4

 18

BAA London
by Phil Last

On 8 November 2008 a post under the banner ‘A message from three APL
enthusiasts’ was sent to comp.lang.apl and the Dyalog and MicroAPL forums from
Chris Hogan, John Jacob and me inviting those within reach of the City of London
to come to an inaugural meeting of what was billed as an informal meeting of
APLers and was to become BAA-London.0
The meeting took place in the upstairs gallery at the Edgar Wallace pub in Essex
Street on the 21st and ten people turned up, slightly more than what has become
the average but not exceptional.
Three days later Stephen Taylor created our own on-line forum
groups.google.com/group/baa-london and posted a suggestion that our next
meeting, by invitation of Mike Hughes, could coincide both temporally and
spatially with the IPSA Christmas reunion at the Plumbers Arms at Victoria.
Thanks are due to the ex-Sharpies for putting up with us then and each Christmas
since.
In January we were back at the "Edgar" where eleven of us each gave our ideas of
what the meetings, much later to be renamed ‘symposiums’ by suggestion of Jane
Sullivan, ought to be.
Chris (Ziggy) Paul gave us our first formal presentation in February entitled
‘Education in APL’.
March gave us another web-presence when Ellis Morgan added some pages to
the APL wiki. His monthly notes, aplwiki.com/CategoryBAALondonMeeting, a
very useful but unsung contribution, continued until late 2010.
Presentations have been given and discussions led by a large number of
members and guests including: Dan Baronet, Brian Becker, Dick Bowman, Nicolas
Delcros, Walter Fil, Chris Hogan, Mike Hughes, Roger Hui, Morten Kromberg, Ellis
Morgan, Chris Paul and Stephen Taylor. My apologies if I've inadvertently missed
you off the list.
Given that any properly instituted organisation has been lacking, indeed resisted,
what our meetings have turned out to be is precisely what those attending have
brought with them. In Stephen's words "We are the agenda".

VECTOR Vol.25 No.4

 19

A number of projects have been started by suggestions made at the meetings. The
Phrasebook pages of the APL wiki aplwiki.com/PhraseBook. The APL2010 Berlin
open forums aplin2020.org.
A number of original ideas have been aired at the meetings but have not
necessarily been given the exposure they deserve, 26 June 2009 Stephen Taylor
with his suggestion for Direct Development not least among them.
After a few months at the "Edgar" we moved to a slightly quieter upstairs room in
"The Knights Templar" in Chancery Lane. This was small but satisfactory until
the month that I forgot to arrange it with the landlord (and failed to turn up) and
those attending found themselves jostled among a large and noisy crowd
watching an international soccer match in the main bar.
We held a couple of meetings in the "Punch Tavern" in Fleet Street that had a
very convenient room but no WiFi and very poor reception for our own mobile
broadband.
In April 2010 we moved to "The Albion" in New Bridge Street where we have a
large, quiet, private room. For our second meeting there we hosted the British
APL Association Annual General Meeting. We’ve been there ever since and about
four months ago we finally worked out how to plug our computers into the large
TV monitor on the wall so Chris Hogan no longer has to cart his ‘luggable’
projector to the meetings.
Three of our meetings have been elsewhere than in City of London pubs. The first
at a domestic venue in Cheshunt, Hertfordshire in August 2009; the second in
July 2010 when we were generously hosted by Dyalog Limited in their offices in
Bramley in Hampshire; and most lately the 2012 BAPLA AGM and Moot at the
Lea Valley Youth Hostel in Cheshunt, Hertfordshire in April/May.
It will be four years all but a few weeks between our original announcement and
your reading this. I believe it’s been a modest success.

VECTOR Vol.25 No.4

 20

BAA Moot 2012
Phil Last (phil.last@ntlworld.com)

“In the proud tradition of APL Mooting from Ray Cannon’s legendary early moots
via Paul Mansour’s Kefalonian and Tuscan extravaganzas to Stephen Taylor’s
inspired Iverson College in Cambridge we bring you the 2012 BAA AGM and Moot
to be held at the YHA Lee Valley Youth Hostel, Cheshunt, on Friday-Sunday, 27-29
April.”

Thus was announced the first Moot to be held under the aegis of the BAA for
seven years.
In 2010 BAA-London had been asked to organise the BAA AGM and hosted it in
the same venue as our regular meetings. We did the same in 2011 but this year,
2012, in my joint role as chief culprit of BAA-London and activities officer of the
BAA I wanted to make a change. Following the precedent of 2009 when the AGM
was held as a part of the BAA Conference at Reading, I decided to organise a Moot
and have the AGM as the opening event.
Kai Jaeger was kind enough to set up a wiki moot.aplwiki.com so all the planning
and propagation of information could take place in one place and in full view.
I was unfortunate enough never to have attended one of the earlier moots that
Ray Cannon held in a variety of Village Halls. I did attend both of Paul Mansour’s
European adventures and Stephen Taylor’s working week. I assumed that of all of
them Ray’s were the events closest in spirit to the workshop meetings I half
remembered from among the regular meetings that the BAA used to hold at
Imperial College. I hoped to pitch the event somewhere financially and
comfortably in the middle. I thought perhaps not too many people would want to
camp out or bed down in a barn. A Villa or full board in a Hotel was likely to put it
beyond the price range of many, some of whom might also be paying to take
themselves to other conferences that year. So a Youth Hostel with conference
facilities and catering seemed like a good compromise. There being one not a
mile from my house and that in some of the most beautiful Green Belt North of
the Thames helped me to decide.
The BAA-London meetings had developed into a random alternation between
fairly formal presentations and totally informal discussions. For this I was hoping
for more of a workshop atmosphere but the attendees would be the ones to
decide what happened.

VECTOR Vol.25 No.4

 21

The concept of a Moot was less universally comprehended than I’d thought.
Within a few days of the announcement this appeared in one of the APL
discussion forums:[1] Rohan Jayasekera: “You might attract more people if you
were to tell them what a moot is. moot.aplwiki.com doesn’t explain it either.
(Google didn’t help me either.)” The ensuing discussion continued for a week
with many contributors.
Insufficient effort was put in to attract attendees specialising in dialects J, K, Q et
cetera but after Devon McCormick’s interjection “Do you think someone who
currently works mostly in J would find this useful?” a good contingent of J-users
came and contributed greatly to the proceedings.
The weekend began on the Friday afternoon with the BAA AGM after which
Jeremy Sutton, one of the head rangers of the Lee Valley Park, the locality of the
venue, introduced us to the park and Kai Jaeger gave us a preview of his FiRe
utility written in Dyalog APL. This was rounded off with a barbecue that was
devoured at tables in the park still wet from the recent rain. The evening was
spent renewing old acquaintances, making new ones and discussing recent
developments.
The fullest day was Saturday that started out with fifteen people sitting around
an inward facing square of tables wondering who was going to start. Most got out
laptops and some actually got to work or at least read their mail. Until Dick
Bowman suggested that he could have sat and worked in silence more easily at
home without the bother of negotiating the public transport system. So he got up
and treated us to an interesting introduction to WPF and XAML for generating
GUI forms in APL. This was what I hoped it would be like.
Andy Shires and John Daintree of Dyalog Ltd. arrived mid-morning. Andy
introduced them and they were then patient enough to sit through a long
catalogue of unresolved bugs and interface problems that Kai Jaeger and others
had found in the Dyalog APL development environment. A wide ranging
discussion about many aspects of the development interface showed above
everything else that although we are all in some ways dissatisfied, one person’s
requirement would not necessarily please everyone if implemented just so. One
of Kai’s points was the lack of a simple way to align trailing comments in the
function editor. Among fifteen people there were at least six mutually
incompatible suggestions of how to achieve the goal and half-a-dozen of precisely
what the goal was. One generally accepted goal being that all comments are left
aligned at some minimum distance beyond the longest line of code being
commented. Not completely compatible with Jane’s suggestion of right

VECTOR Vol.25 No.4

 22

alignment. I liked Dick’s idea to left-align them off the right-hand-side of the
screen. John gave us an inkling of the difficulty of pleasing everyone but was
pleased to have had such an exposure to ordinary users and left us believing that
we might have had some influence on the Dyalog development process.
Fifteen of us attended at least a part of the weekend, including visitors from
Switzerland and the USA, listed at moot.aplwiki.com/Attendees. During the rest
of the weekend we worked, learned, ate, drank and laughed together. Many of us
gave impromptu demonstrations of recent work and I hope all went away on the
Sunday afternoon not having wasted their weekend. I thank you all.

References

1. Linked in discussion group: APL – A Programming Language
http://www.linkedin.com/groups/Invitation-Moot-1805002.S.93876375

VECTOR Vol.25 No.4

 23

A P L

VECTOR Vol.25 No.4

 24

Three blind mice
or

A tale of three new APL trainees
or

A story of collaboration
Paul Grosvenor (paul@optima-systems.co.uk)

At the Dyalog conference held in Elsinore in October 2012 I presented a short talk on
the Apprentices that Optima and Dyalog had jointly taken on. The key points of that
discussion are given here.

We have talked for many years about bringing new blood into the APL community but it
has always been easier said than done. Two key problems have always gotten in the
way:
• Where do we find our trainees?
• How can a small company provide a proper training infrastructure?

With the introduction of the UK Government’s Apprenticeship scheme we found that
both of these issues were solved at the same time. By collaborating with the
Government and local colleges we were able to utilise the apprenticeship portal, which
allows anyone to see what training opportunities are available around the country. In
addition the Colleges are able to provide the formal training required for our
apprentices to achieve a properly recognised qualification. In this case the qualification
would be an NVQ.
In 2012 Optima joined the UK apprenticeship scheme and, together with our local
college, advertised a position for an APL trainee. Once the applicants had been thinned
out and short listed we gave them some tasks to perform. They were asked to logon to
the Dyalog "Try APL" site www.tryapl.org and investigate a few small problems prior to
interview.
At this point Dyalog showed an interest in what we were doing and, at one of our
regular update meetings, we decided to take on three trainees between us and share in
the collective load of teaching them APL.
By now we had spent about 10 weeks from start to finish. We had spent very little
money only time and had a very effective collaborative group (Government, College and
Corporation) providing for the needs of our trainees over the next 12 months.

VECTOR Vol.25 No.4

 25

Before starting this initiative our aims were broadly;
• Bring new people into our community
• Find talent
• Generate a resource stream
• Explore the interest in the general community
• Generate opportunity for the trainees and for ourselves
• Co-operation with other companies

So far all of our expectations have been met and we are very hopeful for the
future. If the coming months work out well we hope to do the same thing next
year and meet one of our aims, which is to generate a resource stream.
The collaborative concept is working very well indeed and we very much want to
expand this idea out to other companies who also might want to ‘share’ or ‘loan’
staff or maybe simply give their existing APL staff experience of other working
environments.
So where are we going next;
• Continue the training of our apprentices and identify their strengths, likes,

dislikes etc.
• Hopefully the apprentices will complete their year, gain a solid

background in APL and have an industry recognised qualification
• If successful repeat next year and subsequent years
• Encourage a staff share with Dyalog
• Expand the concept of a staff share or training share with other companies
• Spread the word

We hope that there will be regular updates on this story over the coming months
and that it will generate considerable interest with all of our community.
And by the way, the apprentices have created a blog which aims to record their
experiences; please take a look: http://threeblindmiceapl.wordpress.com
Watch this space – the boys are coming!

VECTOR Vol.25 No.4

 26

Our first steps into the APL world
Sam Gutsell (samuel@optima-systems.co.uk)

Shaquil Sidiki (shaquil@optima-ystems.co.uk)
James Greeley (james@optima-systems.co.uk)

This is a companion article to "Three Blind Mice" by Paul Grosvenor in this
issue. Here three apprentice APL programmers introduce themselves and
give their first impressions of APL and the community that uses it.

Hard at work learning Dyalog APL on the course taught by Bernard Legrand at Dyalog's Bramley offices

From left to right: Sam Gutsell, James Greeley, Shaquil Sidiki

VECTOR Vol.25 No.4

 27

Sam Gutsell
About me:
I am an apprentice APL programmer at Optima Systems, I come from an aca-
demic and conceptual background of programming and have achieved an A-Level
in Computing; in completing my A-Level I gained experience with Visual Basic,
HTML, MySQL, PHP and Java.
My impressions of APL:
At first glance APL was quite daunting because of the amount of symbols, but
with time I started to develop an understanding of how the language is
constructed and how the language works. I have adapted to the concepts of APL
quite well due to the style of my experience. I completed a four-day course taught
by Bernard Legrand which helped give me a better understanding of APL. I have
learnt with the little experience I have that the language is a very powerful and
unique one and can be uniquely used by everyone using it. I am sure that with the
help of the very experienced people around me at Optima Systems I will develop
a great understanding of the language and hopefully one day be a skilled APL
programmer.
My reflections about the Dyalog’12 Conference
Thank you to everyone who made our first conference so enjoyable, to those of
you who led the workshops and presentations thank you very much. We all found
them both useful and interesting and hope that you will find our blog both useful
and interesting too. The whole experience of meeting everyone was very
interesting and we would like to thank everyone for being very welcoming and
kind to us absolute beginners.
Shaquil Sidiki
About me:
I’m seventeen years old. I am originally from Lisbon, Portugal and I moved to
England when I was fifteen. I am currently working at Optima Systems as an
Apprentice APL Programmer. My hobbies are to play and watch football, go to
the gym, meet up with my friends and to watch videos on YouTube. I have GCSEs
in Mathematics, English Language, English Literature, Chemistry, Physics,
Spanish, French, Portuguese and an OCR Double Award in Information
Technology.

VECTOR Vol.25 No.4

 28

My impressions of APL:
My impressions of APL so far are great. I think it’s a very powerful and
interesting language as it uses symbols instead of ordinary words. Also everyone
has a different style and therefore some problems have more than one solution.
Furthermore, in my point of view APL is just like a spoken language. I say this
because for me the symbols are like “the words” and it’s not enough to memorise
what each symbol means we need to know how to put the symbols together to
make the code to work, as in any spoken language it’s not enough to know what
each word means, we need to know how to put a sentence together.
My reflections about the Dyalog’12 Conference:
It was my first conference and I loved it. In my opinion the conference itself was
very well planned. I liked all the presentations; however it was very hard to
follow some of them. I must say, the presentations I enjoyed the most were:
“Introducing Dyalog Version 13.2” (John Daintree), because I’m really looking
forward to this new version as I like updates; “Potential Version 14” (John
Scholes and Roger Hui), because once again I like updates and I like to look
forward to improvements and new features; “Optimisation across networks”
(Paul Grosvenor) because it’s related to the company that I’m working for
(Optima Systems); “Building an Android Application” (Illse Nell and Danie Maré),
because as a young adult I think that phones are very important and I like new
technology; and “APL and Raspberry Pi” (Liam Flanagan) because again I love
new technology and also it’s good to the growth of APL and I also think that the
iPad app was very good and interesting, and of course “Three Blind Mice by” by
us! I would like to make a special reference to John Scholes for his fantastic
presentation “State-Free Programming”.
Well done to everyone who made a presentation though. I also would like to
thank everyone at the Dyalog conference who made us feel very welcome into
the APL community. Overall my experience of the Dyalog’12 Conference was
fabulous and hopefully next year I can go again. A special thank you to Optima
Systems (Paul Grosvenor) for taking us to the Conference.
James Greeley
About me:
I am 20 years old and work for Optima Systems as an Apprentice APL Program-
mer A Levels: Biology, Chemistry, Economics, Business. Interests: Web Design,
Good UI, Computers, Gym, Video Games

VECTOR Vol.25 No.4

 29

My impressions of APL:
Having only previously dealt with HTML APL was somewhat a jump into the deep
end of the pool. At first its syntax and incomprehensible symbols baffled me,
what the hell am I looking at? Why have I got this error? However, having spent
more time with APL I find myself understanding the symbols without even
thinking, as if it were just another word in my vocabulary.
My main interests about APL would be using its power and quick development
capabilities to deploy as back ends to web applications. The perfect example of
this was demonstrated to me by Gilgamesh Athoraya who showed me the
Cosmos system being developed by Optima Systems. This system used MiServer
with a flash front end.
I being one of three apprentices taken on by Optima recently went on a four day
course at Dyalog taught by Bernard Legrand it was fascinating to meet the author
of the book we’d spent so much time reading and a really fantastic week that I
would recommend to all.
I’d like to take this opportunity to thank everyone at Optima Systems for an
amazing opportunity and being such a nice company to work for!

VECTOR Vol.25 No.4

 30

User commands
by Dan Baronet (danb@dyalog.com)

Prologue
With Version 12.1 Dyalog introduced “User Commands”. Like system commands,
user commands are tools which are available to developers at any time, in any
workspace. Unlike system commands, user commands are written in APL. Dyalog
APL is shipped with a set of user commands, with APL source code that you can
inspect and modify – or use as the basis for writing completely new user
commands of your own. User commands are intended to make it easy to write
and share development tools. User commands began life as Spice commands in
version 11.
This article assumes you know how to create a user command in Dyalog APL. To
see how to create one see Vector article “Spice for beginners” in Vector 24:1. The
rest of this article will concentrate on technicalities and tricks instead. If an input
line begins with a closing square bracket] , the system will interpret the line as
a user command, temporarily loading the required code into the session
namespace where it cannot conflict with any code in the active workspace, and
executing it. For example:
)load util
util saved whenever
]fns S*
SET SETMON SETWX SM_TS SNAP

Help is easily accessible for user commands:
]?fns
Command "fnsLike"
Syntax: accepts switches -regex -date=

Arg: pattern; returns names of fns matching the pattern given
-regex uses full regular expression
-date takes a YYMMDD value preceded by > or <

Script location: C:\ProgramFiles\D121U\SALT\spice\wsutils

As we can see above, the full name of the command is fnslike, but un-
ambiguous abbreviations are allowed. The source code is in a file
called wsutils.dyalog in the folder which is identified in the above output.
New user commands can be installed simply by dropping new source code files
into the command folder, making them instantly accessible without restarting

VECTOR Vol.25 No.4

 31

any part of the system. A full list of installed user commands is available at any
time:
]?
73 commands:

aplmon calendar cd commentalign cfcompare compare
(more lines here) E
varslike wscompare wsloc wspeek xref

Type "]?+" for a summary or "]??" for general help or "]?CMD"
for info on command CMD

Implementation
When an input line begins with a closing square bracket, the system will look for
a function named �SE.UCMD and call this function passing the rest of the input
line as the right argument. The default session files (.DSE) contain a function
which passes the command to the Spice command processor, which is based
on SALT[1]. As a result any Spice commands that you may have developed before
are now available as user commands in version 12.1.
Dyalog’s user commands are similar in concept to those implemented in other
APL systems in the past[2] – but the text-based implementation is intended to
allow much easier sharing of development tools.
Using user commands
All user commands are entered in the session starting with a right bracket, in the
same way that system commands start with a right parenthesis.
To execute command xyz type
]xyz

To find all available commands type
]?

To get a summarized list of all commands type
]?+

To get more general help type
]?? or]help

To find all the available commands in a specific folder type
]? \folder\name

VECTOR Vol.25 No.4

 32

To get info on command XYZ type
]?xyz or]help xyz

To get detailed help/info on command XYZ type
]??xyz

To assign the result of a command to a variable type
]nlHcmdx E

Example:

To view help on a particular command type]?cmdname. For example, to find help
on command UNew:

VECTOR Vol.25 No.4

 33

The names of commands are case insensitive, so UNew and unew are the same
command.
Upon hitting Enter, the line is sent to the user command processor which
determines which command has been selected, brings in the code, runs it, and
then cleans up.
Groups
Commands with common features can be regrouped under a single name. To find
all the commands related to a particular group type]?grpname
For example, to list all the commands in the transfer group:

VECTOR Vol.25 No.4

 34

Locations of commands
By default, the files defining user commands are located in the folder SALT\spice below
the main Dyalog program folder. You can change that by specifying a new location.
You can change the location using Options/Configure User Commands Tab, just
remember the change won’t become effective until the next APL restart:

You can also change the location of user commands immediately (no need to
restart APL) using the command]settings.
]settings takes 0, 1 or 2 arguments. With no argument, it displays the current
value of ALL settings. With one argument it shows the value of that particular
setting. With two arguments it resets the value of the setting specified.
The setting to use for the user command folder is cmddir. Thus
]settings cmddir

will report the folder(s) currently in use. The installed default is [SALT]\spice,
where [SALT] is shorthand for the SALT program folder. If you wish to use
another folder, e.g. \my\user\cmds you should type
]settings cmddir \my\user\cmds

VECTOR Vol.25 No.4

 35

Note that this will change the setting for the duration of the session only. If you
wish to make this permanent you should use the Jpermanent switch:
]settings cmddir \my\user\cmds -permanent

More than one folder can be specified by separating the folders with semicolons,
e.g.
]settings cmddir \my\user\cmds;\my\other\goodies

The folders will be used in the order specified. If a command with the same name
appears in more than one folder, only the first occurrence will be used.
Because spaces are important in folder names you must take care not to
introduce any spaces inappropriately.
If you replace the command folder with your own, you effectively disable most
installed commands. Only the commands which are part of the SALT and Spice
framework will remain active. See below for details on those.
If you wish to add to the existing settings you can either retype the list of folders
including the previous ones or precede your new folder with a comma to mean
“add” (in front), e.g.
]settings cmddir ,\my\spice\cmds;\my\other\goodies

will add the two folders specified to any existing setting.
If your folder includes spaces or a dash you should use quotes:
]settings cmd '\tmp\a Jb c;\apl\with spaces'

When you change the command folder it takes effect immediately. The next time
you ask for]? or a command it scans the new folder(s) specified to cache the
info related to all commands: name, description, parsing rules.
Advanced topics
By default, all errors in user commands are trapped, possibly making it difficult
to debug commands as you are working on them. To prevent this, you can set
the DEBUG mode ON, as follows:
]udebug ON

Tracing user commands
You can trace into a user commands just like any other APL expression. Because
there is a setup involved in executing a user command it can take quite a few
keystrokes to get to the actual code: first the UCMD function is called then the

VECTOR Vol.25 No.4

 36

Spice processor, and finally your Run function. To speed up the process you can
ask Spice to stop just prior to calling Run by adding a dash at the end of your
command expressions, e.g.
]command arguments J

The dash will be stripped off and APL will stop on the line calling
your Run function, allowing you to trace into your code.
This will only work when the DEBUG mode, as shown above, is ON.
Parsing the input
If desired, your input line can be broken down into arguments and switches for
you. To do so simply specify in function List in your script what are the parsing
rules for your command (see article ‘Spice for beginners’ in Vector 24:1 for
details). The framework will build a namespace containing variable Arguments
and a variable for each switch mentioned. Arguments will be a VTV (a vector of
string vectors) containing all your arguments. This namespace will also contain
some other utility functions and will be passed as second argument to your Run
function. If you do not wish to have your input line parsed simply leave the
parsing rules empty ('') and the framework will set your second argument to
whatever you entered on the command line, minus the command name itself.
In the text that follows, A2 will represent that namespace passed as second
argument to your Run function.
Default values for switches
A switch always has a value, either 0 if not present on the command line, 1 if
present without a value or a string matching the value of the switch. For example,
if you use J X=123 then A2.X will be a 3-element character vector, not an
integer.
If you wish to default a switch to a specific value, you can either test its value for
0 and set it to your desired default, e.g.
:If XO0 P XH123 P :EndIf

or you can use the function Switch which is also found in your namespace (in
the second argument).
Monadic Switch returns the value of the switch as if it had been requested
directly except that it returns 0 for invalid switches (an error normally).

VECTOR Vol.25 No.4

 37

Dyadic Switch returns the value of the left argument if the switch is undefined
(0) or the value of the switch if defined but with a twist: if the value of the default
is numeric it assumes the value of the switch should also be numeric and will
transform it into a number, so if JX=123 was entered, then (remember A2 in
the following text is your function Run’s second argument, a namespace
containing all the switches)
99 A2.Switch 'X' R default to 99 if undefined

will return (,123) , not '123' [3].
Restricted names
If possible, avoid using switches named Arguments, SwD, Switch, Propagate
or Delim, as these names are used by the parser itself (remember that switch
names are case sensitive) and included in the second argument. You can use
these names, but they will not be defined as variables in the argument
namespace. They will only be available through function Switch, for
e.g. A2.Switch 'SwD' will return the value of switch named SwD.
Long arguments
There are times when arguments contain spaces. The user can put quotes around
related elements. For example, if the user command newid accepts two
arguments, say full name and address you would set Parse to 2 and the user
would use, e.g.
]newid 'joe blough' '42 Main str mycity'

If the command needed arguments name, surname and address (three argu-
ments), the user would not need the quotes around ‘joe’ and ‘blough’, but would
need them for the third argument to keep the four parts of the address together.
If you want the last argument to contain “whatever is left”, then you can declare
the command as ‘long’. If there are too many arguments, the “extra” ones will be
merged into the last one (with a single space inserted between them). To do this,
append an L after the number of arguments, for example, here, 3L (plus
switches if any).
An example of a logging command requiring one compulsory long argument
would be coded 1L:
]log all this text is the argument.

Note that if there are multiple blanks anywhere in the text, they will be converted
into single spaces.

VECTOR Vol.25 No.4

 38

Short arguments
There are times when you only know the maximum number of arguments. For
example there may be 0, 1 or 2 but no more. In that case you would code the
parse string as 2S for two short arguments.
Another example is when you have a single argument which can be defaulted if
not supplied. You would then use 1S (plus switches if any) as parse string. If the
user enters no argument (0=ΡA2.Arguments) then your program takes the proper
action (e.g. default to a specific value).
Forcing a reload of all commands
When you use a command which the framework does not recognize, it can scan
the command folder(s) to see whether new commands have been added. This is
the default behaviour when the setting newcmd is set to ‘auto’. However, if you
change this setting to ‘manual’ or make a change to the short help or the parsing
rules you will need to use the command]ureset to force a complete reload of
all user commands.
SALT commands
Because SALT is part of the user command framework, the commands which
implement SALT itself are always available, even if you remove the default
command folder from the cmddir setting. The commands in question are load,
save, compare, list, settings, removeversions and snap. If you "shadow"
these with your own command with the same names, you will effectively make
them invisible, but you will always be able to call them directly by using the
functions in �SE.SALT, for example �SE.SALT.Load.
Detailed help
It is possible to provide several levels of help for your commands. When the user
enters]?xyz the framework calls your Help function with the name of the
command (here xyz) as right argument. If your command accepts a left
argument it will be given the number 0 for “basic help”.
It is possible to use more than one ‘?’ to specify the level of help required.
Entering]??xyz is requesting more help than]?xyz.]???xyz even more so.
In effect the left argument to your Help function is the number of extra ‘?’ See
command]HelpExample for details.
More Implementation Details
User commands are implemented through a call to �SE.UCMD which is given the
string to the right of the] as the right argument and a reference to calling space

VECTOR Vol.25 No.4

 39

as the left argument. For example, if you happen to be in namespace #.ABC and
enter the command
]XYZ JmySwitch=blah

APL will make the following call to �SE.UCMD:
 #.ABC �SE.UCMD 'XYZ JmySwitch=blah'

preserving the command line exactly. The result returned by UCMD is displayed
in the session.
This means that application code can invoke user commands by
calling �SE.UCMD directly and that if you erase the function, you will disable
user commands completely.
By default, �SE.UCMD calls Spice, which implements user commands as des-
cribed in this document. Its right argument is simply passed on to Spice using
(here) the call:
 �SE.SALTUtils.Spice 'XYZ JmySwitch=blah'

Spice will make UCMD’s left argument available to your command via
global ##.THIS so you can reference the calling environment if you need to.
Assigning the result of a command
It is possible to assign the result of a command by simply inserting an assignment
between] and the command name. For example to assign the result of list to
‘a’:
]aHlist Jraw
 Ρ�Ha
 <DIR> lib 2010 7 8 17 38 10 879
 <DIR> SALT 2010 7 8 17 38 10 889
 <DIR> spice 2010 7 8 21 0 52 715
 <DIR> study 2010 7 8 17 38 10 930
 <DIR> tools 2010 7 8 17 38 10 948
5 5

To discard the result, do not specify a variable:
]Hlist -raw

To display line by line (as opposed to block by block) use quad:
 �pwH30
]disp 2 32Ρ';'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

VECTOR Vol.25 No.4

 40

 ;;
 ;;
]�Hdisp 2 32Ρ';'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;;

Detecting if the result will be captured
It may be interesting to know if the result of a command will be used. For
example, the command]fnsLike returns a matrix result but can be formatted
to be seen like)FNS.
Since most calls issued in the session would require one to use Jformat to
format the result a la)FNS, it is easier to assume this is always the case and
make the command show a formatted result whenever called from the session.
For this the framework supplies a Boolean variable, ##.RIU (Result Is Used),
which tells whether the result is captured either because �SE.UCMD was used
specifically or]ZHcmd was entered.
In the case above where we would not want]fnsLike to format the result we
can always use]�Hfns (quad assign the result).
Source file of the command
Should you need to know which file your command came from, the glo-
bal ##.SourceFile will provide that information.
Epilogue
The user command implementation of Dyalog is changing but pretty stabilized.
Dyalog will continue working on the framework but the community can add to
the existing user command stock. There is a project underway to put general
interest commands on the web.
References

1. For details on SALT see articles SALT: A Simple APL Library Toolkit in Vector 23/3
and SALT II in 23/4

2. APL/PC was the first to offer user commands. This was carried on to the rest of the APL+
family. It was using component files instead of text files to hold the code and data.

3. The result is always a vector with Switch, this makes it easy to subsequently tell
between 0 (switch not there) and ,0 (value supplied by the user)

VECTOR Vol.25 No.4

 41

Public user commands in Dyalog APL
Dan Baronet (danb@dyalog.com)

Version 13.1 is the third release which includes user commands. The user
command mechanism is stable but should still be considered experimental to
some extent: while the intention is that user commands built with version 13.1
will continue to work in future releases, the mechanism may be extended and
many of the user commands shipped with the product are likely to be renamed,
moved or significantly modified in the next couple of releases. V13 and 13.1
already have some changes which are mainly additions to the 12.1 set.
Public user commands in Dyalog APL
Use]? To list the commands currently installed.
Commands are divided into groups. Each group is presented here along with its
commands.
To get examples or more information use]?? command. For example, to get
detailed info on command wslocate do
]??wslocate

The commands are divided into groups. Commands are usually regrouped under
a same script with the same group name but it does not have to be this way. A
script may regroup several commands with different groups and a group may
comprise several commands distributed over several scripts.
Group SALT
This group contains commands that correspond to the SALT functions of the
same name found in:
�SE.SALT: Save, Load, List, Compare, Settings, Snap and RemoveVersions.
Example:
]save myClass \tmp\classX -ver

This will do the same as
 �SE.SALT.Save 'myClass \tmp\classX -ver'

VECTOR Vol.25 No.4

 42

Group Sample
There are commands in this group used to demonstrate the use of help and
parsing user command lines. You should have a look at the classes and read the
comments in them to better understand the examples.
Group Spice
This group contains nine commands: UClean, UDebug, Uload, Umonitor, UNew,
USetup, UReset, Uupdate and UVersion. They are used to manage the user
command system itself.
Command UClean
This command removes any trace of SALT in the workspace by removing all tags
associated with SALT with each object in the workspace. Once you run it the
editor will no longer put changes back in the source file(s).
Command UDebug
This command turns debugging ON and OFF in order to stop on errors when they
happen. Otherwise the error will be reported in the calling environment. It also
enables the ‘stop before calling the run function’ feature which consists in adding
a dash at the end of the command as in
]mycmd myarg -

UDebug can also turn system debugging on and off[1]. For example, to turn
the w debug flag on use
]udebug +w

to turn it off use
]udebug -w

Command ULoad
This command is used to bring in the workspace the namespace associated with
a user command. It is typically used when debugging a user command and you
need the code in order to work with it.
Example: load the code for the CPUTime command:
]uload cpu
Command ZCPUTime[is now found in <#.Monitor>

The namespace Monitor containing the code the for the CPUTime user command
was brought in from file. We can now edit the namespace and modify the
command. When we exit from the editor, the namespace will automatically be

VECTOR Vol.25 No.4

 43

saved back to the script file from whence it came. There is no need for
a usave command since SALT’s save command already saves code and
subsequent changes are handled by the editor’s callback function. However,
there is a command for creating a new command, UNew, described below.
Command UMonitor
This command turns monitoring ON or OFF. When ON, all active functions see
their �CR and their �MONITOR information paired in the global variable
#.UCMDMonitor
Results are set in #.UCMDMonitor after each invocation of a command.
-var= sets the name of the variable to store the result instead
of #.UCMDMonitor
Command UNew
This command is used to create a namespace containing one or more user
commands.
It saves you from having to create a new script from scratch.
It creates a form which is used to input all the basic information about the
commands contained in a Spice namespace: the command names, their groups,
their short and long description and details of switches.
Each command’s information is entered one after another.
When finished it creates a namespace which you can edit and finally save as a file.
Command UReset
Forces a reload of all user commands – this may be required e.g. after modifying a
command’s description or parsing rules which are kept in memory.
Command UUpdate
This command will update your current version of SALT and user commands to
the latest version. This command must be run manually as prompts are issued to
do the work although the -noprompt switch allows to bypass them.
Command UVersion
This command reports various version numbers: for APL, SALT, .NET and UCMD
itself. If given the name of a file containing a workspace it will display the
minimum version of Dyalog necessary to)LOAD the workspace.

VECTOR Vol.25 No.4

 44

Group svn
This group contains a series of commands used as cover to SubVersion functions
of the same name. For example, svnci is equivalent to svn ci and commits chan-
ges made to the current working copy. This is only useful if you have SubVersion
installed and in use.
Group SysMon
This group contains three commands for measuring CPU consumption in various
ways: CPUTime simply measures the total time spent executing a statement,
Monitor uses MONITOR to break CPU consumption down by line of application
code, and APLMON breaks consumption down by APL Primitive.
Command APLMON
From version 12.0, Dyalog APL provides a root method which allows profiling of
application code execution, breaking CPU usage down by APL primitive rather
than by code line. The APLMON command gives access to this functionality.
As with Monitor, you can either run the command with the switch Jon to
enable monitoring, run your application, and then run the command again with
the switch -report to produce a report, or you can pass an expression as an
argument, in which case the command will switch monitoring on, run the
expression, and produce a report immediately. The only other switch is J
filename=, which allows specification of the APLMON output file to be used. If it
is omitted, a filename will be generated in the folder which holds your APL
session log file.
Examples:
]aplmon Ρ{+/1=Ω_ΙΩ}¨Ι1000 Jfile=\tmp\data
1000
Written: C:\tmp\data.csv

The above command generated a log file name, enabled APLMON logging, ran the
expression and switched APLMON off again. You can report on the contents of
this file using the “aplmon” workspace, or send it to Dyalog for analysis.

VECTOR Vol.25 No.4

 45

)load aplmon
 InitMon '\tmp\data.csv'
Total CPU Time = 0.15 seconds
Total primitives = 5,003
 count sum hitcount sum time pct time

 1. or c 7 1,000 0.136557 94.03 e
 2. equal c 6 1,000 0.00454 3.13 e
 3. iota c 1 1,001 0.003087 2.13 e
 4. plus slash c 6 1,000 0.001038 0.71 e

Command CPUTime
This command is used to measure the CPU and Elapsed time required to execute
an APL expression. There are two switches, -repeat= which allows you to have
the expression repeated a number of times and/or some period of time and
Jdetails= which specifies how much details should be included. By default, the
expression is executed once. The report always shows the average time for a
single execution.
It can also accept a combination of both iterations and period, for example the
maximum between 10 iterations and 1000 milliseconds. If 1 second is not
enough to run the expression 10 times it repeats until the expression has been
executed 10 times. On the other hand if the expression ran 10 times in less than 1
second it continues to run until 1 second has gone by. It would be specified this
way: -repeat=10 g 1s
With Jdetails=none only the numbers are returned as a 2 column matrix (CPU
and elapsed), 1 row per expression.
With Jdetails=ai only the same numbers plus the 2 �AI numbers are
returned (Nx4 matrix).
With Jdetails or Jdetails=all nothing is returned; instead, a report that
includes the number of times repeated and the �AI and �MONITOR numbers is
shown.
Examples:

]cputime {+/1=Ω_ΙΩ}¨Ι1000
* Benchmarking "{+/1=Ω_ΙΩ}¨Ι1000"
 Exp
 CPU (avg): 63
 Elapsed: 67

]cputime {+/1=Ω_ΙΩ}¨Ι1000 -repeat=1s
* Benchmarking "{+/1=Ω_ΙΩ}¨Ι1000", repeat=1s
 Exp

VECTOR Vol.25 No.4

 46

 CPU (avg): 54.6
 Elapsed: 55.2

]cpu {+/1=Ω_ΙΩ}¨Ι100 ΙhΙ1e6 -details=ai -rep=50
 0.64 0.46 0.64 0.46
30.58 30.52 30.58 30.52

The last example shows the 2x4 result for the 2 expressions tested.
Command Monitor
This command is used to find out which lines of code in your application are
consuming most CPU. You can either run the command with the switch –on to
enable monitoring, run your application, and then run the command again with
the switch –report to produce a report, or you can pass an expression as an
argument, in which case the command will switch monitoring on, run the
expression, and produce a report immediately. Other switches are:
Switch Effect
-top=n Limits report to the n functions consuming the most CPU
-min=n Only reports lines which consume at least n% of the total,

either
CPU or Elapsed time

-fns=fn1,fn2,E Only monitors named functions
-caption=text Caption for the tab created for this report
Examples:
]monitor Jon
Monitoring switched on for 44 functions

 5�[1]NTREE '�SE'
�SE (Session)
ijChart (Namespace)
c ijCheckData (Function)
c ijDo (Function)
c ijDoChart (Function)

]mon -rep -cap=NTREE

(Pops up the following dialog)

VECTOR Vol.25 No.4

 47

Command Profile
This command is used to fine tune your application. This is a more complex
command that will be the subject of a separate article.
Group System
This group contains operating system related commands.
Command assemblies
This command lists all the assemblies loaded in memory.
Command cd
This command will change directory in Windows only. It reports the previous
directory or the current directory if the argument is empty.
Example: switch to directory \tmp for the remaining of the session:
]cd \tmp
C:\Users\Danb\Desktop

Command EFA
This command will associate Windows® file extensions .dyapp and .dyalog with
a specific Dyalog APL version. This is useful only if you have several versions
installed and wish to change the current association made with the latest install.
Group Tools
This group contains a series of commands used to perform tasks related to
everyday activities.

VECTOR Vol.25 No.4

 48

Command calendar
This command is similar to Unix’ cal program and displays a calendar for the year
or the month requested.
Example:
]cal 2010 3
 March 2010
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Command Demo
Demo provides a playback mechanism for live demonstrations of code written in
Dyalog APL
Demo takes a script (a text file) name as argument and executes each APL line in
it after displaying it on the screen.
It also sets F12 to display the next line and F11 to display the previous line. This
allows you to rehearse a demo comprising a series of lines you call, in sequence,
by using F12.
For example, if you wish to demo how to do something special, statement by
statement you could put them in file \tmp\mydemo.txt and demo it by doing
]demo \tmp\mydemo

The extension TXT will be assumed if no extension is present.
The first line will be shown and executed when you press Enter. F12 will show
the next which will be executed when you press Enter, etc.
Command dinput
This command is used to test multi line D-expressions.
Example:
]Dinput R multi-line expression
....{ R dup:
........Ω Ω
....}{ R twice:
........ΑΑ ΑΑ Ω
....}7
 7 7 7 7

VECTOR Vol.25 No.4

 49

Command disp
This command will display APL expressions using boxes around enclosed
elements as per the familiar disp function.
Example:
disp Ι¨Ι2 3

lmjjjjnjjjjjjjjjnjjjjjjjjjjjjjo
plmjjoclmjjnjjjoclmjjnjjjnjjjoc
cp1 1ccp1 1c1 2ccp1 1c1 2c1 3cc
cqrjmspqrjmtrjmspqrjmtrjmtrjmsp
ijjjjmujjjjjjjjmujjjjjjjjjjjjmv
clmjjoclmjjnjjjoclmjjnjjjnjjjoc
cp1 1ccp1 1c1 2ccp1 1c1 2c1 3cc
cirjmvcirjmurjmvcirjmurjmurjmvc
cc2 1ccc2 1c2 2ccc2 1c2 2c2 3cc
cqrjmspqrjmtrjmspqrjmtrjmtrjmsp
qjjjjmtjjjjjjjjmtjjjjjjjjjjjjms

Command display
This command will display APL expressions using boxes around enclosed
elements as per the familiar DISPLAY function.
Note that this command is different from the disp command just like the 2
functions disp and DISPLAY are different and you must enter at least ‘displ’ to
use it.
Example:
]display Ι¨Ι2 3

lmjjo
p lmjjjjjjo lmjjjjjjjjjjjjo lmjjjjjjjjjjjjjjjjjjo c
c p lmjjo c p lmjjo lmjjo c p lmjjo lmjjo lmjjo c c
c c c1 1c c c c1 1c c1 2c c c c1 1c c1 2c c1 3c c c
c c qrjjs c c qrjjs qrjjs c c qrjjs qrjjs qrjjs c c
c q�jjjjjjs q�jjjjjjjjjjjjs q�jjjjjjjjjjjjjjjjjjs c
c lmjjjjjjo lmjjjjjjjjjjjjo lmjjjjjjjjjjjjjjjjjjo c
c p lmjjo c p lmjjo lmjjo c p lmjjo lmjjo lmjjo c c
c c c1 1c c c c1 1c c1 2c c c c1 1c c1 2c c1 3c c c
c c qrjjs c c qrjjs qrjjs c c qrjjs qrjjs qrjjs c c
c c lmjjo c c lmjjo lmjjo c c lmjjo lmjjo lmjjo c c
c c c2 1c c c c2 1c c2 2c c c c2 1c c2 2c c2 3c c c
c c qrjjs c c qrjjs qrjjs c c qrjjs qrjjs qrjjs c c
c q�jjjjjjs q�jjjjjjjjjjjjs q�jjjjjjjjjjjjjjjjjjs c
q�jjs

Command dmx
This command will provide more detailed information about the last APL error. It
uses �DMX, the new Display Message eXtended system variable to do its work.

VECTOR Vol.25 No.4

 50

Command factorsof
This command will return the factors that constitute a number.
Example:
]fac 123456789
3 3 3607 3803

Command FFind
This command searches the .dyalog files in, by default, the current SALT working
directory for the string given as argument in SALT script files. It needs one long
argument which may be a.Net regular expression[2].
It reports all the hits in each script file where found.
To search different directories use the switch –folder to specify the new location.
-options will accept a value of I (insensitive), S (singleline mode) or M
(Multiline mode – the default) to change search behaviour.
-types will accept the extensions to use when searching (default .dyalog)
-regex will consider the argument to be a regular expression
Example:
]ffind \b(abc|\w{7})\b Jfolder=\tmp -typ=txt log -r

will find abc or all 7 letter words in all .txt or .log files in \tmp, and below. Jr is
short for Jregex; without it the exact text above would be looked for.
Command FnCalls
This command is used to find the calls made by a program in a script file or in the
workspace.
It takes one or two arguments: the function name and the namespace or filename
where it resides (default current namespace). With switch Jdetails it can
provide extra details on all the names involved such as locals, globals, unused,
recursively called, etc.
With switch Jtreeview it will show the result in a treeview window instead of
the session log.
If the switch Jfile is provided the namespace is assumed to be the name of a
file.

VECTOR Vol.25 No.4

 51

Example:
]fncalls Spice '\Dya -APL\12.1\SALT\SALTUtils' -fil
Level 1: mSpice
R Handle KeyPress in command window
R The function can also be used directly with a string
F:isChar F:isHelp F:isRelPath
F:BootSpice F:GetSpiceList F:SpiceHELP

Level 2: SpicemisChar
E
Level 2: SpicemBootSpice
R Set up Spice
F:GetList R:Spice

Level 3: BootSpicemGetList
R Retrieve the list of all Spice commands
F:getEnvir F:lCase F:splitOn F:ClassFolder

Level 4: GetListmClassFolder
R Produce full path by merging root and folder name
E

NB: the argument '\Dya -APL\12.1\SALT\SALTUtils' is surrounded by
quotes because it contains a dash
At each level the calling function is followed by the called function which is
detailed. It lists each function called preceded by either an F (for function) or
an R (for recursive call). We can see at the 1st level that function Spice calls 6
other functions and at the second level function isChar calls nothing and
BootSpice calls 2 functions: GetList and Spice, recursively. At the third
level GetList calls 4 functions and so on.
With the switch Jfull the output repeats for already shown functions. This
may produce output where the same function calls may be different if objects are
shadowed up the stack.
With the switch Jdetails each object is preceded by either F or R as above
or a character meaning:
y: local
G: global
!: undefined local
�: glocal (global localized higher on the stack)
L: label
l: unreferenced label
*: previously described in the output

NB The abbreviation *: previously described in the output won’t happen
when switchAJfull is used.

VECTOR Vol.25 No.4

 52

With the switch Jisolate all the object names required to run the function
given as argument are returned in matrix form. Moreover, if Jisolate takes an
unused APL name as value (e.g. Jisolate=newNs) then all the objects are copied
into the new namespace. This allows you to modularize code by isolating
individual sections.
Command FReplace
This command searches the .dyalog files in, by default, the SALT current working
directory for the string given as first argument in SALT script files and replaces
occurrences by the second (long) argument. It needs two arguments which may
be .Net regular expressions[3] if the switch Jregex is used.
To work on a different directory use the switch Jfolder to specify the new
location.
-options will accept a value of I (insensitive), S (singleline mode) or M
(Multiline mode – the default) to change search behaviour.
-types will accept the extensions to use when searching (default .dyalog)
-regex will consider the arguments to be regular expressions
Example:
]frepl Name:\s+(\w+)\s+(\w+) Name: $2, $1 -f=\tmp -r

will reverse every occurrence of two words (-r means this is a regular
expression) when they follow Name: , i.e
Name: Joe Blough

will become
Name: Blough, Joe

in every file it finds in the directory \tmp.
Command fromhex
This command will display a hexadecimal value in decimal
Example:
]fromhex FFF A0
4095 160

VECTOR Vol.25 No.4

 53

Command ftttots
This command will display a number representing a file component time information
into a �TS form (7 numbers).
]ftttots 3}�frdci 4 1
2011 3 10 23 16 28 0

Command GUIProps
This command will report the properties (and their values), childlist, eventlist and
proplist of the event given as argument or, if none provided, the object on which
the session has focus (the object whose name appears in the bottom left corner of
the session log).
Command latest
This command will list the names of the youngest functions changed (most likely
today, otherwise of the last changed day), the most recently changed first.
Command open
This command opens a specific file with the proper program, e.g.
an Excel spreadsheet, or it open Explorer (under Windows®) to view the files in
the main SALT folder. It replaces]explore with has been decommissioned.
Command Summary
This command produces a summary of the functions in a class in a script file. It
takes a full pathname as single (long) argument. If the switch Jfile is provided
the name is assumed to be a file.
]summary �SE.Parser
name scope size syntax
 fixCase 24 n0f
 if 24 n0f
 init PC 4500 n1f
 xCut 532 r2m
 Parse P 5748 r1f
 Propagate S 1220 r2f
 Switch 1152 r2f

Scope shows S if shared, P if public, C if constructor and D if destructor
Size is in bytes
Syntax is a 3 letter code:
[1] n=no result, r=result
[2] # of arguments (valence)
[3] f=function, m=monadic operator, d=dyadic operator

VECTOR Vol.25 No.4

 54

Command tohex
This command will display a number in hexadecimal value
Example:
]tohex 100 256
64 100

Command tohtml
This command will produce HTML text that displays a namespace or a class in a
browser. It accepts five switches
-title= will take a string to be displayed at the top of the page, e.g.
Jtitle=<center>My best Class</center>
-full will include the full HTML code, including the <head> section before the
<body>
-filename= write the result to the file specified
-clipboard will put the result on the clipboard, ready to be pasted elsewhere
-xref will produce a Cross-reference of the names used in the class in relation
to all the methods
Command WSpeek
Executes an expression in a temp copy of a workspace. As its name suggests,
WSpeek is used to view, rather than to change, a saved workspace; any changes
made in the copy are discarded on termination of the command.
A wsid='.' means the saved copy of the current workspace.
]WSpeek wsid [expr ...] R expr defaults to ~�LX

Example: execute the queens program from the ‘dfns’ workspace
]wsp dfns 0 disp queens 5

Command Xref
This command returns a Cross-reference of the object given. If the switch
Jfile is provided the name is assumed to be a file.
It produces a very crude display of all references on top against all functions to
the left. At the intersection of a function and a reference is shown a symbol
denoting the nature of the reference in relation to the function: o means
local, G mean global, F means function, L means label.

VECTOR Vol.25 No.4

 55

Example:
]xref \Program Files\Dyalog\SALT\lib\rundemo Jfile
 ccfkllnpssszzzFFILNPPS
 llieaiaa_cn...iinieaoc
 .lybnms ri.NRllinxtsr
 Tes eet ip.eaeetethni
 e . . e p .sw . . . p
 x . . . t .t. N . . t
 t
 - - - - : - - - - : -
 Edit y . . G . : G
 Init y:F:GG
 Load .y. .y. : yGGG.F. G G

As can be seen in this report, name script is a local in function edit. The
characters dot, dash and semi colon only serve as alignment decorators and have
no special meaning.
Group Transfer
This group contains four commands: in, out, inx and outx. In and Out read or write
APL Transfer Files in the standard ATF format, and should be compatible with
similarly named user or system commands in other APL implementtations. inx
and outx use a format which has been extended to represent elements of a
workspace which have been introduced in Dyalog APL since the ATF format was
defined.
See the Dyalog APL Windows Workspace Transfer v12.1 for more details.
Group wsutils
This group contains several commands used for workspace management and
debugging. Some of the commands take a filter as an argument, to identify a
selection of objects. By default, the filters are in the format used for filtering file
names under Windows or Unix, using ? as a wildcard for a single character
and * for 0 or more characters. For example, to denote all objects starting with
the letter “A” you would use the pattern A*.
Regular expressions can be used to select objects. You indicate that your filter is a
regular expression by providing the switch Jregex.
The commands which accept filters are fnslike, varslike, nameslike, reordlocals,
sizeof and commentalign. They all apply to the current namespace, i.e. you cannot
supply a dotted name as argument.
Also, very often the same command will accept a –date switch which specifies the
date to which the argument applies. This will typically be used when functions

VECTOR Vol.25 No.4

 56

are involved, for example when looking for functions older than a date, say 2009-
01-01, you would use Jdate=<90101 . The century, year and month are assumed
to be the current one so if using this expression in 2009 using J
date=<101 would be sufficient. You can use other comparison symbols and –
date=≠80506	 would	 look	 for	 dates	 different	 than	 2008-05-06. Ranges are
possible too and Jdate=81011-90203 would look for dates from 2008-10-11 to
2009-02-03 included.
The value of date is <90101, the < is included which is why the syntax includes
both = and <.
Command cfcompare
This command compares 2 APL component files. It accepts the same switches as
varcompare plus switch Jcpts which list the components to compare. It
accepts two arguments: either the path of files or their tie number if already tied.
They can be optionally followed by:passnumber if the file(s) require one for
reading
Example:
]cfcompare \tmp\abc:123 27 -cpts=5 7, 9-99

This will compare file \tmp\abc with the file using 27 as tie number. The
passnumber 123 will be used for file \tmp\abc to read the components. Only
components 5, 7 and 9 to 99 will be compared.
Only those components with the same number will be compared; if the 1st file’s
components range from 1 to 10 and the second’s range from 6 to 22 then only
components 6 to 10 will be compared. In this case because a set has been
specified only components 7, 9 and 10 would be compared.
If either the path of the name of the second file is the same as the 1st’s then = can
be used to abbreviate the name. For example to compare files ABC and XYZ in
folder \tmp\long\path you can enter
]cfcomp \tmp\long\path\ABC =\XYZ

See command varcompare for the list of other accepted switches.
Command CommentAlign
This command will align all the end of line comments of a series of functions to
column 40 or to the column specified with the Joffset switch.

VECTOR Vol.25 No.4

 57

The arguments are DOS type patterns for names which can be viewed as a
regular expression pattern if switch Jregex is supplied. The Jdate switch can
also be applied.
The result is the list of functions that were modified in column format or in)FNS
format if switch Jformat is supplied.
Example:
]commentalign HTML* -format -offset=30

This will align all comments at column 30 for all functions starting
with HTML and display the names of all the functions it modified in)FNS format
Command fncompare
This command will show the difference between 2 functions, including time
stamps. It can handle large functions and has switches to trim the functions first,
exclude the time stamps, etc.
Example:
given: �fna �fnb
 [1] same line [1] same line
 [2] fna line 2 [2] fnb line 2
 [3] same line 3 [3] same line 3
 [4] R comment deleted [4] new common line
 [5] new common line [5] R new comment
 � �

]fncomp fna fnb
H[0] fna
m fnb
 [1] same line
H[2] fna line 2
m fnb line 2
 [3] same line 3
H[4] R comment deleted
 [5] new common line
m R new comment

Switches
-normalize removes excess space at the ends of each line
-delins change the delete/insert characters
-exts exclude timestamps in comparison
-zone specify how many lines to show before and after each difference
-nolastline exclude the last line of each function (ex ignore SALT tag lines)

VECTOR Vol.25 No.4

 58

Command fndiff
This command will show the different lines between two functions by showing
the differences side by side. It is more suited for small functions. With the same
example functions as in fncompare:
Example:
]fndiff fna fnb
.fna. c.fnb.
.fna.line 2 . . . c.fnb.line 2
R comment deleted . cR new comment

Command fnslike
This command will show all functions names following a pattern in their names.
It accepts the Jregex, -date and Jformat switches.
Command nameslike
This command will show all objects following a same pattern in their names.
Each name will be followed by the class of the name.
It accepts the Jregex, -date and Jformat switches.
Example: find all names containing the letter a:
]nameslike *a*
aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

Command reordlocals
This command will reorder the local names in the header of the functions given
in the argument. The argument is a series of patterns representing the names to
be affected. It accepts the Jregex, -date and Jformat switches.
Command sizeof
This command will show you the size of the variables and namespaces given in
the argument. The argument is a series of patterns (including none=ALL)
representing the names affected. It accepts the Jclass switch to specify the
classes involved and the -top switch to limit the number of items shown.
Example:
)obs
NStoScript aplUtils test
)vars
CR DELINS Describe FS
]size -top=4 Jclass=2 9
NStoScript 132352

VECTOR Vol.25 No.4

 59

aplUtils 40964
test 31996
Describe 10128

Command supdate
This command will update a namespace script with newly added variables and
functions.
This can come in handy when you’ve added code and data inside a scripted
namespace.
Example:
]load myns
)cs myns
 V HΙ9
 �fx 'myfn' '2+2'
R Now update the script to include these new objects
]supdate
Added 1 variables and 1 functions

Command varcompare
This command will compare two variables including namespaces which contain
functions and other variables and namespaces. For this reason it includes the
same switches as command fncompare plus the following:
-exnames= exclude names from the comparison
-nlines= show only the 1st n lines of each variable not in the
 other object
-show= show only specific sections of the comparison report
-nssrc force the use of source for namespaces if they exist
 instead of comparing object by object

See]??varcompare for details
Command varslike
This command will show all variables following a same pattern in their names. It
accepts the Jregex and Jformat switches.
Command wscompare
This command will show the difference between two workspaces. It is a
combination of the commands fncompare and varcompare being run on
entire workspaces. The workspaces are first copied into temporary namespaces
and the comparison then performed. It includes the switches of fncompare and
varcompare plus the following:

VECTOR Vol.25 No.4

 60

-exstring= exclude object containing this string
-gatheroutput gather all the output and return it as a result
 (can be quite large)

Command wslocate
This command will search strings in the current namespace. It accepts a number
of switches that allow it to screen out hits in comments, text, etc. It accepts
normal and regular expressions and will perform replacement on most objects. It
is a very comprehensive command. For example it allows you to find where 3
names are assigned 3 numbers. See its documentation for details:]??wslocate
Example: look for the words ending in AV (syntactically to the right), regardless
of case, in text only (exclude Body and Comments):
]wslocate AV Jsyntactic=r Jinsensitive Jexclude=bc
Search String (Find and Replace) for Dyalog V6.01

 � #.xfrfrom (3 found)
[57] ~(∆�trans=2)/oNS,'∆AVHbUf'
 �
[72] ∆�CodTH∆�CodT,(∆�trans=2)/'%�av[%∆AV['
 � �

References
1. System debug flags are used to debug the interpreter itself. See the User Guide for

details on this topic.
2. To look for or replace strings in the workspace use command WSLOCATE
3. For .Net regular expressions see

http://msdn.microsoft.com/en-us/library/az24scfc(VS.71).aspx

VECTOR Vol.25 No.4

 61

�S and �R
Dan Baronet (danb@dyalog.com)

With version 13 Dyalog introduced two new system operators to deal with regular
expressions. This article discusses these operators �S and �R

The implementation uses the open-source regular-expression search engine
PCRE (Perl Compatible Regular Expressions), a library, which is built into
Dyalog APL. The regular expression syntax which the library supports is not
unique to APL nor is it part of the language. Dyalog introduces new features and
the way to use it is more like APL.
�S and �R are the new system operators that use the PCRE engine to do their
job. Like all other functions, �S/R work with Unicode.
Who should read this
This article assumes the reader knows a little bit about regular expressions.
Although some basic syntax is given, few details will be provided. It will focus on
the APL part of it instead and the examples will use simple regular expressions.
Some advanced examples are shown towards the end for those interested in that
sort of thing.
Basics
�S is used to report information on string matches and �R is used to make
replacements in situ. They use regular expressions for that.
A regular expression, often called a regex, is a string representing a pattern, a
way to match text (e.g. words) in another piece of text. Here are 2 examples.
1. Find the offset of all single characters followed by ‘at’
 ('at' �S 0) 'The cat sat on the mattress'
4 8 17

2. Change to uppercase all occurrences of single letters followed by ‘at’
 ('.at' �R '\u&') 'The cat sat on the mattress'
The CAT SAT on the MATtress

�S (and �R) being a dual operator, it takes 2 operands and returns a function.
The left operand is always the pattern(s) and the right operand is the
transformation, if any, to apply. It can either be a code (example 1 above: 0

VECTOR Vol.25 No.4

 62

means return the offset of each match), a transformation pattern (example 2:
'\u&'[1] means Uppercase the whole match), or a user function discussed
below. The result, a function, is applied to an argument which holds text or a
number tied to a native text file (including Unicode encoded files).
Regular expressions, or regexes, can specify more complex patterns and an
expression to find the length AND offset of cat or lion would be:
 ('cat|lion' �s 1 0) 'the cat sat on the medallion'
3 4 4 24

The result is 2 pairs of numbers: ‘a 3 long match at offset 4’ and ‘a 4 long match at
offset 24’.
Note that lion was found in medallion. Regexes allow you to specify whether a
letter should be on a word boundary by using \b before and/or after it. For
example to look for the offset of exact words cat and lion (using � this time to
separate the right operand from the argument):
 Ρ '\bcat\b|\blion\b' �S 0 � 'the cats sat on the medallion'
0

Nothing found. And this is right, the words cat and lion nowhere appear by
themselves.
There are many rules which are out of the scope of this article. They can be found
either on the Net or in Dyalog’s manuals; too many to list them all here. It suffices
to say that you can look for patterns in a very flexible and concise manner. Here
is a short list of pattern characters and what they mean:
. stands for any char but line delimiter
{n} stands for N times
? stands for 0 or 1 time
+ stands for 1 or more times
* stands for 0 or more times
| means OR
() group elements or alternatives
][group possible characters
\b means “at a word Boundary”
^ means the beginning of a line
$ means the end of a line

VECTOR Vol.25 No.4

 63

For example to look for a string representing a number smaller or equal to 2012
(remember we are dealing with characters here) the pattern “\b (1\d{3} | 200\d
| 201[012]) \b”² would do it. It means: look for either
a ‘1’ followed by 3 digits (\d is any numeric digit – 0 to 9, {3} means repeat 3
times)
OR (the vertical bar |)
‘200’ followed by a digit (\d)
OR (|)
‘201’ followed by either ‘0’, ‘1’ or ‘2’ (square brackets regroup the set of
characters that the next character should be in)
The parentheses regroup the 3 alternatives and the \b before and after ensures
the string found is not part of a bigger number (like 120009)
You can look for patterns that repeat, recourse, and do all kinds of things.
But like anything else you need to spend a bit of time to do more fancy things.
Again, if you want to delve into this, type ‘regular expressions’ in your favourite
search engine and let yourself loose. If you want APL examples see “Tools, Part 4:
Regular Expressions” in Vector 21:2, p.126.
We will now look into what Dyalog did with this.
Transformations
There are 3 types of results we may want to get from �S:

1. Frequent values like offset, length, line number for which codes (small
ints) can be used

2. Transformation (text) pattern like “uppercase the hit”
3. More complex expression for which you must provide a function.

We have seen examples of 1 and 2 above. If you cannot do what you want with
those you’ll need to write a monadic function which will accept a namespace as
argument. This namespace will contain a series of variables related to the current
match:
Block the text being searched, in line mode³ this is the line we’re looking at
BlockNum the line number (�IOH0), in line mode again
Pattern the pattern used
PatternNum the pattern number (�IOH0)
Match the string that matches the pattern

VECTOR Vol.25 No.4

 64

Offsets the offset of each sub pattern
Lengths the length of each sub pattern
Names the names of each sub pattern
ReplaceMode whether we are using �R (1) or �S (0)
Examples
1. Find all but the 1st digit of all unsigned integers found in a text
 '\d(\d+)' �S '\1' � 'dsa 1233 30 3 xyz'
 233 0

Explanation: the pattern \d(\d+) means “find a digit (\d) followed by “more-
than-1 digits” (\d+). The parentheses capture that sub pattern and since it is the
1st (and only) sub pattern it is #1 (#0 is given to the whole match). So ‘1233’ is
the 1st match found (and sub pattern 0), in it is the sub pattern ‘233’ which is
returned because this is what the right operand (\1) says to do. The same thing
happens with the second match: 30. So �S returns 2 results: ‘233’ and ‘0’. Note
that ‘3’, the third integer in the string does NOT match the pattern as there is no
“more-than-1 digit” (\d+) after the 1st one.
2. Reverse and return all the words in a sentence
This one is impossible to do with a transformation string so we use a function:
'\w+' �S {�Ω.Match} 'The cat sat on the mat'
 ehT tac tas no eht tam

Explanation: each time the �S derived function finds a match, e.g. ‘The’, it gives
the right operand function a namespace as argument which contains the
variables mentioned above. In it is found ‘Match’ which can be referred to and, in
this case, flipped and returned. This is done each time a match is found (6 times).
So here �S returns a vector of 6 text vectors (a VTV).

�R

So far we’ve only seen searches. �R is the other new system operator introduced
in V13.
It is very much like �S except that it performs replacement in the argument
string. If we were to run the last 2 examples with �R instead we would get this:
1. Remove the 1st digit of all integers >9 :
 '\d(\d+)' �R'\1' � 'dsa 1233 30 3 xyz'
dsa 233 0 3 xyz

VECTOR Vol.25 No.4

 65

Explanation: the pattern \d(\d+) means “find a digit (\d) followed by “more-
than-1 digits” (\d+) just like before. The parentheses capture that sub pattern. So
‘1233’ is the 1st match found, and it is replaced by the sub pattern ‘233’ because
this is what the right operand (\1) says to do. The same thing happens with the
second match: 30. So �R returns the argument minus the 1st digit of each match.
2. Reverse all the words in a sentence
 '\w+' �R {�Ω.Match} 'The cat sat on the mat'
ehT tac tas no eht tam

Explanation: each time the �R derived function finds a match, e.g. ‘The’, it gives
the right operand function a namespace as argument which contains, among
other things, ‘Match’, which can be referred to and, in this case, flipped and used
to replace the original match. This is done each time a match is found (6 times)
resulting in a modified argument. Note that there is no need to separate the right
operand function from the argument since it binds with �R first.
Details
Normally a regex engine like PCRE works on a string in two possible modes: as a
whole, called single line, or as a series of lines delimited by a line delimiter (like
NL), called multiline. This affects the way some searches are performed: in single
line mode the ^ and $ only match at the beginning and end of the searched string.
In multiline mode they match at the beginning and end of every line in it. For
example, an expression like ^a.*b$ would find all lines starting with ‘a’ and
ending with ‘b’. The ^ means “the beginning of the line”, the dot (.) means “any
character but NL”, the star (*) means “as many times as possible” and
the $ means “the end of the line”.
�S/R have the same 2 modes called Document mode (=PCRE single line mode)
and Mixed mode (=PCRE multiline mode) plus another mode called Line mode.
Line mode splits the searched text into logical lines so searches cannot span
across them. It effectively treats every line as a different text to be searched. This
is something not available with PCRE. Line mode is less prone to WSFULLs. It is
the default mode.
APL being array oriented it also works on VTVs (vectors of text vectors). With
VTVs each vector represents a line in the text separated (by default) by CRLF and
all results are the same in every mode, whether you use a VTV
or (Ρ,LineDel)p�,/LineDel�,¨VTV .

VECTOR Vol.25 No.4

 66

The Variant operator �
A regex program like PCRE is a complex program that assumes some settings to
be present. Just like dyadic iota uses implicit arguments like �IO and �CT , a
regex engine uses implicit arguments that can be modified.
This new primitive operator is used to modify the behaviour of a function. Here it
is used to modify the way the resulting function from �S will be used. Note that
the � character in not in �AV.
Variant takes a function to the left and an array to the right. The array specifies
the options that modify the function, resulting in a new function returned by
Variant. For example, in
 F2H F1 � array

F2 is now a modified version of F1.
There are many parameters that can be set via � for �S and �R. Here are the
main ones (the 1st value is the default):
IC Ignore Case. Possible values: 0 or 1
Mode Operating mode. Possible values: L=line mode, D=document mode,

M=mixed mode
DotAll Makes the dot match line delimiters too. Possible values: 0 or 1
EOL What the line delimiter is. Possible values: CR, LF, CRLF, VT, NEL, FF, LS,

PS
ML Match Limit. Possible values: an integer. 0=no limit, <0=only match |ML
Greedy Whether matches are the longest or shortest. Possible values: 1 or 0
Examples
1. Change each vowel into XX
 ('[AEIOU]' �R 'XX' � 'IC' 1) 'ABCDE abcde'
XXBCDXX XXbcdXX

Explanation: the pattern specifies a set of letters to match, 5 vowels, each to be
replaced by ‘XX’. Normally only the ‘A’ and the ‘E’ would be replaced but because
the Variant operator has modified the �R resulting function to be Case
Insensitive (with � 'IC' 1) then ‘a’ and ‘e’ are also modified.
2. Change ‘C’ followed by any character then ‘D’ by dash (-) in a multiline text

VECTOR Vol.25 No.4

 67

 ('C.D' �R '-' � ('Mode' 'D')('DotAll' 1)) 'ABC',CR,'DEF',CR,'CAD'
AB-EF
-

Explanation: the dot in the pattern usually means ‘any character but EOL’ but
because Variant specifies that the dot matches all characters and because it also
specifies ‘Document mode’ (Mixed mode would do too) then the sequence
‘C’,CR,’D’ matches and it is replaced by ‘-‘. The sequence ‘CAD’ also matches and is
replaced accordingly. Note how multiple options are written. Because Variant
modifies an existing function it can be applied many times. The following is all
equivalent:
 ('C.D' �R '-' � ('Mode' 'M')('DotAll' 1))E
 ('C.D' �R '-' � 'Mode' 'M' � 'DotAll' 1)E
 CXDH'C.D' �R '-' P (CXD � ('Mode' 'M')('DotAll' 1))E
 (CXD � 'DotAll' 1 � 'Mode' 'M')E
 CXMH CXD � 'Mode' 'M' P (CXM � 'DotAll' 1)E

3. Change the first 2 letters of each line by ‘x’
 ('[A-Z]' �R 'x' � 'ML' 2) 'ABC' 'DEF'
xxC xxF
 ('[A-Z]' �R 'x' � 'ML' ¯2) 'ABC' 'DEF'
AxC DxF
 ('[A-Z]' �R 'x' � 'ML' ¯4 � 'Mode' 'D') 'ABC' 'DEF'
ABC xEF

Explanation : in the first case we ask to change any character in the set A-Z by x.
Because we are working in line mode, each vector is processed independently
and the first 2 letters of each line is modified. In the second case we ask that only
the second (¯2) match be acted upon, again in each line. In the last case we ask
that only the 4th match be processed. Because we now treat the argument as a
whole document ('Mode''D'), only the 4th letter, ‘D’ is modified.
Using files as input source
It is possible to use a native file as source instead of a array (character vector or
VTV).
To do so you supply the tie number of the file to process. If the file is read from
the start, and there is a valid Byte Order Mark (BOM) at the start of it, the data
encoding is determined by this BOM.
The input document may be processed in any mode. In document mode and
mixed mode, the entire input document, line ending characters included, is
passed to the search engine; in line mode the document is split on line endings

VECTOR Vol.25 No.4

 68

and passed to the search engine in sections without the line ending characters.
The choice of mode affects both memory usage and behaviour.
Solved patterns
Find a number from 0 to 255: \b(25[0-5]|2[0-4]\d|[01]?\d\d?)\b
Find an IP address:
\b((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)\b
Finding a date:
\b(19|20)\d\d[- /.](0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])\b
Finding APL names or numbers
It may be interesting to know where some names are in some code.
Finding a name with a regex in a conventional language is fairly easy: [A-Za-
z]\w* will usually do it: that’s 1 letter followed by 0 or more word characters
(the * means 0 or more times). Not in APL. APL names in Dyalog can have all
sorts of characters like ∆ and �. A regular expression to find such a name would
look like
(?x) # ignore spaces and comments
define what the Leading character of a name and what an APL ID is
(?(DEFINE)(?<L1>[_A-Z∆a-
z�ÁÂÃÇÈÊËÌÍÎÏÐÒ���ÙÚÛÝþãìðòõÀÄÅÆÉÑÖØÜßàáâäåæçèéêëíîïñóôöøÁÂÃÄ]))
(?: # do not capture
(?<!\s:|::) # not preceded by space: or ::
(?<!(?&L1)) # not preceded by any of the characters above
(?&L1) # must start with one of them
(?:(?&L1)|\d)* # followed by 1 of them or a digit 0 or more times
|ΑΑ|Α|ΩΩ|Ω) # or any of those

which is a bit hard to remember and type – and to explain in details here, even
with the comments.
Assuming we put the above pattern in variable ‘patid’ we can find APL names in
code like this:
 patid �S {Ω.Offsets,Ω.Lengths} '�HdsÀÄaH_-.=0 u∆io8 321'
2 5 8 1 14 5

Numbers are similar. A number in Dyalog would require a long expression to be
used.

VECTOR Vol.25 No.4

 69

There is a project at Dyalog to provide a shortcut for such patterns. For now if
you wish to find general APL names or numbers in your code you have to resort
to user command]WSLOCATE. Type]?WSLOCATE for details.
Technicalities
The engine needs to prepare the search before using it.
This involves parsing the pattern and compiling a structure subsequently used in
the process. If a search will be performed repeatedly it would be inefficient to
recompile it each time. The interpreter tries to account for this by keeping the
last few structures around for a while in case they are to be reused. The
interpreter keeps a cache of compiled patterns and flushes the one least recently
used when the cache is full and a new pattern is created. This cache is saved in
the workspace; and is never garbage collected.
Real life example
This example is for those with a good understanding of regular expression.
In 2011 I needed to look into a log file and extract some data in a log file tied
to ‘tieno’. I was looking for the patterns
P1: '(type=\d+, shape=(?:(?:\d+[,])+))' (here I wanted the whole thing)
Followed by anything and then by
P2: 'OΡ2 0ÅB *\d+(\d+)' (here I only wanted the number in the parentheses)
This is basically the pattern P1.*?P2.
By doing 'P1.*?P2.' �S info tieno I should have been able to extract all the
data with info a function catenating P1 with P2 results for each match.
Unfortunately the file sometimes contained P1…P1…P2 which means that the 1st
P1 (and not the second) was matched with P2. So I had to use a different pattern.
I used p1((?!p1|p2).)*p2
This is “look for p1, advance while you don’t have either p1 or p2, then look for
p2”.
Explanation:
Let’s use the following text as an example:
aap1bbp1ccp2dd

VECTOR Vol.25 No.4

 70

The 'p1' at the start of the pattern will cause the text pointer to skip over the "aa"
characters and match the first "p1" characters.
The next part in parentheses breaks down to a negative lookahead (the ?! part)
and the '.'. The negative lookahead will check the next character(s) (here "bb")
and, since there is no match either with p1 or p2 (the 2 alternatives), will succeed
and so the '.' will match the first "b". This is repeated with the "bp" characters.
As the next characters are "p1" the lookahead will fail (because of its negative
aspect). Because the quantifier that controls this part of the pattern is '*' (0 or
more matches) the fact that the lookahead failed is not a problem, it’s only the
parentheses group that stops matching. The next thing in the pattern is p2 which
is compared with the "p1" in the text - which will fail. This global failure causes
the regex engine to start backtracking. In this case, there are no alternative ways
that they can match so the whole pattern match is rejected. ‘p1bbp1’ failed to
match.
When this occurs, the regex engine will step forward 1 character over the 1st "p"
and start the match at the "1bb" character sequence. In this case the regex engine
will again start skipping forward until it gets to the second "p1". The process
described above will be repeated except that the lookahead will stop the '.'
matching when it gets to the "p2" characters. Now, the last part of the pattern
(p2) does match which lets the regex engine declare that a complete match has
been found.
The sequence ‘p1ccp2’ matches, info grabs it, extract the sections I want,
merges and returns them. I’m one happy camper.
This last example is a real life example which would have been more difficult to
program in APL (or any other language for that matter). The ability to use
regexes combined with APL allowed me to perform the task in a fraction of the
time it would have taken me normally.
Conclusion
Regular expressions are extremely useful when dealing with complicated
patterns. Without them you must spend time writing code, sometimes a lot of, to
parse and extract, time that could be better spent, well, any other way. Up until
now there was no choice, but now there is.
You have to be careful and not overdo it. Using code like txtH'x' �R 'X'
+text is very inefficient compared to ((text='x')/text) H 'X'
Caveat emptor.

VECTOR Vol.25 No.4

 71

Books : Regular Expressions Cookbook (O’Reilly 2009)
References

1. Another one is \ln to Lowercase match of sub pattern ‘n’
2. Spaces are important in regular expressions but ignore them here
3. Modes are explained below
4. For example used with iota (Ι) it could generate a function to generate series from

either 0 or 1. By using Ι�0 we could create a function that generates numbers starting
at 0 regardless of �IO .

5. Astute observers will wonder what Classic users do. For them there is an
equivalent �OPT system operator.

VECTOR Vol.25 No.4

 72

 Bayesian financial dynamic
linear modelling in APL
Devon McCormick (devon@acm.org)

Editor’s note: this article was first published in Vector 21.2 Spring 2005. It is
being reprinted as an article that contains valuable material that has stood
the test of time.

Bayesian statistics is a brand-new idea that’s only about 235 years old. The paper
that was to immortalize the last name of the Reverend Thomas Bayes, a
Nonconformist minister born in 1702, was published in 1763. Unfortunately for
any fame he may have hoped to gain from what proved to be his most influential
work, Bayes died some 3 years before.
From such inauspicious origins, his contribution to statistics continued
inauspiciously. His ideas flourished briefly in the latter part of the 18th century,
being taken up by the great mathematician Laplace, before languishing in relative
obscurity until this century. Even though revived in the early part of the century,
first by Ramsey, then by deFinetti, his ideas only became widespread in recent
years.
So, what is this great idea that has come to us through centuries? At first glance, it
may appear to be rather trivial. So trivial, in fact, we may briefly derive it here
without further exposition.
Bayes examined the problem of contingent probability. We may start, simply
enough, by noting that the probability of an event P, denoted here as Prob(P),
contingent on circumstances (or Data) D, is the product of Prob(P) and
Prob(D|P). This latter formulation may be read the probability of D given P. So,
since

and, the reverse being true and equivalent, that is

VECTOR Vol.25 No.4

 73

Taking these two as equal to each other leads us to the common formulation of
Bayes’s Theorem:

There might not seem to be much here, so why should this simple theorem have
provoked so much contention and fallen into such conspicuous disfavour? The
key here is the interpretation of the prior Data: it includes any information we
see fit to include: this makes it subjective, hence often thought to be not fit for
proper scientific and mathematical treatment. That is, the powerful effect of
Bayes’s Theorem is to allow us to incorporate non-traditional, perhaps inexact,
data into our probability formulations.
This denigration of subjectivity, in a historical context of pride in exact, hard
science, continues to plague Bayesian techniques even up until recent times. In
fact, one reference (in Kuhn’s Readings in Game Theory”) to Bayesian techniques
appears to justify calling it Bayesian only because of the general use of subjective
probability estimations. One much-cited early work about Bayesian techniques is
called Studies in Subjective Probability (Kyburg, 1964): at the time it was
published, this was the defining feature of Bayesian statistics.
However, as we shall see, this perceived subjectivity of the technique is
misconstrued as a weakness, when it is rather a strength because it ack-
nowledges and deals with the outside information underlying all statistical
inference. This combining of hard and soft data is helpful in the context of the
Dynamic Linear Models we will explore later on.
Another strength of Bayesian inference has to do with its approach to probability,
an approach often called the inverse probability problem because it is backwards
in relation to traditional probability. This problem is stated thusly:
Given the number of times an event with unknown likelihood has occurred or
failed to occur, what is the chance that the probability of it happening in a single
trial lies somewhere between two degrees of probability?
One of the Bayesians’ favourite example of this is the urn problem: given an urn
containing two colours of balls, say black and white, and a series of tests whereby
we draw a ball, note its colour and return it to the urn, what is the likelihood of
various combinations of the two colours? For instance, given an urn with five
balls and the evidence that three draws with replacement yield only white balls,
what is the probability that all five are white?

VECTOR Vol.25 No.4

 74

This is the inverse of a typical problem in probability that would be more along
the lines of: given an urn with three white and two black balls, what are the odds
of drawing three white balls, one at a time with replacement? Before we delve
further into the Bayesian example, notice how more commonly applicable to
typical finance problems is this former sort of formulation than is the latter. A
classical probability problem would be something like: given the mean returns
and volatility of some assets, how are they likely to perform? However, the
inverse problem would be something like: given the performance of these assets,
what are their likely returns and volatilities? We can see from this that the
inverse problem better matches what we often have to work with in terms of real
data.
Before we look more at the urn problem, we need to extend Bayes's Theorem to
multiple events. Given a series of k events Pi with associated likelihoods Prob(Pi)
and prior observed data D, the contingent probability of a particular event Pi
given observations D is stated thusly:

In APL, this is shown by the function BayesPP.

 R�BayesPP PROBS
[1] � Calc Bayesian posterior probability given PROBS: 2 row mat:
[2] � [0;]P(P1), P(P2)...; [1;]P(P1|D), P(P2|D)...; i.e. [0;] isolated
[3] � event probability, [1;] conditional probability given data D.
[4] R�R÷+/R�×5PROBS

In practice, this works as follows. Suppose we have an urn with 5 black and white
balls in unknown proportion. We draw 3, one at a time with replacement; all are
white. What is the probability that all 5 are white? Invoking the APL function
 UrnProbAllWhite 5 3

gives us the numerical answer of 0.15625. How do we work this out using the
above theorem? We must solve for the probability of all the balls being white
given the evidence of 3 white draws (Prob(Pi|D)). The text of this function and a
discussion follows.
 � PHUrnProbAllWhite NNW;�IO
[1] R Bayesian urn problem: given NNW[0] (ostensibly black and
white) balls
[2] R and experimental evidence that NNW[1] white ones picked,
with

VECTOR Vol.25 No.4

 75

[3] R replacement each time, what is probability that all are
white?
[4] �IOH0
[5] PH((ΙNNW[0]+1)÷NNW[0])*NNW[1] R 0 to N possible balls
of color
[6] R picked E chance of picking NW white ones for each
proportion possible.
[7] PH+/P×(BinomialCoeff NNW[0])÷2*NNW[0] R 2* because 2 possible
colours;
[8] R would have to use other than binomial expansion if more
than 2.
[9] R P is now all probabilities of all combinations. Applying
Bayes's
[10] R theorem: (Prob(all selections white given all balls in urn
are white ×
[11] R Prob(all balls in urn are white)) ÷ Sum of Prob(all
combos)
[12] PH(((÷/2ΡNNW[0])*3)×÷2*NNW[0])÷P

 �

The subfunction BinomialCoeff is defined thusly:
 � RHBinomialCoeff N;�IO
[1] R Give coefficients of Nth binomial expansion.
[2] �IOH0 P RH((ΙN)!N),1
 �

Working 1st on the divisor of the preceding equation, calculated in line 5 of the
APL function, we calculate the probability of the datum D (3 white samples) for
each of the possible Pis. These latter range from no white balls (all black) to 5
white balls, or the fractions 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5. These are all the
Prob(Pi)s.
Line 7 of the APL function figures the likelihood of 3 white draws given each of
the possible combinations of white and black balls. The denominator of each of
these is 2*5 or 32 because this is the number of possible combinations of 2
things taken 5 at a time. The numerator is the possible arrangements of each
combination, e.g. 1, 5, 10, 10, 5, and 1 corresponding to: 1 way to have all 5 black,
5 ways to have 1 white and 4 black, 10 ways to have 2 white and 3 black, 10 ways
to have 3 white and 2 black, 5 ways to have 4 white and 1 black, and 1 way to
have all white. Combining all the Prob(Pi)s with the Prob(D|Pi)s, multiplying
them together and summing the results gives us (in math):

VECTOR Vol.25 No.4

 76

or (in APL, origin 0):
 (((Ι6)÷5)*3)+.×1 2 10 10 5 1÷32

which equals 0.2. The difference between these 2 expressions prompts me to
question the reader: which of these 2 expressions looks simpler? Which do you
think took about 5 minutes to enter and which took about 5 seconds?
The last line of the APL function calculates the numerator in Bayes’s Theorem
above, which is the probability of 3 white draws given all 5 balls being white, and
divides it by the denominator to give our answer. A more general version of this
is the APL function UrnProblem that returns all probabilities instead of just the
all-white one. An even more interesting function would allow a third input of the
number of black balls in a sample instead of just restricting the possible data to
observations of all-white draws. This is left as an exercise for the reader. The text
of UrnProblem follows.
 � PHUrnProblem NNW;�IO;NB;NWhite;Pk;Num;Denom
[1] R Bayesian urn problem: given NB (ostensibly black and white)
balls
[2] R and experimental evidence that NWhite white ones picked,
with
[3] R replacement each time, what are probabilities that 0 to NB
are white?
[4] �IOH0 P NB NWhiteHNNW
[5] PkH((ΙNB+1)÷NB)*NWhite R 0 to N possible
balls of color
[6] R picked E chance of picking NW white ones for each proportion
possible.
[7] DenomH+/NumHPk×(BinomialCoeff NB)÷2*NB R 2* because 2
possible colors;
[8] R binomial expansion assumes prior normal distribution for 2
colors.
[9] R Apply Bayes's theorem:
[10] PHNum÷Denom
 �

One point in the above exposition that deserves further mention is our gloss on
the use of binomial coefficients (UrnProblem[7]). This introduces a primary facet
of Bayesian inference: the use of a prior distribution. By using the binomial
coefficients to weight the black and white combinations, we are in fact assuming
a prior distribution that approximates the normal distribution (for discrete
values). The effect of this prior distribution may be seen in the values generated
by
 UrnProblem 6 1
0 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125

versus the result of

VECTOR Vol.25 No.4

 77

 UrnProblem 6 6
0 0.0000275999 0.00441599 0.0670678 0.282623 0.431249 0.214617

Notice how, in the first case (for 1 draw from an urn containing 6 balls), the peak
values are the 2 in the center whereas, in the second case, the peak has moved to
the second-to-last value. To better see this, look at the Evidence Effect graph: this
shows the results of UrnProblem run for an urn containing 200 balls and 25, 50,
100, 250 and 500 draws of white balls. Notice how the distribution shifts in the
manner hinted at by our small example above. What does this mean?

In the first case, our observation of 25 white draws for 200 balls, combined with
our prior (assumed) normal distribution leads us to put the most likely
combinations near the centre. This shows the strong influence of the prior
distribution with little additional evidence. The subsequent cases, each with
more white draws, move the peak toward the all-white end of likely
distributions. Of course, evidence like this might lead us to question our choice of
prior distribution. In any case, we can see how this Bayesian technique allows us
to combine our estimate of a distribution with subsequent evidence about that
distribution.
While we’re on the subject of prior distributions, it’s worth noting that the
traditional standpoint of statistics, from which the “subjectivity” of Bayesian

VECTOR Vol.25 No.4

 78

statistics has been attacked, is in fact explainable in Bayesian terms as one with a
“flat” prior. That is, if we decide to study the frequency of occurrence of heads
and tails when flipping a “fair” coin, we can either assume, as traditionalists do,
that we have no information about the likely outcomes (that is, all probabilities
are equal, hence the prior distribution is a straight line), or we might
acknowledge that this assumption is just one of many possible prior
distributions. Under the traditional assumption, after 1 trial of flipping the coin,
we would have to say that the likelihood of heads is 100% (or 0%, depending on
which turned up).
This influence of the prior distribution suggests a further modification to the
UrnProblem code: we could supply a prior distribution function as one of its
arguments. This change, along with the one suggested earlier that allows for
more generality in observations, would give us a version of the function that
starts to appear to have more practical application than the small samples of
Bayesian inference we’ve seen so far. However, we will leave this pursuit to
interested readers. Instead, we will now look at the other important technique
that, combined with Bayesian inference, can give us a robust financial forecasting
system: Dynamic Linear Models.
Dynamic Linear Models
The following pair of equations characterizes a dynamic linear model:

The notation in the column labelled Distribution Mean, Variance gives the
distribution of the error term for each equation; the expression N[m,v] specifies a
normal distribution with mean m and variance v.
The variables in these equations have the following meanings:

VECTOR Vol.25 No.4

 79

Variable Description
Yt vector of dependent variables (e.g. asset returns)
Ft' (transposed) matrix of explanatory factors
Θt regression factors
vt observation errors
G state evolution matrix
Θt-1 previous time’s Θ
Wt system errors

The ultimate aim of a Dynamic Linear Model (DLM) is to estimate the Y values in
terms of a likely mean and variance. We may think of the equation that purports
to explain these Y values as a linear equation with variable coefficients applied to
time-varying explanatory factors. For instance, a model of bond prices might
state the observation equation using factors known to influence bond prices,
such as government interest rates and the spreads of corporate rates.
The system equation may be thought of as a system of relations between the
observed factors. However, the dynamism of the model derives from assuming
that these relations vary.
Bayesian Forecasting with Dynamic Models
The preceding system of equations is updated by successively examining
predictive factors with their corresponding returns, predicting the mean and
variance of expected returns based on the next set of factors, and modifying these
predictions according to the actual returns. We can see how this is analogous to
our earlier, simpler problem of estimating the unknown composition of balls in
an urn based on the evidence of samples from the urn. In the case of the urn, we
saw how the probability distribution moved from the initial assumption of
normally distributed with an equal mix of black and white to a higher likelihood
of all white balls based on the evidence of repeated samples of white balls.
Similarly, our forecasting model starts with assumptions about means and
variances of returns then modifies these assumptions based on successive
samples of correlations between econometric factors and asset returns.
The West and Harrison book (Bayesian Forecasting and Dynamic Linear Models,
Springer-Verlag, 1997) provides a series of increasingly complex sets of data to
model in chapter 3. Three of these examples are implemented in APL in the
functions Theorem3p, Theorem3p1_1 and Theorem3p1_2. The associated data
sets are contained in the variables TBL3P1, TBL3P2, and TBL3P3, respectively.
These may be of interest for use with the book. However, we will look more at a

VECTOR Vol.25 No.4

 80

multivariate version of the model that more closely parallels, though it is
somewhat simplified, the one in use at my company for asset allocation.
The model on which we will concentrate is the one embodied in the function
MultiVDLM3. Before we look at this, though, a word about the data used in this
example. To avoid problems with proprietary or purchased data, we’ll be using
generated datasets. These are outputs from the GENFACRETS function. Hence, a
brief look at this function is in order.
 � FRHGENFACRETS NUM;�IO;MAX;FACS;RETS
[1] R Generate a set of factors and returns associated with them.
[2] �IOH0 P FRH(0 4Ρ0)(0Ρ0) P MAXH1000000000
[3] R FACSH-\1 2 1 2y1 2 3 4÷5 6 7 8
[4] FACSH(5+?4Ρ100)|1+?4Ρ1000000000
[5] RETSH-/FACS
[6]
[7] L_NEXT:FACSH1 2 1 2y0.5 1 1.5 2×FACS+2 3 4 5
[8] FACSHFACS+0.01×+/¯5+?((ΡFACS),20)Ρ11 R Handful of little
normal noise
[9] RETSH-/FACS
[10] RETSHRETS+0.01×+/¯5+?((ΡRETS),20)Ρ11 R Handful of little
normal noise
[11] m(NUM>1ΡΡ�FRHFR,[0]¨FACS RETS)ΡL_NEXT
 �

Notice how the factors are generated using a “hidden” function and the returns
are based on these factors. A typical use of this function might look like this:
 Factors ResponsesHGENFACRETS 120

to assign the 2 vectors Factors and Responses, each with 120 elements as
specified by the function’s right argument.
The accompanying illustrations of forecasts compared to actual data use these
generated data as inputs to the multivariate dynamic linear model. Looking now
at the primary instance of this model, the APL function MultiVDLM3, there are a
few important points to note. A full explanation of this model is beyond the scope
of this paper; however, one of the books by West and Harrison or Pole, West, and
Harrison, should provide sufficient detail (see the bibliography). Bearing this in
mind, let us examine the few points on which we will concentrate to illuminate
the robustness of this type of model. The text of the function follows (next page).

 DMO�MultiVDLM3
FGVWYMCD;=IO;Wt;Vt;MC;SZ;CT;mp;Cp;F;Y;G;Ft;Yt;Rt;ft;Qt;

 At;at;et;mt;Ct;DELTA;nt;np;St;Sp;TIT
[1] � Multivariate Dynamic Linear Model, adapted from West and Harrison.
[2] � FGVWYMCD: [0] Factors; [1] G (evolution matrix); [2] V (observation
[3] � variance); [3] W (system variance); [4] responses (Y values to
[4] � predict); [5] MC: prior mean and variance; [6] (optional) delta

VECTOR Vol.25 No.4

 81

[5] � (discount factor). E.G. for 3 factors predicting 1 return:
[6] � MultiVDLM3 (10 3ΡΙ30) (3 3Ρ4&1) (30 1Ρ2×Ι30) (1 1Ρ1) (3 3Ρ0.01)
[7] � (15 9) (0.6)
[8] � OR DMO.MultiVDLM3 F ((2Ρ¯1&ΡF)Ρ(1+¯1&ΡF)&1) (,COVM R) (COVM F)
[9] � (((ΡR),1)ΡR) ((AVG R) (STDDEV R)) (1)
[10] � 7DMO[1;]: [;0] Forecast mean and [;1] variance, [;2] posterior system
[11] � (theta) mean and [;4] variance, [;5] adaptive coefficient, [;6] error,
[12] � [;7] Scaling factor.
[13]
[14] CT.=IO.0 ? TIT.'ft' 'Qt' 'mt' 'Ct' 'At' 'et' 'St'
[15] F G Vt Wt Y MC DELTA.7&FGVWYMCD,1 ? SZ.1ΡΡF ? DELTA.÷DELTA*0.5
[16] DMO.(ΡTIT)ΡG0 1Ρ0 ? np.Sp.1
[17] mp Cp.(GΡWt)Ρ¨MC � Prior mean and variance: coerce shapes if scalar
[18] at.mp
[19]
[20] L_DO1:Ft.7F[,CT;] ? Yt.Y[,CT;] � 1 row mats for conformability
[21] at.G+.×mp
[22] Wt.(DELTA×G+.×Cp+.×7G×DELTA)-G+.×Cp+.×7G � Discounting
[23] Rt.(G+.×Cp+.×7G)+Wt � Prior at time t: theta variance
[24] ft.(7Ft)+.×at � 1-step forecast .means
[25] Qt.Sp+(7Ft)+.×Rt+.×Ft � and .variance for forecast Y
[26] et.Yt-ft � 1-step error forecast
[27] nt.np+1 � Start on posteriors
[28] At.Rt+.×Ft+.×NQt � Adaptive coefficients,
[29] mt.at+At+.×et � Posterior thetas' means
[30] Ct.Rt-(7At)+.×At+.×Qt � and (scale-free) variances
[31] St.''ΡSp+(((7et)+.×(NQt)+.×et)-1)×Sp÷nt � Scaling factor (p. 110 (d))
[32] Ct.(St÷Sp)×Ct
[33] DMO.DMO,[0]¨7¨ft Qt mt Ct(7At)et St
[34] Cp mp Sp np.Ct mt St nt � Current to previous for next loop
[35] P(SZ>CT.CT+1)ΡL_DO1 ? DMO.TIT,[¯0.5]DMO
 R

First, let’s dispose of variables set to rather trivial values for this example: G and
DELTA. We set G to be the identity matrix: this corresponds to a random system
evolution. We set DELTA to be 1; this might have a value slightly less than one to
more greatly discount the effects of data, which is further in the past. In addition
to these 2 settings, made uninteresting for simplicity, we also take a simple
default on the prior mean and variance setting (FGVWYMCD[5] in the function) by
using the actual mean and variance of the return series. Disposing of all these
leaves us to consider only the factors and returns, which we discussed above, and
the 2 variances W and V, for the system and observation series.
How to deal with these 2 inputs remains a subject of some research. We’ll look
mainly at V, the observation variance, to illustrate the robustness of DLMs and
how well the Bayesian framework allows us to incorporate new prior
information.
Many of the models (in West and Harrison, 1997) assume that this observation
variance is known. In fact, it is tempting to use the same shortcut we used for the
prior mean and variance values by essentially looking into the future and basing
the value on our present data. However, this detracts from the ability of the
model to adapt to new information by reinforcing the values of past data.
However, notice that this is essentially what we did in our example just to get

VECTOR Vol.25 No.4

 82

some crude numbers to look at. The important thing to notice is that the system
of equations given above specifies v as varying according to time t but our APL
implementation treats it as a known constant.
This limitation of our sample implementation detracts from its forecasting
power. A better model would attempt to forecast the variance series as it does
the return series and progressively correct these forecasts with the receipt of
new data. Indeed, the flexibility of this sort of model allows us to do even better
than this by incorporating anticipated future data. Since we do not have such an
implementation in our simple example, let’s see how and why we might do this.
First, however, let’s look at an example of the function’s forecast on some data
“made up” by the GENFACRETS function as shown above. These results are shown
graphically in the following chart.

Notice how the earlier attempts at forecasting, on the left, diverge widely because
the model hasn’t “learned” much about the relation between the factors and their
associated responses. However, it does track the change in level starting at about
points 31 to 43, even though it initially overshoots. Suppose that this change in
level were in response to events we could anticipate to some extent: we know
that the fundamentals affecting our responses are about to change but we can’t
quantify them exactly.

VECTOR Vol.25 No.4

 83

Say, for example, that one of the assets whose return and variance we are
forecasting is the Hong Kong dollar. Since the value of the Hong Kong dollar has
been fixed to that of the U.S. dollar for many years, our model will build a
misleading picture of this currency’s behaviour based on historical data. This is a
very pertinent issue at the time I write this, since that colony has recently
reverted to Chinese rule, Asian markets in general have become more volatile of
late, and there are indications that the end of this fixed rate regime is close at
hand. According to an article in Barron’s (the column "The striking price",
November 17, 1997), the American stock exchange "plans to revise its Hong Kong
Option Index so that its value is calculated using a floating rate of exchange for
the Hong Kong dollar rather than the fixed value that’s now used."
These factors make it very likely that a Hong Kong dollar model will change
behaviour drastically in the near future. In addition, this sort of deliberate change
will usually be announced in advance, thus aiding the modeller using Bayesian
DLMs. A more complete model than the one presented here would use a true
time-varying variance and would implement it in such a way as to incorporate an
external multiplier. Though one might hazard a guess as to the direction of the
Hong Kong dollar when it begins to float, one is not obligated to.
Though a fuller system than the one outlined here might also accommodate
external inputs to the calculations of means as well as variances, this would
require a view on the market that we might not be prepared to risk. However, it
does not require much of a leap of faith to predict that the volatility of the Hong
Kong currency will increase relative to the U.S. dollar some time soon.
A Bayesian DLM naturally and easily incorporates such new information, even
when it is rather vague and subjective as such advance information often is. We
are required to assign some value to our variance multiplier, but, in doing so, we
can use whatever other information we see fit (and in this example there is a
strong argument for a certain lower limit.) This ability to seamlessly incorporate
judgment based on new developments makes these kind of models very
attractive, especially since it minimizes or eliminates re-programming and allows
vague information to be introduced in a well-controlled manner.
This document is for informational purposes only. Opinions expressed are our
present opinions only, and are subject to change. In preparing this presentation,
we have obtained information from sources we believe to be reliable, but do not
offer any guarantees as to its accuracy or completeness.

VECTOR Vol.25 No.4

 84

The “88 Hats” puzzle
by Roger Hui (RogerHui.Canada@gmail.com)

The 88 Hats puzzle was posed by Andrew Nikitin[1] to the J Forum on 5 Jun 2007.
The following is a slightly modified version.

The puzzle
88 people stand in a circle, each having a hat with a number from 0 to 87 written
on it. Everyone can see the numbers on other people’s hats but can not see his
own number. They simultaneously write a number on a piece of paper and give it
to the judge. If at least one of them wrote a number that is on his own hat then
everyone wins, otherwise everyone loses. What strategy should they use to
guarantee victory?
(Numbers on the hats do not have to be all different. People can not exchange any
information during the procedure but can agree on some strategy beforehand.)
The puzzle was solved by John Randall[2] a day later.

A winning strategy
The strategy works for any number of hats m . Beforehand, the people number
themselves from 0 to m-1 . Let h be the list of hat numbers, and s[n] be the
sum of the numbers that person n sees. Then w[n] , the number that person n
writes, is m|n-s[n] .
 mH13
 randomH{�rlH7*5 P ?Ω} R reproducible random numbers

 � hHrandom mΡm
1 9 5 6 2 0 8 8 12 4 6 10 0

 � sH(�.ÈhΙm)+.×h
70 62 66 65 69 71 63 63 59 67 65 61 71

 � wHm|(Ιm)-s
8 4 1 3 0 12 8 9 1 7 10 2 6

 w ,[¯0.5] h
8 4 1 3 0 12 8 9 1 7 10 2 61 9 5 6 2 0 8 8 12 4 6 10 0

 +/ w=h
1

VECTOR Vol.25 No.4

 85

Here’s why it works. Let t←m|+/h be the sum of all the hat numbers, modulo
m . The following are equal:
t

m|s[t]+t-s[t] � addition and subtraction

m|s[t]+m|t-s[t] � modulo arithmetic

m|s[t]+w[t] � definition of w

Moreover, since s[t] is the sum of all hats excluding h[t] , it must be that
t=m|s[t]+h[t] . Therefore m|s[t]+w[t] and m|s[t]+h[t] are equal
and so w[t] and h[t] are equal. That is, the written number w[t] for person
t matches his hat number h[t] .
 " t#m|+/h

6

 w[6]

8

 h[6]

8

It is instructive to examine what the winning strategy does for 2 hats. The
strategy calls for person n to write m|n-s[n] . When m←2 , this reduces to
person 0 writing the hat number of person 1 and person 1 writing the negation of
the hat number of person 0. The tabulation of all possible hat numberings and
corresponding writings shows that in each scenario there is a written number
that equals a hat number.
 numbering writing

 0 0 0 1

 0 1 1 1

 1 0 0 0

 1 1 1 0

An abstraction
Let G be an abelian group of size m with operation g and whose group
members are items of u . Compute s←{g/(Ω≠Ιm)/u[h]}¨Ιm ; s[n] is
the “sum” of hat numbers that person n sees. Then the written number w[n] is
uΙu[n] g gi s[n] where gi x is the inverse of x in the group. (In Section
1 G is the group of integers under addition modulo m ; the group elements u
are Ιm .)

VECTOR Vol.25 No.4

 86

Why does it work? Let t←uΙg/u[h] be the index of the “sum” of all the hat
numbers. The following are equal:
u[t]

u[t] g s[t] g gi s[t] � group inverse and identity

s[t] g u[t] g gi s[t] � associative and commutative

s[t] g u[w[t]] � definition of w

Moreover, since s[t] is the sum of all hats excluding u[h[t]] and the group
is abelian, it follows that u[t]=s[t] g u[h[t]] . Therefore s[t] g
u[w[t]] and s[t] g u[h[t]] are equal, and so u[w[t]] and u[h[t]]
are equal and consequently w[t] and h[t] are equal. That is, the written
number w[t] for person t matches his hat number h[t] .

88 hats
The original puzzle has m←88 . Since
 I←{Ω/ΙΡΩ}

 I 88 = {+/1=Ω∨ΙΩ}¨Ι1000

89 115 178 184 230 276

There are at least 7 different strategies, derived from addition modulo 88 and
multiplication modulo each b of 89 115 178 184 230 276 on the numbers
co-prime to b . Thus:
win←{

 � winning strategy based on group table Α for hat

numbering Ω

 assert Ω=Ιm←ΡΩ:

 Α←m|?.+AΙm � default is + modulo m

 assert(ΡΑ)≡m,m:

 assert Α≡CΑ: � must be abelian

 G←Α[0;]ΙΑ � standardize group table

 g←{G[Α;Ω]}¨ � group operation

 gi←{G[Ω;]Ι0}¨ � inverses

 (Ιm) g gi (?.≠AΙm)g.×Ω

}

assert←{Α←'assertion failure' F 0=Ω:Α GSIGNAL 8 F shy←

0}

VECTOR Vol.25 No.4

 87

The left argument Α of win is a group table. It is standardized by doing
Α[0;]ΙΑ , whence the group elements are Ιm and the identity element is 0 .
These properties permit the computation of the “all but” sums to be simplified
from {g/(Ω≠Ιm)/u[h]}¨Ιm to (?.≠AΙm)g.×h .
 mgrp←{Ω|?.×AI 1=Ω∨ΙΩ} � group table for × modulo Ω

 mgrp 7

1 2 3 4 5 6

2 4 6 1 3 5

3 6 2 5 1 4

4 1 5 2 6 3

5 3 1 6 4 2

6 5 4 3 2 1

 mgrp 9

1 2 4 5 7 8

2 4 8 1 5 7

4 8 7 2 1 5

5 1 2 7 8 4

7 5 1 8 4 2

8 7 5 4 2 1

mgrp Ω computes the group table for the integers under multiplication modulo
Ω . The group elements are the numbers co-prime to Ω .
 m←88

 h←random mΡm

 I h = win h

58

 I h = (mgrp 89) win h

5

 I h = (mgrp 115) win h

87

 I h = (mgrp 178) win h

27

 I h = (mgrp 184) win h

77

 I h = (mgrp 230) win h

82

VECTOR Vol.25 No.4

 88

 I h = (mgrp 276) win h

58

Even though win h and (mgrp 276) win h result in the same person (58)
writing his hat number, the lists of written numbers are different:
 win h
41 9 72 79 53 39 7 8 32 72 85 26 45 47 2 16 46 80 53 ...

 (mgrp 276) win h

70 39 78 9 47 11 47 52 48 20 70 32 26 60 2 76 46 16 ...

 (win h)[58]

5

 ((mgrp 276) win h)[58]

5

 h[58]

5

Collected definitions
assert←{Α←'assertion failure' F 0=Ω:Α GSIGNAL 8 F shy←

0}

I←{Ω/ΙΡΩ}

mgrp←{Ω|?.×AI 1=Ω∨ΙΩ} � group table for × modulo Ω

random←{Grl←7*5 F ?Ω} � reproducible random numbers

win←{

 � winning strategy based on group table Α for hat

numbering Ω

 assert Ω=Ιm←ΡΩ:

 Α←m|?.+AΙm � default is + modulo m

 assert(ΡΑ)≡m,m:

 assert Α≡CΑ: � must be abelian

 G←Α[0;]ΙΑ � standardize group table

 g←{G[Α;Ω]}¨ � group operation

 gi←{G[Ω;]Ι0}¨ � inverses

 (Ιm) g gi (?.≠AΙm)g.×Ω

}

VECTOR Vol.25 No.4

 89

References
1. http://www.jsoftware.com/pipermail/general/2007-June/030272.html
2. http://www.jsoftware.com/pipermail/chat/2007-June/000514.html

VECTOR Vol.25 No.4

 90

Function design
by Kai Jaeger (kai@aplteam.com)

Designing functions is something many APLers don’t pay much attention to. They
just carry on. This article covers some of the topics associated with function design.
In particular it discusses different ways of how to pass parameters, when (and why)
to create a direct function (dfn) and when a traditional function (tfn) and why
honouring the DRY principle (don’t repeat yourself) might be a good idea.

Passing parameters to functions
Passing parameters is something people tend to spend little time on. It’s so
natural to pass some data as an argument, what’s there to ponder about? Well, a
lot actually. There are so many different ways to do this that it is worthwhile to
figure out what’s best for certain circumstances.
Note that the techniques discussed rely on Dyalog because they rely on
namespaces. They also assume �IO←0 and �ML←3 .
The early days
Passing parameters in the first versions of APL was a serious limitation to the
language: there was just a right argument or a left and a right argument, and one
could only pass simple arrays. This is sufficient for problems that are somehow
“mathematically oriented”. For normal programming tasks however we more
often than not need more than just 2 parameters.
Nested Arrays
Only with the introduction of nested arrays did APL become a real programming
language: nested arrays made it possible to pass as many parameters as needed.
Mandatory and optional parameters
Often we can make a difference between parameters which are mandatory and
those which are optional. In the past I often tended to provide mandatory
parameters as the right argument and optional ones as the left argument. How to
provide the mandatory parameters seemed to be obvious: define a sequence,
often called fixed parameters.

VECTOR Vol.25 No.4

 91

Name-value pairs
For optional parameters it is less obvious. Fixed parameters are naturally not an
option but what about name-value pairs? This allows us to specify a vector of
two-item arrays like this one:
 parmsH''
 parms,HÉ 'hide' 1
 parms,HÉ 'workdir' 'C:\App'
 parms,HÉ 'debug' 0

Let’s assume that we have a function Foo which takes just one mandatory
parameter. The name-value pairs we’ve just defined allow us to specify them as
optional parameters:
 parms Foo someArray

Alternatively, we can provide no optional parameters at all:
 Foo someArray

That’s all well and good but there are a couple of obstacles we have to deal with.
First of all, if we specify just one optional parameter:
 (É'hide' 1) Foo someArray

we must enclose the single pair to ensure conformability. You might think that
this can be avoided by investigating the left argument within Foo and deal with it
appropriately depending on its depth but you might find this surprisingly
difficult and error prone depending on the parameters you expect: if the second
item of a name-value pair can be nested itself trouble is looming.
Two scalars also pose a problem:
 (É'a' 1) Foo someArray

It is also not particularly easy to check the parameters for being valid. What
about case sensitivity? Shall “hide” and “Hide” both be treated as a valid name for
a certain parameter? Last but not least you have to assign the values to variables
inside Foo .
Nothing of this is particularly laborious but you need to care about these
problems.
Namespaces to the rescue
Now there is another approach which is ridding us of all these problems
effortlessly. Look at this:

VECTOR Vol.25 No.4

 92

 parmsH�NS' '
 parms.hideH1
 parms.workdirH'C:\App'
 parms.debugH0

In the first line we create a new unnamed namespace and assign it to parms. To
rephrase it: parms is now a reference pointing to an empty namespace. We then
create variables inside this namespace with the appropriate values.
Now we can pass this namespace as left argument:
parms Foo someArray

Looking at this from inside Foo there are some differences:
We don’t need to bother about the format of the left argument.
We don’t need to establish variables – we already have them.
As a bonus the parameters are separated from other local variables in the
function.
All this makes this solution significantly more attractive than name-value pairs,
but there is even more. Look at this function:
[0] parmsHCreateParmsForFoo
[1] :Access Public Shared
[2] R Creates a namespace with default values for all
[3] R optional parameters of method Foo
[4] parmsH�NS''
[5] parms.hideH1
[6] parms.workdirH'C:\App'
[7] parms.debugH0

Note that the first line makes this a public shared method. Now let us assume that
CreateParmsForFoo and Foo are methods of a class “Sample”. Let’s also assume
that Foo has a line :Access Public Shared . When you consider calling the
method Foo with a certain parameter different from its default you can now do
this:
 myParmsH#.Sample.CreateParmsForFoo
 myParms.hideH0
 myParms Foo E

From a user’s point of view this is not different except that a) she cannot forget to
enclose a single pair, b) she can stop worrying when passing two scalars. Most
importantly, if she is interested in the default values processed by Foo she
doesn’t need to look into Foo anymore, or combing through documentation.

VECTOR Vol.25 No.4

 93

Inspecting the contents of the namespace gives the answer. In short: life is easier
now from a caller’s point of view.
Other examples are overloaded constructors of classes. Depending on the
number of parameters as well as the data types of the parameters somehow
automatically the correct constructor is executed. That sounds nice but it has a
clear drawback: it makes reading and understanding a statement like the
following one harder than necessary not only because of the positional
parameters provided but also because there is no easy way to find out the
defaults for the parameters not specified:
 �NEW Sample ('hello' 1 (3 4) 'universe')

Obviously these statements:
 myParmsH#.Sample.CreateParmsForFoo
 myParms.hideH0
 myParms Foo E
 �NEW Sample (,ÉmyParms)

are more readable but also provide an easy way to inspect the defaults.
Adding a “List” method
We can make the caller’s life even more comfortable by adding one more line to
CreateParmsForFoo :
E
[7] parms.debugH0
[8] parms.�FX'rHList' 'rH{Ω,Ê~¨Ω}r�'' ''¨p�nl 2'

Now after assigning the result of the function to a variable my one can say:
 my.List
debug 0
hide 1
workdir C:\App

That is certainly a nice way to investigate the contents of the parameter space.
Checking optional parameters
For a programmer it is also more convenient to deal with namespaces rather
than name-value pairs. Think of how to make sure that such a namespace
contains just the variables it’s supposed to contain. Our method could achieve
that quite simply:
[0] {optional}Foo array;f;b;msg;l
[1] :Access Public Shared
[2] :If 0=�NC'optional'

VECTOR Vol.25 No.4

 94

[3] optionalHCreateParmsForFoo
[4] :ElseIf 0<1�Ρoptional.�NL 2
[5] lHr�' '¨poptional.�NL 2
[6] :AndIf 1�bHrl�CreateParmsForFoo.List[;0]
[7] msgH'Invalid optional parameter',((1<+/b)/'s'),': '
[8] 11 �SIGNALhmsg,�{Α,',',Ω}/b/r�' '¨poptional.�NL 2
[9] :EndIf
[10] R ...

Line 3 creates optional with default settings in case no left argument was
provided.
Line 4 checks whether optional is empty. If it is not…
Line 6 checks whether we have a problem. If we have one than b (for Boolean)
can be used as a mask.
Line 7 compiles a proper message and…
Line 8 adds the name(s) of the problem case(s), performs some formatting
gymnastics and throws an error.
If we now do this:
 parmsHCreateParmsForFoo
 parms.whatIsThatH'?'
 parms.HideH0
 parms Foo 1

we get
Invalid optional parameters: Hide,whatIsThat

because the parameter “Hide” was misspelled.
Obviously this way of specifying parameters has advantages for both, the user of
a function (or method) as well as the implementer of it.
References as parameters
So far we have restricted the stuff a parameter space can contain to variables.
There is a good reason to lift that restriction. Think of a parameter refToUtils.
Obviously his parameter is expected to be a reference to a namespace that holds
utilities. Presumably the default is just #. In order to deal with references we
need to change the List function so that it also reports references:
 parms.�FX'rHList' 'rH{Ω,[0.5]~¨Ω}'' ''r¨hp�nl 2 9'

VECTOR Vol.25 No.4

 95

Constants
Sometimes you might want to add a “parameter” which can’t actually be changed
because its value depends on the environment and can be worked out by the
CreateParmsFor function itself. Why would you want to add this? To give the
programmer an easy way to actually look at the information. That is not only
convenient; it also makes clear that this value is taken into account by the
program the parameter space is going to be fed to. But the user must not change
it, so a variable is not appropriate. APL has no concept of what is called a
Constant in most other programming languages. Niladic functions to the rescue:
∇rHIS_DEVELOPMENT
[1] rH'Development'O3�'#'�WG'APLVersion'
∇

Strictly speaking this is not a constant, but a niladic function poses convincingly
as a constant. In most other programming languages names for constants use
uppercase letters; that makes them easy to recognize. This seemed to be a good
idea so I adopted this here.
Enhancing “List”
To include our pseudo-constants we need to make sure that List is taking
functions into account but without List itself, therefore we localize List:
parms.�FX'rHList;List' 'rH{Ω,[0.5]~¨Ω}'' ''r¨hp�nl 2 3 9'

Finally the information what name class a certain parameter actually belongs to
is sometimes valuable, so we add it to the result returned by List:
parms.�FX 'rHList;List' 'rH{(Ω,[0.5]�NC Ω),~¨Ω}'' ''r¨hp�NL 2 3 9'

Our function would now look like this:
rHCreateParmsForFoo
:Access Public Shared
R Creates a namespace with default values for all
R optional parameters of method Foo
rH�NS''
r.hideH1
r.workdirH'C:\App'
r.debugH0
r.�FX'rHIS_DEVELOPMENT' 'rH''D''O3 1�''#''�WG''APLVersion'''
r.refToUtilsH#
fnsH'rHList;List' 'rH{Ω,Ê~¨Ω}r�'' ''¨p�nl 2 3 9'
r.�FX fns

Let’s check:

VECTOR Vol.25 No.4

 96

 parmsHCreateParmsForFoo
 parms.List
 IS_DEVELOPMENT 3.1 1
 debug 2.1 0
 hide 2.1 1
 refToUtils 9.2 #
 workdir 2.1 C:\App

That’s exactly what we are looking for; job done.

Direct functions or traditional functions?
When direct functions were introduced by Dyalog my first thought was
something along the lines of “well, nice, but there are more important things we
need right now.” That was a long time ago; we called them dynamic functions
back then. Boy has my opinion changed since then! Today about 90% of the
functions I write are direct functions. Why is that?
Name scope
First of all it’s about name scope: when a variable is created in the direct function
(also called dfns or curlies because of the curly brackets {}) all the variables
created inside that function are local by default. In order to create a true global
you have to say:
 �THIS.MyGlobalH'something'

Even better: “local” really means local: in traditional functions every local
variable created in a function can be seen be functions called within that function
like a global which is the reason why they are sometimes called semi-globals.
There is no such problem in dfns: local really means local.
You think that’s not that important? Allow me to tell you a story emphasizing the
fact that it is important: In the early eighties I worked for a client who ran VSAPL
on a mainframe. My task was to maintain and enhance a large program written
by somebody who had moved on. One day I inserted a new comment into the
main function, the one executed by �LX . An hour or so later I got feedback from
users claiming that the results were rubbish. It took me a while to make the
connection: was it me who was to blame for the problem because I added the
comment line? A short investigation showed that this was unlikely: the program
did not do any branching with → , so how could the new comment line make a
difference?

VECTOR Vol.25 No.4

 97

I went for the pragmatic approach anyway and removed the comment line. Then
I restarted the program and asked the users. They reported that now the
program’s results were back on track.
But why was that? As it turned out the function had a couple of labels defined,
despite not using branching in that function. That was not unusual in these days:
the original author used labels not only for branching but also for documentation
purposes. Now in a traditional APL function a label is simply an integer variable
and its value is the line number, and they are also semi-globals.
As it turned out deep in the calling hierarchy there was a function which used
branching, and it tried to jump to a label with a name also used in the main
function. Unfortunately the programmer forgot to specify the label. Rather than
causing a VALUE ERROR APL managed to find a variable with that very name on
the stack. Finally the value of that variable (=the line number) was good enough
to let the function with the missing label do its job.
When I introduced my comment line, the label got a new value; in the function
with the missing label that had a consequence: one line that was executed in the
past was now simply ignored. Unfortunately this did not make the program fail, it
rather created wrong results. This is a perfect example why local should really
mean local.
Drawbacks of dfns
Unfortunately direct functions come with drawbacks, some of which could be
removed easily by Dyalog:
• There are no stop vectors. Despite the editor pretending otherwise dfns do

not honour stop vectors. There are rumours that this will be fixed in
version 13.2.

• If in a direct function a value is assigned twice to a variable “foo” then the
second assignment effectively creates a new variable “foo” shadowing the
first one. “So what?!” you might ask, but this has a nasty side effect when
you try to watch changes made to a variable by opening an edit window on
that variable: that works brilliantly with tfns but not at all with dfns: the
new value is not shown because a new variable is created, and the editor
does not care about this new variable.

• Sometimes people complain that it is a disadvantage that you cannot have
named arguments with dfns, therefore reducing readability; right, good
point, but nothing stops you from saying (parm1 parms anotherParm)←Ω

VECTOR Vol.25 No.4

 98

in the first line of your dfns which has the same effect. Like in tfns these
three variables are local by definition, so everything is okay.

• Sometimes a :For loop or a :Select statement has its merits, in
particular when it comes to debugging, but in those rare cases one can still
write a tfn.

DRY and functional programming
DRY[1,2] stands for “don’t repeat yourself”. It means that any piece of
information should only have just one representation in an application. Easy to
understand examples are:
• The name of an application which is repeatedly shown in window cap-

tions.
• The main key of all Windows Registry entries used in an application.
• Rather than repeating these pieces of information over and over again it

should come from just one source, be it a variable or the result of a
function call. In these cases the advantages are obvious: in case of a change
one needs to change just one single line in the application and the job is
done.

However, there are less obvious cases: when a certain piece of code gets used in
two or more different places then this is already good enough a reason to put it
into a separate function. Let’s discuss this by looking at a real life example.
Calculating index positions
With the help of direct functions calculating index positions can be done by the
expression {Ω/ΙΡΩ} . Is assigning this expression to a function name a good idea
or not? According to the DRY principle the answer must be yes. Reality proved
that this is true.
There was a longstanding bug in Dyalog: prior to version 13.0 the expression ⍳⍬
returned �IO when it should have returned ÉË . You may think “so what?!” but
this can have quite a dramatic impact: when the expression {Ω/ΙΡΩ} gets a scalar
as argument, the result in 12.1 is very different from that in 13.0. With �IO←0 it
is:
 12.1: 0 Hm {Ω/ΙΡΩ} 1
 13.0: ÉË Hm {Ω/ΙΡΩ} 1

VECTOR Vol.25 No.4

 99

In most applications we have to make sure that the expression continues to
return �IO rather than an enclosed empty vector. Now when there is a function
defined like this one:
 WhereH{Ω/ΙΡΩ}

then obviously you change that function to
 WhereH{Ω/ΙΡ,Ω}

and your application is ready for 13.0 in this respect. Instead you might perform
a search in a big application and find plenty of places where the expression is
used. All of them need to be changed.
By following the DRY principle you are going to write code that is better to
maintain, but there is a second advantage: your functions tend to get smaller, and
that’s a good thing.
Where is the DRY principle coming from?
This is what the Wikipedia has to say:
In software engineering, Don’t Repeat Yourself (DRY) is a principle of software
development aimed at reducing repetition of information of all kinds, especially
useful in multi-tier architectures. The DRY principle is stated as "Every piece of
knowledge must have a single, unambiguous, authoritative representation within
a system.

The principle has been formulated by Andy Hunt and Dave Thomas in their book The
Pragmatic Programmer. […] When the DRY principle is applied successfully, a
modification of any single element of a system does not require a change in other
logically-unrelated elements. Additionally, elements that are logically related all
change predictably and uniformly, and are thus kept in sync.

Is the DRY principle globally valid?
Well, some big shots claim that it is not: a given test case should create its
environment, execute the test cases and then tidy up. Actually it should tidy up
(because there might be leftovers from a former test case that failed), create its
environment, perform the test and finally tidy up again.
This allows one to read the test case from top to bottom and understand what it’s
supposed to do and how it will try to do it. At the same time it’s likely to violate
the DRY principle.
Of course one has to make exceptions: if many or all test cases need a particular
environment and creating that is costly than this should be created upfront and

VECTOR Vol.25 No.4

 100

deleted after having executed the last test case. A typical example is creating a
(potentially big) data base.
Function size
Functions should be small, and most people would agree with this. But what
exactly should go into a function? Following the DRY principle will quite often
introduce plenty of small functions into an application by separating certain
parts of the code, but that alone is not enough.
Often programmers populate a function with statements that are supposed to be
executed together in terms of time. In all honesty, that is not good enough a
reason to put them together! A good advice I once got from an old-hand is that
when you have difficulties to find a proper name for a function then that function
is a candidate for splitting it into several functions.
Statements should be combined into a function when they serve a certain task.
That also makes it easier to find good names.
Names
Many people have strong views on this, but it’s probably fair to say that there is
some common ground between most people.
Avoid abbreviations
Names should clearly advertise what a function is doing. With autocomplete at
your fingertips there is no good reason to avoid clear self-explaining names.
Actually, there are not even bad reasons. Abbreviations are fine when they are
well-established: programmers would know what RC stands for, so that is fine.
But cntrs rather than countries does not save much and certainly makes a
program harder to read. It can also become an obstacle when somebody scans
code for “country”.
The trouble is that within a program you are just about to write you might find
such abbreviations handy, and reading as well as understanding them is not a
problem at all. Right, but when another programmer will take over one day she
might be in more trouble than necessary. Even you might run into this: I myself
more than once stopped looking at some code for a while, and when I came back
2 years later I found the names hard to understand.
Meaningful names
There are programmers who always name the first local variable needed in a
program with a and the next one will be b and so on. Bad move. It saves you the

VECTOR Vol.25 No.4

 101

time to find a good name which quite often is a difficult thing to do, but it makes
it harder to read.
Reasonable exceptions
If a function has only a few lines however then nothing is wrong with a statement
like this:
 lcHGetAllCountryNames Ë R List of Countries

and then using the name lc later in that function. It’s easy to read and
understand, and because the function is short the assignment line will always be
visible, so there is nothing wrong with this technique.
Side effects
One of the fundamental ideas of functional programming is to avoid side effects.
That’s why functional programming languages are back in the mainstream: side
effects are deadly in multi-threaded (or multi-cored) programs.
APL is not only a functional programming language: it was the very first
functional programming language ever. Worth to remember because these days I
keep reading claims that Lisp was the first one.
Although the general design of dfns makes it almost impossible to implement
functions that have unwanted side effects it is of course still possible to
implement dfns that actually have side effects. However, it is certainly a good
idea to try hard to avoid this or at least to make the fact obvious.
For example, it is certainly a good idea to emphasize the fact that in a dfn a global
variable is updated. Although the following statement would work in a dfn if
there is a global variable Buffer (otherwise it’s a VALUE ERROR):
 Buffer,HÉ

It might be better to say:
 �THIS.Buffer,HÉ

which makes it obvious that a global is involved here.

Conclusion
There is certainly more to say about the design of functions in general and how
we pass parameters to them. Discussing the issue with my fellow colleagues
turned out to be surprisingly difficult. It seems that APLers have particular

VECTOR Vol.25 No.4

 102

difficulties to agree on something, or shall I say anything? That’s a bit strange and
certainly not helpful. It might be one of the reasons why APL is not as successful
as it deserves to be because it stops us from doing things that other communities
have so easily achieved, for example common libraries of utilities, all developed
following certain style guidelines accepted by that community. That is certainly
true for the Ruby and the Python community, and it is likely to be true in other
communities as well. I would love to see a discussion regarding this in the APL
world, a discussion that would ideally result in a paper “APL Style Guidelines” we
can hand over to newcomers one day.

References
1. http://en.wikipedia.org/wiki/Don’t_repeat_yourself
2. Interview with Andy Hunt and Dave Thomas:

http://www.artima.com/intv/fixit.html

VECTOR Vol.25 No.4

 103

J

VECTOR Vol.25 No.4

 104

Backgammon tools in J
3: Two-sided bearoff probabilities

by Howard A. Peelle (hapeelle@educ.umass.edu)
J programs are presented as analytical tools for expert backgammon. Part 3 here
develops a program to compute probability distributions for two-sided bearoff
(without contact) and uses it to determine the probability of winning.

The inner board is represented as a list of six integers. For example, one piece on
the 5-point and one piece on the 6-point:
 board =: 0 0 0 0 1 1

Utility programs:
ELSE =: `
WHEN =: @.

Master program PD produces a list of probabilities for bearing off in increasing
numbers of rolls. Defined much like Rolls in [1], it calls PDBearoff or else
returns 1 when all pieces are off the board:
PD =: PDBearoff ELSE 1: WHEN AllOff
 AllOff =: All@(Board = 0:)
 Board =:]
 All=: And/
 And =: *.
PDBearoff =: 0: , Average@AllPDs
 Average =: +/ % #
 AllPDs =: PD"1@BestMoves

BestMoves =: PDDoubles , 2: # Better@PDSingles

doubles =: > 1 1 ; 2 2 ; 3 3 ; 4 4 ; 5 5 ; 6 6
singles =: > 1 2 ; 1 3 ; 1 4 ; 1 5 ; 1 6 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ;
3 4 ; 3 5 ; 3 6 ; 4 5 ; 4 6 ; 5 6
singles =: singles ,: |."1 singles

 PDDoubles =: doubles Best@AllMoves"1 Board
 PDSingles =: singles Best@AllMoves"1 Board
 Better =: Best@,:"1/
 Best =: {r MinIn@:(N"1)
 MinIn =: i. <./

VECTOR Vol.25 No.4

 105

Note that program N (from [1]) is used in Best to evaluate boards.
AllMoves and its subprograms are the same as in [1]:
AllMoves =: (Die2 Moves Die1 Moves Board) ELSE
 (Die1 Moves Î:4 Board) WHEN (Die1=Die2)
 Die1 =: First =: {.@Dice
 Die2 =: Last =: {:@Dice
 Dice =: [
 EACH =: &.>
Moves =: r.@;@(LegalMoves EACH <"1)
 LegalMoves =: (Possibles Move"1 Board) ELSE Board WHEN AllOff
 Possibles =: FromTo Where FromTo OK"1 Board
 FromTo =: On ,. On-Die1
 Where =: #r
 On =: Points Where Board > 0:
 OK =: Off Or Inside Or Highest
 Or =: +.
 Inside =: Last > 0:
 Off =: Last = 0:
 Highest =: First = Max@On
 Max =: >./
 Move =: Board + To J From
 From =: Points e. First
 To =: Points e. Last
 Points =: 1: + i.@6:

For example, probabilities of bearing off the board above in 0, 1, 2, 3, and 4 rolls:
 PD 0 0 0 0 1 1
0 0.166667 0.707562 0.124829 0.000943073

Such a probability distribution is related to expected number of rolls (N):
 +/ pd * i.#pd =. PD 0 0 0 0 1 1
1.96005
 N 0 0 0 0 1 1
1.96005

Further, PD can be used to determine the probability of the first player winning:
Pwin =: X/@,:&PD
 X =: +/ . * +/\.

Pwin computes the PD of both player’s inner boards, then sums products of
player 1’s probabilities times reverse cumulative sums of player 2’s probabilities
– that is, the sum of probabilities of 1 bearing off times the respective
probabilities of 2 not bearing off.

VECTOR Vol.25 No.4

 106

The result is the probability of player 1 winning the bearoff.
Example:
 0 0 0 0 1 1 Pwin 0 0 0 0 2 0
0.766415

The first player is about 77% likely to win.
The programs above are extremely inefficient, so PD should be re-defined to uti-
lize a pre-established database of probability distributions for fast look up (as
done for N in Part 1). Upon request, the author will provide a script with
efficient programs.
References

1. Peelle, Howard A. “Backgammon Tools in J (Part 1) Bearoff Expected Rolls”, Vector, Vol.
24, No. 2&3.

2. Peelle, Howard A. “Backgammon Tools in J (Part 2) Wastage”, Vector, Vol. 24, No. 4.

VECTOR Vol.25 No.4

 107

Savitzky-Golay Interpolation for
Smoothing Values and Derivatives

David Porter (dporter@cissoid.net)
Cliff Reiter (reiterc@lafayette.edu)

1 Introduction
In a previous note on image processing filters [4] Cliff observed that the Savitzky-
Golay filter could be used to smooth data, thereby removing some noise, but also
sharpening the edges somewhat. That is a classic image processing application,
[3, 8, 10]. David has noted that filters based on the Savitzky-Golay kernels are
really much more general than the case considered in that reference. Besides
smoothing values, it can provide smoothed derivatives of many orders. In fact, a
classic application is using Savitzky-Golay estimates for the first derivative to
pin-point spectral peaks [2, 9]. The usefulness of the higher order derivatives is
enhanced by the overlapping local-polynomial smoothing inherent in these
filters.
The central idea of Savitzky-Golay filters is to use best least squares polynomial
fits to approximate data; then use those polynomials to estimate data or
derivatives. The beauty is that weights may be computed ahead of time so that
the approximations can be computed very rapidly. In this note we explain how
that works, implement it in J [1], and show applications using both value and
derivative approximations to image processing.
2 Computing Weights
We begin by assuming that we want to estimate a value or derivative at the
point u0=0 and that we know the data values at lr (left radius) uniformly spaced
points to the left of u0 and rr (right radius) uniformly spaced points to the right
of u0. Thus, for purposes of our derivation and applications we assume the points
at which the data is known are lr=u−lr ,… ,u0 =0,… urr =rr. Suppose we want to use
a polynomial of degree N to approximate the data. We need lr+rr≥ N for the least
squares polynomial to be well defined. Suppose the polynomial has the
form p(u)=a0+a1 u+a2 u2+⋯ +aN uN and the corresponding values are given by vi.
That is, we desire the least squares solution to the system of equations p(ui)=vi .
In matrix-vector form this can be written as U A = V where A is the list of the
polynomial coefficients and V is the list of the data values. The matrix U has

VECTOR Vol.25 No.4

 108

entries Ui 1ptj =ui−lrj . Thus, the solution is given by A=U∗ Vwhere U∗ =(UTU)−1 is the
least-square pseudo-inverse. The pseudo-inverse is a primitive in J and APL.
In order to determine a0 =p(0) we matrix multiply (a dot product here) the first
row of U∗ times the data values V. Thus, the weights we use as a filter to estimate
the values are given by the first row of U∗ . Likewise, the row with
index k estimates ak. A standard fact about the coefficients for McLaurin
polynomials is that ak =p(k)(0)/k!. Thus, to estimate the kth derivative, the weights
we want are given by the row of U∗ with index k times k!. We implement this in J
as sgw shown below. Its left arguments are the order of the derivative and
degree of the polynomial. The right argument is the left and right radii to use. The
expression to the right of %. computes the matrix U. The pseudo-inverse is
computed. The expression (!@[*{) selects the row and multiplies by the
factorial. We see some examples of weights below. The last one of those gives the
weights that will approximate the first derivative using a degree three
polynomial by utilizing two points to the left and right of the data point of
interest.
 sgw=: 4 : 0
({.x)(!@[*{)%. (({.y)-ri.1+({.+{:)y) Î/ i. 1+{:x

)

 0 1 sgw 2 2
0.2 0.2 0.2 0.2 0.2

 0 3 sgw 2 2
_0.0857143 0.342857 0.485714 0.342857 _0.0857143

 1 1 sgw 1 1
_0.5 0 0.5

 1 3 sgw 2 2
0.0833333 _0.666667 4.48235e_17 0.666667 _0.0833333

Next we define the matrix product and check that when we multiply actual
polynomial data times these weights we get the appropriate derivatives. We use
the fourth degree polynomial with coefficients 5 4 3 2 1 for these examples.
 mp=:+/ . *

 p=:5 4 3 2 1&p.

 ((0 4 sgw 3 3)mp p i:3); p 0
+-+-+
|5|5|
+-+-+

 ((1 4 sgw 3 3)mp p i:3); p d.(1) 0

VECTOR Vol.25 No.4

 109

+-+-+
|4|4|
+-+-+
 ((2 4 sgw 3 3)mp p i:3); p d.(2) 0
+-+-+
|6|6|
+-+-+

 ((3 4 sgw 3 3)mp p i:3); p d.(3) 0
+--+--+
|12|12|
+--+--+

 ((3 4 sgw 2 4)mp p i:3); p d. (3) _1
+---+---+
|_12|_12|
+---+---+

The last of those illustrates what happens when the left and right radii are
different. With two points on the left, a point of interest, and four points on the
right and independent variable based on i:3 , we see _1 is the point of interest
in the polynomial’s coordinates (which is not the same as the analysis
coordinates).
3 Applying Filters to Oscillations
Before discussing the Savitzky-Golay filter on image data, we will take a look at
its behaviour on illustrations that have been modified with some standard
normal noise. In this section we consider oscillations of varying frequency. We
generate the standard normal values using randsn from povkit2.ijs from
the fvj3 add-on. Figure 1 shows the oscillations and a noisy variant.
 require 'raddons/graphics/fvj3/povkit2.ijs'

 require 'plot'

 y=: sin *: 0.01 *i.1000

 plot y,:rz=:(0.1* randsn 1000)+y

VECTOR Vol.25 No.4

 110

Figure 1: Oscillations and added noise.

Our goal is to, as best possible, recover the original (red) curve from the noisy
data (blue).
In order to compare the data to the result of a Savitzky-Golay filter on the data it
is convenient to extend the data and we will extend the data in a constant
manner using context, repeating the first and last values an appropriate number
of times. The conjunction SG takes the derivative order and polynomial degree as
its left argument and the right argument is the radius. The conjunction extends
the data in a constant manner and applies the filter (m sgw n)&mp to all the
windows of appropriate size. Below we compute Savitzky-Golay weights with left
and right radii 15 so that we will be using windows of width 31. Fifth degree
polynomials are being used. The result is shown in Figure 2; this Savitzky-Golay
filter (red) smooths the data substantially, but still has some noise and edge
artefacts.
 conext=:1&$: : ((#,:@:{.),],(#,:@:{:))

 3 conext i.5
0 0 0 0 1 2 3 4 4 4 4

 SG=:2 : '(1+2*n)&((m sgw n)&mp\)@:(n&conext)'

 f1=: 0 5 SG 15

 plot z,:rf1 z

VECTOR Vol.25 No.4

 111

Figure 2: Savitzky-Golay filter preserves amplitude.

Note that that Savitzky-Golay filter does a fine job of recovering the proper
amplitudes. That is in contrast to what happens when a simple moving average is
used instead, as seen below and in Figure 3. Namely, amplitude information is
lost. Other filters may damage frequency or phase information. Note that the
Savitzky-Golay weights are uniform when linear functions approximate values,
so we can obtain a radius 15 moving average with f2 below.
 0 1 sgw 2 2
0.2 0.2 0.2 0.2 0.2

 f2=: 0 1 SG 15
 plot z,:rf2 z

Figure 3: Ordinary moving averages lose amplitude information on narrow peaks.

VECTOR Vol.25 No.4

 112

4 Applying Filters to Edges
There are three parameters to the Savitzky-Golay algorithm that must be chosen.
The following examples of computer generated edges (step functions) help
illustrate the behaviours these parameters control. Figure 4 shows two steps, one
pure and the other has noise added to it.
 st=: 100<:i.200

 plot rst=: st,st+0.1*randsn 200

Figure 4: Step functions: pure and noisy.

Figure 5 show the effects of changing the smoothing window radius when using a
Savitzky-Golay filter using the zeroth derivative, a zero degree polynomial, and a
smoothing window radii of 5, 10, and 15 pixels. This is equivalent to a running
average with 11, 21, and 31 sample points. As can be seen, the noise is reduced
with larger radii and the edges become broadened and less steep.
 plot 0 0 SG 5 rst

 plot 0 0 SG 10 rst

 plot 0 0 SG 15 rst

VECTOR Vol.25 No.4

 113

VECTOR Vol.25 No.4

 114

Figure 5: Smoothed with radius 5, 10, and 15 filters.

In Figure 6 the Savitzky-Golay parameters are set for zeroth derivative, a 5 point
smoothing window radius, and the polynomial order 0, 2 and 4. The noise at
higher polynomial orders contains more high frequency components and
overshoot is apparent at the pure step.
 plot 0 0 SG 5 rst

 plot 0 2 SG 5 rst

 plot 0 4 SG 5 rst

VECTOR Vol.25 No.4

 115

VECTOR Vol.25 No.4

 116

Figure 6: Smoothed with radius 5 and polynomials of degree 0, 2 and 4.

In Figure 7 the first four derivatives are calculated. Each one is calculated with a
polynomial one order larger than the derivative and the smoothing window
radius is set at 5 pixels. The filter computed first derivative of a step function is a
Gaussian. The peak marks the location of the edge very accurately. The zero-
crossings of even order derivatives mark the location of the edge. The peaks of
odd order derivatives mark the location of the edge. The overshooting skirts of
the odd order peaks are a part of the high-order derivative and can be used to
help identify them in high noise. The location is preserved to a high degree of
accuracy.
 plot 1 2 SG 5 rst

 plot 2 3 SG 5 rst

 plot 3 4 SG 5 rst

 plot 4 5 SG 5 rst

VECTOR Vol.25 No.4

 117

VECTOR Vol.25 No.4

 118

Figure 7: Derivatives of order 1, 2, 3 and 4 and polynomials one degree higher.

VECTOR Vol.25 No.4

 119

The higher derivatives shown in Figure 7 are almost lost in the noise. Readers are
encouraged to retry these experiments using radii 10 and 15 to observe the
higher derivatives more clearly while the precise location of the lower
derivatives becomes less apparent.
We have seen that often using a polynomial of degree one higher than the order
of the derivative is advantageous because ringing is minimized. However, we also
see that in some circumstances, such as the previous section, one may need to
use higher degree polynomials in order to retain high frequency information.
5 Filtering a Beaver Photo
We will consider the application of Savitzky-Golay filters involving values and
first and second derivatives. We begin with values. The idea is very similar to the
above data filtering except that we apply the filter in two dimensions of a raster
image. For simplicity we will use a grayscale image. The image3 addon
contains filter1.ijs which has facilities for for converting between color models. In
particular, the "Y" component of "YUV" space gives a good grayscale [5]. The
image used below may be found at [6] although readers may want to experiment
with their own images.
 require 'raddons/media/image3/color_space.ijs'

 require 'raddons/media/image3/view_m.ijs'

 $b=:read_image 'C:/temp/dscf3950.jpg' NB. modify path/image
names
2736 3648 3

 BW256 view_data g=:0{"1 RGB_to_YUV b
3648 2736

Figure 8 shows the resulting greyscale image. We use view_data with a greyscale
palette since it automatically rescales data not in the to 255 range. The photo was
taken in moderately adverse conditions: the evening light was dim, the beaver
was moving, and there were high contrast reflections of sky and clouds.

VECTOR Vol.25 No.4

 120

Figure 8: A swimming beaver.

The first of the following filters produces a Savitzky-Golay filter using radius 7
(which gives 15 by 15 blocks of pixels) and degree 7 polynomials. The result is
the array sgg which can be viewed. The other examples arise from cubic
polynomials with radii 7 and 11 respectively. It is possible to see the
improvement in the full scale image, but the differences are somewhat subtle.
Instead, we pixel peek at two small portions of the image.
 sgv=: 1 : 0
f=.(0,{.m) SG ({:m)
f f"_1 y
)

 BW256 view_data sgg=:7 7 sgv g
3648 2736

 zm1=:3 : '200 200{.600 500}.y'

 spix=:[##"_1

 BW256 view_data 5 spix g ,.&zm1 sgg
2000 1000

VECTOR Vol.25 No.4

 121

 BW256 view_data 5 spix (3 7 sgv g) ,.&zm1 3 11 sgv g
2000 1000

First we peek at a reflection of the sky and clouds using zm1 defined above to
zoom into a small portion of the image. The function spix replicates pixels in
blocks so they become apparent. Figure 9 compares the degree 7 polynomial
with radii 7 filtered version with the original. The noise is noticeably reduced but
the boundary between regions remains distinct, unmoved and slightly clarified.
Figure 10 shows the same zoom but with radii 7 and 11 and degree 3
polynomials. Notice these give much more smoothing.

Figure 9: Cloud boundary before and after filtering.

Figure 10: Cloud boundary after heavier filtering.

VECTOR Vol.25 No.4

 122

Similar zooms are used zoom into the edge of the beaver with water where
whiskers are visible. In Figure 11 we observe that despite significant smoothing,
the whiskers not only remain, but are slightly enhanced. There the degree 7
polynomial with radius 7 filtered version is compared with the original. Figure
12 shows the filters with radii 7 and 11 with degree 3 where damage to the
whiskers is observed.
 zm2=:3 : '200 200{.1050 1400}.y'

 BW256 view_data 5 spix g ,.&zm2 sgg
2000 1000

 BW256 view_data 5 spix (3 7 sgv g) ,.&zm2 3 11 sgv g
2000 1000

Figure 11: Beaver and water. Whiskers remain.

VECTOR Vol.25 No.4

 123

Figure 12: Beaver and water. Whiskers damaged by heavy filtering.

Thus we see that the desire to enhance different features may affect our choice of
filter and no one filter is ideal for all purposes.
6 Sobel and Laplacian Filters based upon Savitzky-Golay
A classic method for edge detection is to use length of the gradient vector;
namely, the square root of the sum of squares of the first partial derivatives as
follows.

Usually those partial derivatives are computed using divided differences of
nearby pixels. The method is effective, but sensitive to noise in those pixels. We
compute the derivatives using 7 by 7 Savitzky-Golay approximations and
contrast that with the divided differences from [6]. In Figure 13 we see that the
edges are distinctly highlighted. The divided difference version shows many
noise artefacts.
 lxy=:+&.*:

 3 lxy 4
5

 sob=:1 : 0
d=.(1,{.m) SG ({:m)

VECTOR Vol.25 No.4

 124

(d y)lxy d"_1 y
)

 BW256 view_data 5 spix zm2 3 7 sob g
1000 1000

 BW256 view_data 5 spix zm2 3 7 sob g
1000 1000

 dx=: 1 2 1 */ 1 0 _1

]dy=: |:dx
 1 2 1
 0 0 0
_1 _2 _1

 filt2=: *&dx +&.:*:&(+/@,) *&dy

 sobel=: 3 3&(filt2;._3)

 BW256 view_data 5 spix zm2 sobel g
1000 1000

Figure 13: Sobel edges using Savitzky-Golay derivatives (left) and using classic divided differences (right).

The Laplacian is the sum of the second order derivatives with respect to the
independent variables: ∂2v/∂ x2+∂ 2v/∂ y2. Again, these are traditionally
estimated using nearby pixels and are susceptible to the noise in those pixels. We
use Savitzky-Golay estimates to reduce the noise in the second order derivatives.
In Figure 14 we see that it detects edges with an up-down band.
 lap=:1 : 0
d=.(2,{.m) SG ({:m)
(d y)+d"_1 y

VECTOR Vol.25 No.4

 125

)

 BW256 view_data 5 spix zm2 3 5 lap g
1000 1000

 BW256 view_data 5 spix g ,.&zm2 g+2 2 lap g
2000 1000

Figure 14: Laplacian shows edges with an up-down band.

One application of the Laplacian is that when it is added to the original image in
some cases the edges can be clarified and noise reduced. Figure 15 shows the
original data and the data added to a Laplacian filter with radius and degree 2.
Notice that a remarkable amount of noise has been removed.
 BW256 view_data 5 spix g ,.&zm2 g+2 2 lap g
2000 1000

VECTOR Vol.25 No.4

 126

Figure 15: Image and image added to its Laplacian.

7 Image Processing a Disk
We finish by offering a few lines that interested readers could use to investigate
these Savitzky-Golay image processing tools on an abstract image of a disk.
Readers might enjoy trying to predict the result based upon the discussion
earlier in this note.
 BW256 view_data dot=:1>2*lxy/r(i:%])500
1001 1001
 BW256 view_data 1 10 sgv dot
1001 1001
 BW256 view_data 1 30 sgv dot
1001 1001
 BW256 view_data 3 30 sgv dot
1001 1001

 BW256 view_data 2 15 sob dot
1001 1001
 BW256 view_data 5 15 sob dot
1001 1001
 BW256 view_data 2 2 sob dot
1001 1001

 zm3=:3 : '200 200{.500 600}.y'
 BW256 view_data 3 5 lap dot
1001 1001
 BW256 view_data 5 spix dot ,.&zm3 dot+3 2 lap dot
2000 1000

VECTOR Vol.25 No.4

 127

References
1. Jsoftware, J6.01c, with Image3 and FVJ3

addons, http://www.jsoftware.com, 2007.
2. Anthony J. Owen, Uses of Derivate

Spectroscopy,http://www.chem.agilent.com/Library/applications/59633
940.pdf.

3. William H. Press et al, Numerical recipes: the art of scientific computing,
3rd ed., Cambridge University Press, 2007.

4. Cliff Reiter, With J: Image Processing 1: Smoothing Filters, APL Quote
Quad , 34 2 (2004) 9-15.

5. Cliff Reiter, With J: Image Processing 2: Color Spaces, APL Quote Quad , 34
3 (2004) 3-12

6. Cliff Reiter, Fractals, Visualization and J, 3rd ed., Lulu.com, 2007.
7. Cliff Reiter, Beaver

image, http://webbox.lafayette.edu/~reiterc/j/vector/index.html.
8. John C. Russ, The image Processing Handbook, 5th edition, CRC Press,

2006.
9. A. Savitzky and M.J.E. Golay, M.J.E., Smoothing and Differentiation of Data

by Simplified Least Squares Procedures, , Analytical Chemistry 36 8 (1964)
1627–1639.

10. Wikipedia, Savitzky-Golay smoothing
filter http://en.wikipedia.org/wiki/Savitzky-Golay_smoothing_filter

VECTOR Vol.25 No.4

 128

Subscribing to Vector
Your Vector subscription includes membership of the British APL Association, which is
open to anyone interested in APL or related languages. The membership year runs from
1 May to 30 April.
Name __
Address __
 __
Postcode/Zip and country __
Telephone number __
Email address __

UK private membership £20 ___
Overseas private membership £22 ___
+ airmail supplement outside Europe £4 ___
UK corporate membership £100 ___
Overseas corporate membership £110 ___
Non-voting UK member (student/OAP/unemployed) £10 ___

Payment methods (Sterling only)
1. A Sterling cheque, payable to British APL Association, drawn on a UK bank.
2. By American Express, MasterCard or Visa:
I authorize you to debit my American Express/MasterCard/Visa account
Number: ____________________________________ Expires: ____/____
for the membership category indicated above.
Signature: ___________________________________ Date: ___________
3. By electronic transfer.
Our account details are: Barclay’s Bank; Cambridge, Chesterton Branch; Sort
code: 20-17-35; Account number: 63955591; Account name: British APL
Association; SWIFTBIC: BARCGB22; IBAN: GB86 BARC 2017 3563 9555 91.
4. Use PayPal to credit account treasurer@vector.org.uk (no account needed –
ask for details).
If you pay by cheque or credit card, please send the completed form to:
BAA, c/o Nicholas Small, 12 Cambridge Road, Waterbeach, Cambridge CB25 9NJ

Privacy Policy
Your personal information
will be stored on computer
but not disclosed to third
parties. Card data will not be
stored on computer.

