
VECTOR Vol.26 No.2&3

1

Editorial 3
BAA	Chairman’s	report	2014 5BAA	AGM	Minutes	2014 6Dyalog 9Optima	Systems	Ltd 124xTra	Alliance 13APL2000	User	Conference	2014 15
SwedAPL	April	2014 2226
Impending	kOS 3135
One	reason	that	APL	is	so	cool 41Notation	as	a	tool	of	proof 45A	tool	of	thought 50Table	Diff 61A	letter	from	Dijkstra	on	APL 69Legacy	code,	survival	strategies	and	Fire 7692
J-ottings	57,	Heavens	above! 99Squares,	neighbours,	probability,	and	J 106All	integer	partitions:	J	programs	compared 110

Minnowbrook	conference	review:September	14–18,	2013
Searching	for	the	state	in	which	WonderfulThings	are	inevitable

Writing	a	simple	Japanese	dentist	officesystem	in	APL2

Contents
John	Jacob

News Paul	GrosvenorJohn	JacobMorten	KrombergPaul	GrosvenorChris	Hogan	
General Gilgamesh	AthorayaSteve	Mansour

Stephen	TaylorGianfranco	Alongi
APL Brian	BeckerRobert	PullmanDan	BaronetDhrusham	PatelRoger	K.W.	HuiKai	JaegerKyosuke	Saigusa
J Norman	ThomsonJohn	C.	McInturffHoward	A.	Peelle

VECTOR Vol.26 No.2&3

2

Editorial
Mankind	only	 sets	 itself	 such	problems	as	 it	 can	 solve;	 since,	 looking	atthe	matter	more	closely,	it	will	always	be	found	that	the	task	itself	arisesonly	when	the	material	conditions	for	 its	solution	already	exist	or	are	atleast	in	the	process	of	formation.	Karl	Marx,	A	Contribution	to	the	Critique	of	Political	Economy(1859)

OK	so	I	stole	the	above	quote	form	the	preface	to	David	Lewis-Williams	-	The	Mindin	 the	 Cave(2002).	 In	 this	 book	 the	 author	 seeks	 a	 methodology	 for	 analysingpalaeolithic	art.In	 putting	 together	 this	 issue	 the	 quotation	 seemed	 to	 be	 appropriate	where	 thematerial	 conditions	 exist	 for	 Robert	 Pullman	 to	 employ	“Notation	 as	 a	 tool	 for
proof”;	Dan	Baronet	to	use	APL	as	“A	tool	for	thought” ;	and	Brian	Becker	to	give	us
“One	reason	APL	is	cool”	in	their	respective	articles.Then	for	material	conditions	in	the	process	of	formation	there	is	Stephen	Taylor’sarticle	“Impending	 kOS”	 in	 which	 he	 recounts	 Arthur	 Whitney	 and	 his	 team‘sprogress	towards	kOS.Later,	 at	 the	 August	 meeting	 of	 BAA	 London,	 Stephen	 Taylor	 remarked	 that	 hiscurrent	 apprentice	 Dhrusham	 Patel,	 had	 in	 his	 debut	 article	“Table	 Diff”	 foundhimself	modifying	his	examples	to	clarify	his	thoughts	for	the	reader.This	year	 is	 the	 thirtieth	 since	 the	 Eirst	publication	of	Vector	 and	 I	 should	 like	 tomark	 this	 in	 some	 way	 in	 the	 next	 issue.	 To	 this	 end	 I	 would	 welcome	 anysuggestions,	anecdotes,	photographs	or	whatever.Earlier	 this	 year	 at	 the	 AGM	 in	 May	 there	 was	 a	 suggestion	 that	Vector	 shouldpublish	a	section	of	useful	links	to	resources	and	material	of	general	interest	to	theAPL	community.	Here	again	I	would	like	to	invite	suggestions.
John	Jacob

VECTOR Vol.26 No.2&3

3

News
VECTOR Vol.26 No.2&3

4

BAA	Chairman	-	Paul	Gosvenor

BAA:	Chairman’s	Report	2014
Paul	Grosvenor	(paul@optima-systems.co.uk)

Once	again	our	production	team	has	beenworking	to	produce	this	edition	which	forthe	 second	 time	 comes	 with	 some	 pagesin	colour.	We	would	very	much	like	yourinput	and	views	as	to	whether	or	not	thisadds	or	subtracts	from	our	journal.	Thereis	a	small	increase	in	costs	as	a	result	butsigniEicantly	 less	 than	 if	 we	 printed	 thewhole	thing	in	colour.	I	think	it	adds,	butwhat	about	you,	please	let	us	know?This	 year	 our	 AGM	 was	 held	 on	 Friday23rd	May,	for	the	Eirst	we	also	ran	it	as	awebinar	 to	 allow	 even	 more	 of	 you	 to	 attend,	 especially	 those	 outside	 the	 UK.Those	 of	 you	who	 elected	 to	 come	 to	 our	meeting	 in	 person	 attended	 the	 groupmeeting	held	at	the	same	time	in	the	Albion	in	London	as	we	have	done	in	the	past.I	hope	that	you	will	have	received	our	new	BAA	Newsletter.	We	aim	to	send	out	aregular	bulletin	to	keep	all	of	our	members	up	to	date	with	what	 is	going	on	andwe	can	include	any	news	or	links	that	are	appropriate	from	you.	Please	let	us	knowif	 there	 is	 anything	 that	 you	 would	 like	 including	 and	 we	 will	 do	 our	 best	 todistribute.	 If	 you	 have	 not	 seen	 the	 Newsletter	 please	 check	 your	 spam	 Eilter	 incase	it	has	gone	in	there.	We	hope	you	enjoy!I	hope	you	are	pleased	with	our	journal	and	look	forward	to	seeing	some	of	you	atthe	forthcoming	conferences	and	just	to	finish	off,	a	comment	from	Roger;“I	 started	 in	1966	on	an	APL	machine	 that	weighed	15,000	 tons,	when	 Itravelled	from	Hong	Kong	to	San	Francisco	on	the	S.S.	President	Wilson	ofthe	American	President	Lines.” —	Roger	HuiThank	goodness	for	the	microchip	…..

VECTOR Vol.26 No.2&3

5

BAA	AGM	Minutes	2014
John	Jacob	(editor@vector.org.uk)

Minutes	of	the	British	APL	Association	AGM	2014	held	on-line	by	webinar	and	atThe	Albion,	3	New	Bridge	Street,	London	EC4	on	Friday	23	May	20141.	 The	Minutes	of	the	2013	AGM	(as	published	in	Vector	26:1)	were	accepted	bygeneral	consensus	of	those	present.2.	 Report	from	the	ChairmanWith	apologies	from	Paul	Grosvenor,	Peter	Merrit	(Acting	Chair)	presented	theChairman’s	report	on	his	behalf.We	continue	to	see	some	colour	added	into	Vector,	I	hope	everyone	Einds	that	agood	thing	to	see.	The	Eirst	BAPLA	newsletter	went	out	in	December	2013	andare	 planning	 to	 send	 a	 further	 two	 throughout	 the	 year	 so	 if	 anyone	 hasanything	 to	 announce	 then	we	 are	willing	 to	 include	 that	 as	 a	 service	 free	 tomembers.BAA	 London	 continues	 to	 meet	 regularly	 and	 my	 thanks	 to	 their	 team	 forallowing	us	to	piggy	back	this	AGM	on	their	meeting.We	have	started	to	broadcast	our	meetings	as	webinars	where	appropriate	andfor	 those	 of	 you	 listening	 in	 today	 a	 special	 welcome.	 Its	 early	 days	 but	 theproduction	team	are	trying	and	make	this	as	easy	as	possible	for	everyone.	Weare	hoping	to	publish	some	of	the	talks	that	are	captured.	Jake	is	in	the	processof	editing	those	at	the	moment.This	year	sees	the	thirtieth	aniversary	of	the	Eirst	publication	of	Vector	which	isquite	 an	 achievement.	 Later	 in	 the	 year	 we	 would	 like	 to	 publish	 a	 bumperedition	and	we	would	like	as	many	BAPLA	members	as	can	to	contribute.	Thesecontributions	 can	 take	 any	 form	 you	 like,	 one-liners;	 doodles;	 embarassingphotographs;	or	old	articles.	It	really	does	not	matter	this	is	your	chance	to	getinvolved	in	making	this	quite	an	issue.Asked	 what	 were	 the	 deadlines	 for	 submission	 to	Vector.	 John	 Jacob(Jake)conEirmed	 that	 there	wasn't	 a	 deadline	 as	 such	 rather	 that	 an	 issue	 of	Vectordepended	on	accumulating	sufficient	copy	to	send	for	print.

VECTOR Vol.26 No.2&3

6

Asked	 if	Vector	 were	 available	 in	 PDF	 form.	 John	 Jacob	 conEirmed	 that	 PDFversion	was	made	available	to	sustaining	members	at	print	time,	with	plans	tomake	it	publicly	available	at	a	later	stage.3.	 Report	from	the	Treasurer	&	Membership	Secretary	(Nicholas	Small)Very	 little	 change	 in	 our	 Einancial	 situation	 with	 total	 receipts	 just	 under£3,000	and	payments	just	under	£3,000.	Cost	of	posting	Vector	overseas	beingthe	most	significant	part.	Chris	Hogan	(Auditor)	confirmed	the	accounts.Number	 of	Vectors	 subscribed	 for	 is	 down	 by	 thirty-Eive.	 Five	 of	 theseaccounted	for	by	Soliton	ceasing	subscription.	The	overall	circulation	of	Vectorwas	around	325	with	about	ten	copies	to	libraries.Nicholas	Small	confirmed	that	dues	for	BAPLA	membership	fell	due	when	at	theend	of	a	volume	of	Vector.Peter	Merit	 conEirmed	 that	 a	 large	 package	 had	 been	 included	 in	 the	 Dyalogconference	pack.
British	APL	Association	-	summary	of	annual	accounts

Summary	of	income	and	expenditure/receipts	and	payments:

Income/Receipts
2013/14
(R&P)

2012/13
(R&P)

2011/12
(R&P)Subscriptions 2,964.42 7,142.75 3,793.00Other 0.00 217.00 0.00Total	receipts 2,964.42 7,359.75 3,793.00

Expenditure/PaymentsMeetings 0.00 0.00 0.00Administration 17.25 0.00 36.00Vector	production	and	despatch 2,639.01 2,265.85 3,882.00Conferences	and	seminars 113.92 0.00 0.00Other 157.13 104.40 69.00Total	payments 2,927.31 2,370.25 3,987.00
Assets	summary:Bank	and	other	balances 12,246.10 12,195.61 7,049.00Debtors 1,197.50 3,527.50 3,183.00Creditors -6,425.00 -7,955.00 -3,165.00Net	assets 7,018.60 7,768.11 7,066.00

VECTOR Vol.26 No.2&3

7

BAPLA	membership	at	May	2014	(after	Vector	26:1)	(volume	25	figures	in	parentheses)
UK FOREIGN TOTAL

Number Vectors Number Vectors Number VectorsSustaining* 5(5) 23(23) 5(5) 42(42) 10(10) 65(65)Corporate* 0(1) 0	(5) 2(2) 15(15) 2(3) 15(20)Corp.	Ind* 5(5) 5	(5) 2(2) 2(2) 7(7) 7(7)Individual 48(56) 47(55) 129(147) 129(147) 177(203) 176(202)Non-voting 14(16) 14(16) 0(0) 0(0) 14(16) 14(16)Life 0(0) 0	(0) 0(0) 0(0) 0(0) 0(0)Library 1(1) 1	(1) 2(4) 2(4) 3(5) 3(5)Russians 11(11) 11(11) 11(11) 11(11)APL	Groups 12(12) 34(34) 12(12) 34(34)325(360)*Add	 the	 Vector	 numbers	 in	 these	 rows	 to	 get	 the	 total	 subscribed	 for	 bycorporate	and	sustaining	members4.	 Committee	 for	2014/2015:	 It	was	 suggested	 that	 as	 no	 applicants	 for	 postshad	 been	 received	 that	 the	 existing	 committee	 be	 returned,	 proposed	 PaulGrosvenor	seconded	by	Ronny	Simon.5.	 Appointment	of	Auditor:	The	current	auditor	(Chris	Hogan)	was	proposed	byJohn	Jacob	and	seconded	Ronny	Simon.	Accepted	by	those	present.6.	 General	QuestionsThere	was	a	discussion	as	to	whether	Vector	should	be	encouraging	vendors	toshare	 more	 of	 their	 material	 as	 a	 way	 to	 encourage	 a	 much	 more	 a	 holisticcommunity	 for	 APL	 rather	 than	 the	 different	 vendors	 encouraging	 their	 owncommunities.	There	was	general	agreement	that	a	section	in	Vector	with	usefullinks	to	sites	or	other	material	and	some	initial	candidates	were	identified:LinkedIn	group:	APL-	A	Programming	Languagehttps://www.linkedin.com/groups/APL-Programming-Language-1805002[kx]	Technology	Networkhttps://www.linkedin.com/groups?home=&gid=773547Iversonianshttps://www.linkedin.com/groups/Iversonians-44369?home=&gid=44369APLWiKi	-	http://aplwiki.comcomp.lang.apl	-	http://groups.google.com/forum/#!forum/comp.lang.aplBAA	London	-	http://groups.google.com/forum/#!forum/baa-london

VECTOR Vol.26 No.2&3

8

https://www.linkedin.com/groups/APL-Programming-Language-1805002
https://www.linkedin.com/groups?home=&gid=773547
https://www.linkedin.com/groups/Iversonians-44369?home=&gid=44369
http://aplwiki.com/
https://groups.google.com/forum/#!forum/comp.lang.apl
https://groups.google.com/forum/#!forum/baa-london

Dyalog	Ltd
Morten	Kromberg

2014	has	been	another	year	of	increasing	activity	for	everyone	at	Dyalog	Ltd!	Oneof	 the	 encouraging	 trends	 that	 we	 have	 noticed	 is	 that	 array	 language	 usermeetings	seem	to	be	on	the	rise.	In	addition	to	the	monthly	BAA	London	meetings,which	we	try	to	attend	regularly,	members	of	the	team	have	participated	in	threeAPL	User	Meetings	in	Europe	this	spring:	SwedAPL	in	Stockholm	and	the	FinnAPLForest	Seminar	in	April,	and	APL	Germany	in	Stuttgart	in	May	(all	of	these	groupsmeeting	twice	a	year).	July	was	incredibly	hectic	–	in	addition	to	hosting	our	ownseminar	 for	 Dyalog	 users	 in	 New	 York,	 we	 dispatched	 delegations	 to	 IversonCollege	in	Cambridge,	UK,	and	the	J	Conference	in	Toronto,	Canada.Many	 of	 our	 presentations	 at	 these	 meetings	 have	 focused	 on	 one	 of	 the	 mostexciting	new	 language	 features	of	version	14.0,	 futures	and	 isolates.	These	aim	toput	 the	 power	 of	 parallel	 hardware	 at	 the	 Eingertips	 of	 both	 expert	 and	 noviceusers	by	making	it	easy	to	make	asynchronous	function	calls.
Version	14.0Version	 14.0	 is	 the	 most	 signiEicant	 new	 release	 since	 v11.0	 added	 support	 forobject-oriented	 programming.	 It	 has	 been	 available	 on	 all	 supported	 platforms(Microsoft	Windows,	IBM	AIX,	Intel	and	ARM	Linux)	since	June	30th.	Highlights	ofversion	14.0	include:Performance	enhancements	in	the	language	engine;	early	adopters	havereported	speed-ups	of	10-30%	without	application	code	changes.File	system	speed-ups	and	functional	enhancements,	including	the	ability	toautomatically	compress	file	components	and	read	several	components	in	asingle	operation.Several	new	primitive	language	features,	including	the	operators	rank	and	key,the	function	tally,	and	function	trains	(similar	to	those	in	the	J	language).	Manyof	these	enhancements	have	the	potential	to	further	enhance	applicationthroughput	(and	simplify	your	code)!New	APL	language	constructs	designed	to	make	it	straightforward	to	usedistribute	computation	across	multiple	processors	without	relying	on	locks	orsemaphores	for	synchronisation	(futures	and	isolates).

VECTOR Vol.26 No.2&3

9

An	experimental	compiler	that	can	reduce	interpreter	overhead	of	small	utilityfunctions.Syncfusion	libraries	for	Windows	Presentation	Foundation	and	Javascript	arebundled	with	Dyalog	version	14.0,	making	it	significantly	easier	to	build	state-of-the-art	applications	for	desktop	and	web	deployment.Data	Binding	with	Microsoft	.NET	components	allows	APL	applications	to	sharedata	in	real	time	with	WPF	GUI	components	and	other	tools	that	support	databinding.An	interface	to	the	R	framework	for	statistical	computing.
New	Platforms,	and	the	Remote	IDEIt	is	our	intention	to	add	support	for	several	new	platforms.	If	all	goes	according	toplan,	 then	 version	 14.1	 will	 add	 ofEicial	 support	 for	 MAC	 OSX	 in	 Q1	 of	 2015(contact	us	 if	 you	would	 like	 to	help	us	 test	 the	new	platform	 in	Q4).	Android	 isprobably	 next,	 and	 we	 are	 also	 looking	 at	 iOS	 and	 “Windows	 Modern”.	 A	 keycomponent	 of	 the	 plan	 is	 to	 provide	 a	 new	 graphical	 development	 environment,the	 Remote	 Integrated	 Development	 Environment	 (RIDE),	 that	 will	 provideconsistent	 functionality	 on	 all	 platforms.	One	 of	 the	main	 features	 of	 the	RIDE	 isthat	 you	 can	 run	 the	 RIDE	 and	 your	 APL	 engine	 on	 different	 machines.	 Forexample,	you	will	be	able	to	use	a	Windows-based	RIDE	to	develop	and	maintainapplications	running	under	AIX	and	Linux	–	or	on	remote	or	inaccessible	WindowsServers.
New	Web	Site	and	Social	Media	ChannelsOn	 the	 same	 day	 that	 v14.0	 was	 released,	 we	 launched	 a	 completely	 reworkedwebsite.	 If	 you	 want	 to	 read	 more	 about	 version	 14.0	 and	 download	 the	 500+pages	 of	 related	 documentation	 and	 tutorials,	 then	 please	 visithttp://www.dyalog.com.	 The	 site	 includes	 a	 blog,	 which	 will	 have	 frequentcontributions	 from	members	 of	 our	 development	 team,	 many	 of	 them	 involvingRaspberry	 Pi-driven	 robots.	 We	 also	 launched	 active	 presences	 on	 Twitter,Facebook	 and	 LinkedIn,	 in	 addition	 to	 our	 own	 forums	 athttp://forums.dyalog.com.	We	 hope	 that	 these	 new	 initiatives	will	make	 it	mucheasier	to	stay	informed	about	our	activities	and	both	new	and	old	functionality	ofour	 products.	 Please	 follow	 Dyalog	 on	 one	 or	more	 of	 these	 channels	 to	 receiveregular	updates	from	us	–	none	of	the	resources	require	you	to	have	a	licence	forany	of	our	products.

VECTOR Vol.26 No.2&3

10

Another	successful	Annual	Programming	ContestThis	year,	http://studentcompetitions.com	hosted	and	ran	 the	contest	 for	us,	andthis	deEinitely	extended	our	reach.	About	40	students	submitted	Phase	I	solutions,and	nearly	20	made	it	all	the	way	through	both	phases	of	the	contest.	This	year’swinner	 of	 the	 $2,500	 grand	 prize	 is	 Emil	 Bremer	 Orloff	 from	 the	 University	 ofAarhus,	Denmark,	who	also	wins	a	trip	to	the	Dyalog	User	Meeting	in	Eastbourne.The	 winner	 of	 the	 new	 category	 for	 non-students,	 where	 the	 prize	 is	 freeconference	attendance,	 is	 Iryna	Pashenkovska	from	SimCorp	Ukraine.	We	hope	tosee	them	both	next	month!
Come	to	the	Dyalog	User	Meeting!For	the	Eirst	time	in	the	last	decade,	the	Dyalog	User	Meeting	2014	returns	to	theUK;	 it	 will	 be	 held	 on	 the	 south	 coast	 of	 England	 in	 Eastbourne	 on	 21st-25thSeptember	.	With	a	month	to	go	we	already	have	over	100	registered	participants,so	we	are	on	track	to	set	a	new	all-time	record!	By	the	time	this	goes	to	press,	hotelrooms	at	 the	conference	hotel	will	almost	certainly	be	sold	out;	 fortunately	 thereare	many	alternatives	nearby.Last	 year	we	 recorded	 about	 25	 of	 the	main	 conference	 sessions	 –	 for	 a	 total	 ofnearly	16	hours	of	viewing.	If	you	were	not	fortunate	enough	to	attend	the	meetingat	Deerfield	Beach	in	Florida,	make	sure	to	visit	http://video.dyalog.com	and	watchthe	 recordings	 from	 this	 and	 several	 earlier	 conferences.	 Highlights	 of	 the	 2013meeting	include:The	Stormwind	Simulator	–	by	Tomas	Gustafsson,	winner	of	the	main	categoryin	Apps4Finland	competition	(more	athttps://www.facebook.com/Apps4Finland)Computer	Science	Outreach	and	Education	with	APL	–	by	Aaron	Hsu	of	theUniversity	of	IndianaSocial	Skills	for	Programmers	–	by	our	own	John	ScholesWe’ll	be	recording	as	many	sessions	as	we	can	in	Eastbourne.	However,	if	you	wantto	network	with	other	array	language	users	in	addition	to	watching	presentationson	 both	 new	 and	 mature	 applications	 of	 Dyalog	 APL,	 or	 attend	 tutorials	 andworkshops	on	version	14.0	 features	 and	associated	 tools,	Eastbourne	will	 be	 theplace	to	be	in	the	penultimate	week	of	September!

VECTOR Vol.26 No.2&3

11

Optima	Systems	Ltd	–	Industry	News	August	2014
Paul	Grosvenor	–	Managing	Director

First	off	let	me	welcome	Mike	Mingard	to	the	team.	Mike	has	just	joined	us	as	ourGraphics	Designer	and	UI	expert.	Since	joining	us	he	has	already	had	a	huge	impacton	many	of	our	developments.	They	are	now	looking	good	and	behaving	better!Talking	 of	 behaving	 better	 our	 three	 trainees	 (aka	 “The	 Three	 Blind	 Mice”)	 arecoming	on	very	well	and	now	getting	involved	with	many	of	our	clients.	We	haveeven	had	a	few	come	back	to	say	how	impressed	they	were.	Now	I	don’t	know	howmuch	they	paid	them	but	that	does	not	happen	very	often	!We	 also	welcome	our	 new	Apprentice,	 Callum,	who	 joins	 us	 after	 completing	 his“A”	 level	qualiEications.	We	hope	 that	Callum	will	be	a	great	addition	 to	 the	 teamoverall.	 He	 has	 completed	 his	 APL	 course	 at	 Dyalog;	 next	 stop	 will	 be	 the	 userconference	in	Eastbourne.	Callum	has	a	blog	for	anyone	to	see	how	he	gets	on.On	 the	 subject	 of	 user	 conferences	we	 sent	 a	 group	 of	 Eive	 staff	members	 to	 theDyalog	conference	in	Miami	last	year	which	was	very	enjoyable	and	uplifting.	Ourthree	trainees	showed	off	their	robots	which	rather	surprisingly	made	it	across	theAtlantic	without	too	much	damage.	Follow	their	progress	on	their	blog.Our	 COSMOS™	 data	 visualisation	 product	 continues	 to	 move	 from	 strength	 tostrength	with	a	number	of	contracts	now	starting.	Most	of	the	product	activity	hasbeen	 in	America	 through	 our	 partner	 company	Galileo	Analytics	 but	we	 hope	 tostart	a	sales	pipeline	in	Europe	and	UK	shortly.Our	Swedish	subsidiary	Data	Analytics	Sweden	AB	 from	which	much	of	our	R&Dwork	will	be	performed	is	now	up	and	running.	It	is	from	here	that	the	COSMOS™product	and	other	technologies	will	get	built,	tested	and	distributed.We	 can	 now	 offer	 a	 large,	 multi-disciplined	 APL	 team	 plus	 all	 the	 back-up	 andancillary	services	to	be	expected	of	a	larger	software	development	company.	Withthe	 addition	 of	 Mike	 we	 now	 also	 have	 a	 fully-Eledged	 graphic	 design	 facility	 tocomplete	our	design	package.We	expect	the	next	twelve	months	to	be	even	more	exciting	than	the	last	!

VECTOR Vol.26 No.2&3

12

4xtra	Alliance	-	News
by	Chris	Hogan	(chris.hogan@4xtra.com)

For	 those	of	 you	who	have	 started	 reading	 this	 issue	of	Vector	by	 turning	 to	 theback	cover	(I	will	resist	the	temptation	to	make	some	joke	about	"isn't	that	what	allAPLers	 do?"	 -	 ah	 I've	 gone	 and	 done	 it),	 you	 might	 notice	 the	 apparentdisappearance	 of	 HMW	 Computing	 as	 a	 sustaining	 member	 and	 a	 "new"	 oneappearing	in	its	place	-	the	4xtra	Alliance.	So	time	for	a	little	explanation.Firstly,	HMW	hasn't	vanished,	but	the	new	arrangement	reElects	what	has	actuallybeen	happening	for	several	years.HMW	Computing	started	over	30	years	ago,	with	the	somewhat	more	long	windedname	 of	 "HMW	 Programming	 Consultants".	 We	 changed	 our	 name	 to	 HMWComputing	 back	 in	 the	late	 80s	 to	 show	we	were	 (and	 really	 always	 had	 been)doing	more	 than	 "mere"	 programming	 and	 that	 by	 that	 time	we	were	 primarilysupplying	4xtra	-	a	foreign	exchange	trading	system	4X-	Tra	-	rather	than	being	ateam	of	freelance	consultants.Indeed	4xtra	continued	to	be	our	primary	focus	 for	over	seventeen	years.	Duringthat	 time	 HMW's	 personnel	 line-up	 changed	 signiEicantly	 and	 the	 use	 of	 4xtraseemed	to	go	into	decline.	I'm	afraid	that	although	we	were	pioneers	in	the	Eield	ofelectronic	 trading	 systems,	 we	 simply	 weren't	 a	 large	 enough	 organization	 tocompete	(we	thought)	when	the	bigger	players	moved	into	the	field.So	 we	 were	 a	 little	 surprised	 when	 a	 client	 came	 back	 to	 us	 because	 our	 APLsystem	 could	 still	 out	 perform	 a	 new	 platform	 written	 in	 C++	 using	 a	 Sybasedatabase.	The	problem	was	then	to	support	this	client	at	short	notice.	So	we	turnedto	 two	 former	 employees	 of	 HMW,	 John	 Jacob	 and	 Phil	 Last,	 who	 by	 then	 wererunning	 their	own	 companies.	 The	 solution	 was	 a	 joint	 venture	 between	 HMW,John	Butler	Associates	and	Phil	Last	Limited	to	support	the	client.This	arrangement	has	adapted	 to	changes	so	well	 it	has	survived	the	client	beingtaken	 over,	 Phil	 converting	 to	 a	 sole	 trader	 and	 Jake	 becoming	 an	 employee	 ofOptima	systems.Now	 of	 course	 Jake	 is	 the	 editor	 of	 Vector,	 Phil	 the	 events	 ofEicer	 and	 I	 (ChrisHogan)	am,	for	my	sins	the	auditor	of	the	British	APL	Association,	although	I	do	tryto	help	out	elsewhere	too,	if	not	on	the	committee.

VECTOR Vol.26 No.2&3

13

We	have	decided	that	it	is	Einally	about	time	the	sustaining	membership	of	the	BAAreElects	 the	 reality	of	 the	way	we've	been	working	 for	 the	past	14	years.	So	 fromnow	 on	 the	 membership	 will	 be	 in	 the	 name	 of	 the	 4xtra	 Alliance,	 rather	 thanselfishly	showing	only	HMW.You	 might	 also	 have	 noticed	 that	 4xtra	 has	 a	 different	 address	 than	 HMW	 -	wethought	we	 had	 better	 update	 our	 details	with	 another	 change	which	 happenedalmost	three	 years	 ago.	 Hamilton	House,	 our	 ofEices	 since	 1987	was	 an	 excellentlocation	when	most	of	our	clients	were	in	the	City	of	London	and	we	had	anythingup	 to	 14	people	 in	 the	 ofEice	 at	 once,	 but	 proved	 less	 so	when	 our	 clients	 havebecome	 more	 scattered	 geographically	 and	 most	 of	 our	 work	 is	 now	 doneremotely.	 So	 in	 2011	 faced	 with	 increasing	 costs	 and	 changes	 to	 the	 terms	 andconditions	of	our	 lease,	we	sadly	vacated	the	ofEices	which	had	been	our	base	 for25	years.Beyond	these	formalities	nothing	has	changed.	Jake,	Phil	and	I	still	operate	as	threeseparate	 entities,	 but	 we	 assist	 each	 other	 with	 our	 APL	 activities	 and	 bandtogether	as	4xtra	whenever	we	need	more	resources	and	it	suits	the	needs	of	ourclients.	So	you	should	be	able	 to	see	all	 three	of	us	 if	you	come	along	 to	 the	nextBAA	London	meeting.

VECTOR Vol.26 No.2&3

14

APL2000	User	Conference	2014
APL2000	Welcomed	Attendees	in	Fort	Lauderdale,	FloridaOn	 March	 23-25,	 2014,	 APL	 enthusiasts	 gathered	 at	 the	 Gallery	 One	 FortLauderdale–	 A	 Doubletree	 Suites	 by	 Hilton,	 for	 the	 APL2000	 User	 Conference2014.	The	hotel	was	beautifully	situated	along	the	scenic	Intracostal	Waterway,	8miles	 from	 the	 Fort	 Lauderdale/Hollywood	 International	 Airport	 (FLL)	 and	 3blocks	from	the	beach.Conference	 attendees	 reElected	 thediversity	 among	 users	 of	 APL2000software.	 They	 are	 diverse	 both	 in	 thebroad	 span	 of	 industries	 in	 which	 theywork	 as	 well	 as	 the	 size	 of	 theirbusinesses.	 APL2000	 customers	 areindustry	 leaders	 in	 the	 Eields	 of	 Einance,insurance,	 healthcare,	 aerospaceengineering,	 employee	 beneEits,	 airlineand	travel	and	many	others	both	in	the	US	and	abroad.The	 conference	 had	 a	 full	 agenda	 focusing	 on	 new	 developments	 in	 APL2000products	 and	 various	 topics	 of	 interest	 to	 APL	 programmers	 including	 multi-threading	options	to	increase	processing	performance,	using	the	C#	Script	Engineto	 access	 the	 .NET	 framework	 directly	 from	 APL+Win	 and	 techniques	 toincorporate	APL+Win	applications	in	cross-platform	solutions.A	comprehensive,	3-day	“Introduction	to	APL”	class,	taught	by	Kevin	Weaver,	washeld	simultaneously	with	the	APL2000	User	Conference.At	 the	 APL2000	 Conference	 two	 years	 ago	 Professor	 Spyros	Magliveras,	 a	 notedcryptology	 expert	 from	 the	 Center	 for	 Cryptology	 and	 Information	 Security	 atFlorida	Atlantic	University	gave	a	very	interesting	presentation	on	his	use	of	APLin	 cryptology.	 For	 the	 past	 several	 years,	 under	 APL2000’s	 Education	 Program,APL2000	has	 provided	 Florida	Atlantic	University	with	APL+Win	 licenses	 at	 no-cost	to	Professor	Magliveras’	students.	APL2000	was	pleased	to	welcome	two	of	hisstudents,	 Olga	 Shukina	 and	 Jessie	 Adamski,	 who	 gave	 presentations	 about	 howthey	used	APL+Win	to	complete	their	Master’s	theses.

VECTOR Vol.26 No.2&3

15

Conference	Session	Descriptions
Catching	Up	on	APL+Win	(John	Walker)This	presentation	highlighted	 the	new	enhancements	 in	APL+Win	version	12,	13and	14	since	the	APL2000	User	Conference	2012.Performance	 improvement	 for	 repetitive	 catenation;	Improved	 support	 forWindows	 visual	 styles	 in	 APL+Win;	APL+Win	 ActiveX	 engine	 Unicode	 executionmethods;	Improved	 APL	 Session	 Logging;	⎕CSE	 –	 Interface	 to	 the	 APLNext	 C#Script	Engine;	:FOREACH	control	structure.
Multi-threading	in	APL+Win	(Jairo	Lopez,	Joe	Blaze,	Pik	Ng)An	 overview	 of	 multi-threading	 topics	 (including	 operation	 grouping	 andindependence,	 data	 marshalling,	 asynchronous	 execution	 and	 performancemonitoring)	were	presented.APLNext	Application	Server	for	multi-machine	processingAPLNext	Supervisor	for	multi-cpu	processingAPLNext	C#	Script	Engine	for	multi-core	processing
Windows	Event	Log	and	APL+Win	(Brian	Chizever)What	is	the	Windows	Event	Log?	Why	would	you	want	to	use	it?	Techniques	andsample	APL+Win	code	to	use	the	Windows	Event	Log	were	provided.
Using	APL	to	Manage	Google	Earth	(John	Magill)Google	 Earth	 is	 a	 readily	 available	 tool	with	many	 useful	 features	 and	 potential.However,	the	syntax	is	rather	cumbersome	and	not	particularly	dynamic.	APL+Winprovides	an	easy	way	to	produce	Google	Earth	maps	and	use	them	dynamically	forstrategic	 decision	making.	 John	Magill	 demonstrated	 the	 PATMIR	 III	 program	 hedeveloped	in	APL+Win	with	funding	from	the	World	Bank	and	the	Government	ofMexico.
APL+Win	⎕CSE	System	Function	Interface	to	the	APLNext	C#	Script	Engine	-
Part	1	(Jairo	Lopez,	Frank	Yang,	Joe	Blaze)The	⎕CSE	system	function	empowers	the	APL+Win	developer	with	direct	access	to100%	 of	 the	 .Net	 Framework	 4.5	 without	 the	 need	 for	 Visual	 Studio.	 The	 CSEimplementation	 rationale,	 features,	 object	 model	 and	 documentation	 werepresented.

VECTOR Vol.26 No.2&3

16

APL+Win	⎕CSE	System	Function	Interface	to	the	APLNext	C#	Script	Engine	-
Part	2	(Jairo	Lopez,	Frank	Yang,	Joe	Blaze)Advanced	CSE	features	(e.g.	deEining	.Net	classes,	GUI	tools	in	.Net,	consuming	.Netevents)	were	presented	including	detailed	CSE	examples	for	symmetric	encryption,variable	precision	arithmetic,	Linq	queries,	XML	serialization,	Windows	event	 logand	Windows	Active	Directory.
APL+Win	as	a	Web	Server	(Jairo	Lopez,	Joe	Blaze,	Pik	Ng)APL+Win	 is	 a	 terriEic	 tool	 to	 implement	 complex	 algorithms.	 Deploying	 analgorithm	to	browser-	or	mobile-based	users	is	easy	when	APL+Win	is	exposed	asa	web	service.	Depending	on	 the	expected	deployment	scope,	APL+Win	 functionsin	 workspaces	 on	 a	 server	 can	 be	 exposed	 as	 a	 web	 service	 using	 WindowsCommunication	 Foundation	 (WCF)	 or	 APLNext	 Application	 Server	 technologies.The	APLNext	Application	Server	is	now	available	in	the	traditional	APL+Win	web-server-based	version	and	the	new	APL+Win	module	integrated	with	Microsoft	IIS.
Thor	-	An	APL	Expert	System	to	Assess	Corporate	Health	(Eric	Baelen)Originally	 written	 in	 the	 1980's	 for	 Touche	 Ross	 Audits	 to	 help	 assess	 non-Einancial	 risk,	 Eric	was	 recently	 asked	 to	 update	 it.	 Eric	 answered	 questions	 like“What's	 it	 like	 to	 take	 an	 APL	 system	 written	 for	 the	 Intel	 8086	 processor	 andmove	 it	 to	 APL+Win,	 the	 Internet	 and	 a	 javascript	 GUI?”.	 While	 making	 thispresentation,	Eric	took	attendees	down	memory	lane	as	he	shared	with	us	his	40year	relationship	with	APL.
Workspace	Recovery	(Brain	Chizever)Once	 you	 release	 your	 application	 to	 a	 user,	 what	 do	 you	 do	when	 they	 say	 "itwon't	 even	 start"!	 Learn	how	 to	 use	 the	 Crash	 Recovery	 Mechanism	 to	 handlethese	problems.
Using	.Net	with	⎕CSE	Made	Easy	-	Part	1	(Eric	Lescasse)How	about	if	you	could	use	the	new	⎕CSE	feature	(almost)	without	having	to	learn.Net,	Visual	Studio	and	C#?The	 presentation	 showed	 you	 how	 to	 create	 Objects	 in	 APL+Win	which	 supportmulti-level	 inheritance,	 visual	 inheritance	 and	 multi-cast	 events,	 etc.	 It	 showedhow	you	can	easily	document	these	objects	and	use	them	with	⎕wi.	It	showed	howyou	 can	 programmatically	 convert	 .Net	 Framework	 C#	 objects	 with	 all	 theirproperties,	 methods,	 events	 and	 documentation	 into	 such	 APL+Win	 Objects	 andstart	 using	 them	 with	 the	 good	 old	⎕wi	 that	 we	 all	 know	 how	 to	 use!	 This	 new

VECTOR Vol.26 No.2&3

17

APL+Win	Object	technology	is	called	APL+Win	zObjects.
Using	.Net	with	⎕CSE	Made	Easy	-	Part	2	(Eric	Lescasse)After	 the	 theory,	 the	 practice:	 This	 presentation	 showed	 practical	 applicationsusing	 APL+Win	 zObjects.	 Various	 APL+Win	 examples	 were	 shown	 as	 well	 asapplications	that	would	not	be	possible	to	write	with	just	APL+Win.	Among	otherthings,	 attendees	 saw	 a	 number	 of	 very	 impressive	 .Net	 controls	 embedded	 insimple	APL+Win	forms	and	how	easy	it	is	to	use	them.	The	beneEits	and	limitationsof	this	new	APL+Win	zObjects	approach	were	discussed.	Eric	Lescasse	provided	acopy	of	this	workspace	to	conference	attendees.
APL+Win	Interfaces:	R	statistical	package	(Ajay	Askoolum,	Joe	Blaze)Using	 work	 originally	 developed	 by	 Ajay	 Askoolum,	 Joe	 Blaze	 has	 extended	 theinterface	between	APL+Win	and	 the	R	statistical	and	graphics	package	 to	use	 theR.Net	 SDK	 and	 the	 new	 APL+Win	 C#	 Script	 Engine.	 Adding	 R	 functionality	 toAPL+Win,	 such	as	R-based	calculations	and	charts,	were	 illustrated	and	a	sampleworkspace	was	provided.
APL+Win	Development	Roadmap	(APL2000	Team)This	 session	 included	 a	 discussion	 of	 APL2000	 priorities	 and	 developmentpossibilities.	 An	 overview	 of	 current	 trends	 in	 the	 IT	world	was	 presented.	 Thesession	 provided	 an	 open	 forum	 for	 an	 audience	 Q&A	 session	 with	 APL2000developers.
Accessing	a	Remote	APL+Win	COM	Server	from	Excel	(Joe	Blaze,	Pik	Ng,	Tesa
Carlson)Using	 ‘service	moniker’	 support	 in	Excel	2003+,	an	Excel	workbook	can	 transmitrequests	 to	 and	 receive	 responses	 from	 a	 remote	 APL+Win	 COM	 server	 via	 asimple	WCF	web	service	which	exposes	a	‘metadata	exchange’	endpoint.
APL+Win	Implementation	and	Comparison	of	Error	Correcting	Algorithm
Performance	(Olga	Shukina)This	 APL+Win-based	 project	 performed	 data	 transmission	 across	 noisy	 channelswith	recovery	of	the	message	Eirst	by	using	the	Golay	code,	and	then	by	using	theEirst-order	 Reed-Muller	 code.	 The	 main	 objective	 of	 this	 thesis	 is	 to	 determinewhich	code	among	the	above	two	is	more	efficient	for	text	message	transmission	byapplying	 the	 two	codes	 to	exactly	 the	 same	data	with	 the	 same	channel	error	bitprobabilities.	 Comparison	 of	 the	 error-correcting	 capability	 and	 the	 practicalspeed	of	the	Golay	code	and	the	first-order	Reed-Muller	code	was	documented.

VECTOR Vol.26 No.2&3

18

Tags:	APL	and	.NET	Access	to	Your	Personal	Metadata	Cloud	(Jeremy	Main)Use	 the	 APL+Win	⎕CSE	 system	 function	 and	 other	 utilities	 to	 access	 ALL	 themetadata	 in	ALL	your	 Eiles	 including	documents,	pictures,	music	and	video.	UsingMicrosoft	Powershell	via	the	APL	C#	Script	Engine	and	other	.NET	assemblies	werediscussed	as	they	pertain	to	metadata.
APL2000	–	A	Full-Service	Software	Development	Company	(Sonia	Beekman)Although	 you	 are	 most	 familiar	 with	 APL+Win,	 APL2000’s	 Elagship	 product,APL2000	 is	a	 full-service	 software	company	providing	comprehensive	consultingand	training.	An	overview	of	APL2000	Products	and	Services	was	presented.
Driving	MS	Office	(Eric	Baelen)APL+Win	does	a	great	 job	driving	Microsoft	OfEice	(Word,	Powerpoint	and	Excel).This	 presentation	 was	 an	 overview	 of	 several	 MS	 OfEice	 toolkit	 workspacesdistributed	to	APL2000	customers.
APL+Win	Interfaces	(Joe	Blaze,	Frank	Yang,	Melissa	Farmer)APL+Win	⎕NFE	 System	 Function:	 Accessing	 Encoded	 Text	 Files	 A	 characterencoding	 is	 a	 ‘1	 to	 1’	 mapping	 of	 abstract	 glyphs	 (characters)	 to	 values	 thatrepresent	 those	 glyphs.	 The	 values	 resulting	 from	 the	 encoding	 of	 glyphs	 can	bepersisted	 and	 transmitted	 without	 ambiguity.	 The	 new	⎕NFE	 system	 functionsupports	reading	and	writing	of	native	Eiles	encoded	as	ASCII,	UTF-8,	UTF-16	andUTF-32.	APL+Win	server	used	by	RDBMS	Stored	Procedures	Relational	databasescan	 support	 pre-compiled	methods	 called	 stored	 procedures.	 The	 technology	 forcalling	APL+Win	 functions	 from	such	a	stored	procedure	using	 the	Microsoft	SQLserver	 was	 presented	 and	 a	 sample	 project	 and	 workspace	 was	 provided	 toattendees.	This	 technology	can	be	used	 to	embed	APL+Win	 functions	 in	databasestructures	such	as	an	XMLA	server,	column-oriented	conEigurations	or	distributedbig	data	deployments	(e.g.	Hadoop).	APL+Win	⎕EDITEX	System	Function:	Editor	forHeterogeneous	Data	A	prototype	of	a	new	APL+Win	editor	for	heterogeneous	andnested	data	was	illustrated	which	uses	the	latest	WPF	GUI	technology	and	directlyinterfaces	 with	 APL+Win	 to	 perform	 all	 array	 operations.	 Attendees	 received	 aworking	copy	of	the	new	editor.
Computing	Automorphism	Groups	of	Projective	Planes	(Jessie	Adamski)APL+Win	 was	 utilized	 to	 generate	 the	 full	 automorphism	 group	 of	 EiniteDesarguesian	 projective	 planes.	 This	 was	 done	 using	 homologies	 and	 theFrobenius	 automorphism,	 which	 was	 found	 by	 using	 the	 planar	 ternary	 ringderived	from	a	coordinatization	of	the	plane.

VECTOR Vol.26 No.2&3

19

The	Scavenger	Hunt	Winning	Team

Sunday	Seminar	(Jairo	Lopez,	Frank	Yang,	Tesa	Carlson,	Joe	Blaze)The	 Sunday	 Seminar	 portion	 of	 the	 conference	 has	 traditionally	 explored	 a	 fewtopics	in	greater	detail.	Frank	and	Jairo	discussed	the	power	and	simplicity	of	thenew	APL+Win	C#	Script	Engine	providing	several	sample	workspaces.	Tesa	and	Joepresented	 a	 prototype	 application	 system	which	 uses	 HTML5	 and	 javascript	 forthe	GUI,	Microsoft	ASP.Net	 for	 the	middleware	and	APL+Win	as	 a	web	 service	 tosupport	the	server-side	algorithms	and	data	persistence.
Group	Social	Events	at	the	ConferenceIn	addition	to	all	the	interesting	sessions,the	 APL2000	 User	 Conference	 providedan	opportunity	 to	 enjoy	 the	 camaraderieof	 other	 APLers.	 Attendees	 were	 treatedto	a	special	evening	at	 the	Ft.	LauderdaleAntique	Car	Museum.	The	museum	owns39	Packard	motor	cars	from	the	1900's	tothe	1940's.	A	delicious	dinner	was	servedin	 the	 middle	 of	 the	 18,000	 square	 footbuilding	 surrounded	 by	 the	 beautifulcars	 and	 the	 thousands	 of	 pieces	 ofautomotive	memorabilia.This	unique	venue	was	 the	perfect	place	 for	 a	 scavenger	hunt.	Everyone	had	 funsearching	for	the	answers.Doug	 Masto,	 APL2000’s	 BusinessManager	and	car	buff	gave	an	 interestingPowerPoint	 presentation	 with	 historicalphotos	 showing	 the	 early	 attempts	 totraverse	 the	 United	 States	 by	 Packardautomobiles.This	 quote	 from	 a	 conference	 attendeesummed	it	up	best:“I	 thoroughly	 enjoyed	 theconference.	 Everything	 about	 it	 was	 excellent.	 Kevin	 was	 a	 wonderfulinstructor,	 the	 sessions	 I	 attended	were	 very	 informative,	 the	materialsand	 Elash	drive	 are	 great	 resources,	 the	 venue	 and	 location	provided	 anexciting	 but	 relaxing	 atmosphere,	 and	 everyone	 in	 the	 APL	 communitywas	very	pleasant	and	a	joy	to	be	around.”

VECTOR Vol.26 No.2&3

20

General
VECTOR Vol.26 No.2&3

21

SwedAPL	April	2014
Gilgamesh	Athoraya	(gil@optima-systems.co.uk)

The	 Swedish	 APLers	 are	 perhaps	 not	 very	 numerous,	but	 after	 probing	 andprodding	a	 little	bit,	we	managed	 to	 Eind	each	other.	A	 Eirst	meeting	was	plannedand	executed	on	the	Eirst	week	of	April	and	was	attended	by	representatives	fromseven	companies.	This	is	our	story.
The	meetingThe	meeting	was	held	in	CGM’s	ofEice	in	Stockholm	and	by	10am	the	meeting	roomwas	 full	 of	 anticipation	 and	 every	 seat	was	 occupied.	All	 eyes	 turned	 on	me	 as	 Iwas	 stalling	while	waiting	 for	 the	 last	 couple	of	 attendees	 to	 Eind	 their	way	 in.	Afew	 minutes	 later	 we	 got	 started	 and	 after	 welcomes	 and	 greetings,	JoakimHårsman	(CGM)	launched	his	presentation.
Not	one	iotaJoakim	started	off	by	 talking	about	how	a	 seemingly	 simple	and	 innocent	 Eix	 to	abug	in	 the	APL	 interpreter	 can	 have	 unexpected,	widespread	 knock-on	 effects	 inapplications.	The	 case	 in	 point	 is	 a	 Eix	 to	 the	 result	 of	⍳⍬	 in	 Dyalog	 APL.	Wherepreviously	 the	 following	 statement	 was	 true	1≡⍳⍬	 it	 was	 corrected	 and	 is	 now
(⊂⍬)≡⍳⍬.This	 can	 and	 has	 caused	 issues	 in	 many	 applications	 that	 rely	 on	 the	 incorrectbehaviour	and	Joakim	told	us	of	a	tool	they	have	developed	to	help	in	identifyingcandidates	in	the	code	that	could	suffer	from	this.
RIDE	vs	Dyalog+Joakim	 continued	 to	 show	 us	 an	 alternative	 to	 the	 standard	 Dyalog	 IDE.	He	 hasdeveloped	an	Emacs	mode	that	he	calls	Dyalog+.	By	using	sockets	to	communicatebetween	Emacs	and	Dyalog,	he	demonstrated	how	to	use	either	IDE	to	edit	and	Eixfunctions.	This	 is	 particularly	 interesting	 for	 those	who	 are	 familiar	 with	 Emacsand/or	often	program	in	many	different	languages	as	Emacs	can	be	used	as	a	singleIDE	for	all/most	development	work.Dyalog+	doesn’t	currently	offer	the	same	features	as	the	ofEicial	RIDE	(Remote	IDE)from	 Dyalog,	 but	 Morten	 Kromberg	 (Dyalog)	 said	 the	 protocol	 for	 RIDE	may	 beavailable	once	 it	 is	 released	 and	would	 enable	 users	 to	 create	 their	 own	 IDE	 to

VECTOR Vol.26 No.2&3

22

hook	into	sessions	remotely.
AplensiaAfter	a	brief	break,	Lars	Wentzel	took	over	and	presented	Aplensia.	The	consultingEirm	is	 formed	of	seven	APLers,	most	of	whom	have	been	working	with	APL	sincethe	early	90s.	They	are	now	managing	four	major	systems,	one	for	Swedbank	andthree	 for	Volvo,	all	of	which	have	been	migrated	 from	APL2	mainframe	to	DyalogAPL	on	Windows	servers.Aplensia	was	the	launch	customer	of	the	Dyalog	File	Server	(DFS)	which	they	haveused	successfully	to	replace	a	DB2	Eile	server.	They	were	also	the	ones	to	requestIntegrated	 Windows	 Authentication	 (IWA)	via	 Conga	 (Dyalog’s	 communicationtool),	which	is	now	available	to	all	(introduced	in	Conga	v2.3).Peter	Simonsson	 talked	about	migrating	 from	APL2	 to	Dyalog	APL.	He	mentioneddialectal	 variations	 that	 required	 some	 attention,	such	as	different	 interpretationof	indexing:
A B[X] ? (A B)[X] or A (B[X])A	tool	was	developed	to	semi-automate	the	translation	of	code	(about	890k	LOC)to	the	Dyalog	APL	dialect.They	used	WPF	 to	 emulate	 the	original	 screens	 (about	400	 screens)	to	make	 thetransition	as	unobtrusive	as	possible	for	the	users.
Ways	of	workingAfter	 lunch	 break	 Gianfranco	 Alongi	 (Ericsson)	 gave	 a	 talk	 about	 how	 heconfronted	 managers’	 traditional	 views	 on	 efEiciency	 of	 developers.	His	 story	 ofhow	they	grudgingly	gave	in	to	pair-programming	only	to	face	the	concept	of	mob-programming	 was	 both	 inspiring	 and	 hilarious	at	 the	 same	 time.	You	 can	 readmore	about	this	in	his	article	in	this	same	issue	of	Vector.
News	from	DyalogNext	 up	 was	 Morten	 Kromberg	 with	 a	 summary	 of	 new	 features	 and	 tools.	Hetalked	about	the	upcoming	RIDE	which	will	make	it	much	easier	to	debug	remotesessions	as	well	as	dynamically	start/stop	and	monitor	remote	sessions.	They	haveadded	 support	 for	 .NET	 data-binding	 which	 will	 make	 it	 easier	to	 share	 databetween	 APL	 and	 .NET	 components.	He	 mentioned	 the	 Syncfusion	 GUI	 packagewhich	 is	 going	 to	 be	 bundled	 with	 Dyalog	 APL	 v14.0,	offering	 WPF	 and	 JScomponents.	There	 are	 improvements	 and	 speed-ups	 to	Dyalog	 Component	 Files(DCF)	as	well	as	a	release	of	DFS	v2.0.

VECTOR Vol.26 No.2&3

23

He	 concluded	 his	 presentation	with	 a	 demonstration	 of	 Futures	 and	 Isolates,	thenew	 features	 that	will	make	 it	 easier	 to	 harness	 the	 power	 of	 your	 hardware	byparallelising	the	execution	of	operations	in	separate,	external	processes.
Cosmos	and	big	dataFinally,	 Paul	 Grosvenor	 (Optima	 Systems)	 talked	 about	 Cosmos:	a	 graphical,analytical	tool	that	doesn't	give	you	the	answers,	but	helps	you	Eind	the	questions.The	system	is	using	MiServer	in	the	back	end	and	a	Elash	UI	on	the	client	side.	It	isa	 system	 designed	 to	 be	 easy	 to	 use	 and	 without	 requiring	 deep	 technicalknowledge,	but	powerful	enough	to	let	the	user	explore	data	in	an	intuitive	way.	 Idemonstrated	 the	 system	 brieEly	 and	 talked	 about	 the	 difEiculties	 of	taming	 dataquantities	that	grow	bigger	faster	than	you	can	say	analytics.
Group	photo

Back	row:	Stefan	Lindén,	Peter	Simonsson,	Ylva	Ljungdell,	Lars	Wentzel,	Mikael	Blomgren,
Joakim	Hårsman,	Ronnie	Sommer

Middle	row:	Tina	Leijding,	Alvin	Mattson,	Gitte	Christensen,	Gianfranco	Alongi,	Paul	Grosvenor
Front	row:	Sargon	Athoraya,	Gilgamesh	Athoraya,	Morten	Kromberg,	Gunnar	Jörtsö

Others	presentIn	 addition	 to	 the	 presentations	we	 also	 had	 representatives	 from	 Sandvik.	TinaLeijding	presented	the	company	brieEly.	Their	system	was	built	back	in	1984,	runson	 APL2	 and	 is	 hosted	 by	 IBM.	They	have	 a	 small	 team	of	APLers	 (Eive	plus	 oneconsultant)	and	are	looking	to	expand	over	the	year.A	big	group	of	APLers	from	CGM	took	the	opportunity	to	pop	in	and	out	during	theday,	most	of	whom	were	wearing	Rosetta	stone	t-shirts	with	javascript	on	one	side

VECTOR Vol.26 No.2&3

24

and	APL	on	the	other.My	brother,	Sargon	Athoraya,	attended	the	meeting	to	learn	more	about	what	I	dofor	 a	 living	 and	 claims	 to	 have	 been	 able	 to	 follow	 most	of	 the	 presentationswithout	nodding	off.
Next	meetingThe	meeting	was	 greatly	 appreciated	 and	 after	 a	 conversation	 about	 content	andfrequency	of	meetings	 it	was	agreed	that	we	will	aim	at	half-yearly	meetings	withthe	next	one	planned	for	beginning	of	October	(preliminary	date	is	9	Oct	2014).	Itwill	 be	 hosted	 by	 Aplensia	 in	 Gothenburg	 and	 open	 to	 the	 general	 public.	Moreinformation	will	follow	closer	to	the	date.
LinkedInSwedAPL	 is	a	group	on	LinkedIn.	Feel	free	to	join	the	group	to	stay	in	touch	withSwedish	APLers.

VECTOR Vol.26 No.2&3

25

Minnowbrook	conference	review:September	14–18,	2013
Steve	Mansour

I	 was	 honored	 to	 be	 invited	 to	 the	 2013	 APL	 Implementers	 Conference	 atMinnowbrook	 this	 year.	 I	 had	 been	 busy	 teaching	 statistics	 at	 the	 University	 ofScranton	 in	 addition	 to	 working	 on	 my	 doctorate	 in	 industrial	 engineering	 atLehigh	University	 and	was	 unable	 to	 attend	APL	 conferences	 for	 several	 years.	 Iwas	 privileged	 to	 have	 this	 opportunity	 to	 share	 my	 presentation,	 “TamingStatistics	with	Defined	Operators”	with	such	an	esteemed	group.

Minnowbrook	MoonsetIt	was	good	to	see	everyone	again.	It	was	surprising	how	many	APLers	in	the	groupbegan	 in	1969,	 including	Roy	Sykes,	Ron	Murray	and	Bob	Smith.	 Jim	Brown	wasnot	included	in	this	group	because	he	started	using	APL	in	1967!	There	was	a	littlesad	news:	we	were	told	that	Phil	Benkard	had	died	on	July	24,	2010.	I	shared	anoffice	with	Phil	briefly	during	my	tenure	at	IBM	and	I	learned	a	lot	from	him.The	 meals	 at	 the	 Minnowbrook	 Lodge	 were	 phenomenal	 and	 the	 bar	 was	 well-stocked	 for	 the	 ‘evening	 seminars’,	 which	 lasted	well	 into	 the	 night.	 Although	 itrained	on	one	day,	the	weather	was	perfect	on	the	last	two	days	of	the	conference.We	were	 graced	by	 the	presence	 of	 Tess	 and	Grace,	 two	black-and-white	BorderCollies	 belonging	 to	 Roy	 Sykes.	We	 had	 a	 free	 afternoon	 on	 Tuesday,	 September17th.	Many	of	the	attendees	took	a	two-hour	boat	ride	on	the	lake	while	several	of

VECTOR Vol.26 No.2&3

26

us	hiked	up	to	Castle	Rock.We	 owe	 Garth	 Foster	 a	 debt	 of	 gratitude	 for	 his	 connection	 with	 SyracuseUniversity	and	the	Minnowbrook	Conference	Center.	He	said	the	FORTRAN	peoplecould	get	rid	of	APL	by	blowing	up	Minnowbrook	since	there	was	almost	as	muchprogramming	expertise	there	as	when	Ken	Iverson	was	in	a	room	by	himself.	Whydo	we	have	meetings	in	such	a	remote	place?	Garth	said	the	remoteness	allows	usto	 brainstorm	 and	 reElect	 without	 distraction.	 Special	 thanks	 to	 Roy	 Sykes	 fororganizing	the	conference.Jim	Brown	spoke	about	the	early	years	of	APL2	as	trying	to	improve	perfection.	Heused	 the	 analogy	 of	 extending	 a	 circle	 to	 a	 sphere.	He	 spoke	 of	 the	 debates	withIverson	 about	 nested	 arrays	 and	 how	 two	 versions	 of	 APL	 emerged	with	 boxedand	enclosed	arrays.	 It	 appears	 that	APL	 took	a	 ‘fork’	 in	 the	 road	although	manyfeared	 a	 ‘train’	 wreck.	 Dijkstra	 referred	 to	 APL	 as	 “a	mistake	 carried	 through	 toperfection.”David	Liebtag	demonstrated	new	enhancements	to	his	nested	array	editor,	whichis	 now	 a	 part	 of	 Dyalog	 APL.	 Bob	 Smith	 spoke	 about	 “Progress	 on	 NARS2000”where	he	discussed	factoring	and	number-theoretic	primitive	functions,	the	whereand	array	lookup	primitive	functions	and	the	variant	primitive	operator.	Later	hegave	a	separate	talk	entitled,	“2-by-2	Syntax	Analyzer.”Bob	 Bernecky	 discussed	 performance	 problems	 with	 various	 sizes	 of	 arrays.Treating	scalars,	small	arrays	and	large	arrays	differently	versus	a	one-size-Eits-allapproach	 leads	 to	 signiEicant	 performance	 improvements.	 The	 currentoptimization	 status	 shows	 that	 scalars	 can	 be	 improved	 by	 as	 much	 as	 1300x,small	arrays	by	20x	and	large	arrays	by	10x.Jacob	Brickman	gave	us	a	lesson	in	constructing	the	real	numbers	starting	from	settheory,	and	he	discussed	extending	the	number	system	beyond	the	complex	Eield,to	quaternions	and	octonions.	There	was	a	heated	discussion	of	using	the	notation
0J1	 to	 represent	instead	 of	0I1	 and	 extending	 this	 notation	 to	 quaternions	 andoctonions.	 I	 guess	 some	APLers	don’t	 like	 this	 form	of	 ‘J’	 notation.	 IBM	saw	validreasons	for	using	either	‘I’	or	‘J’	to	denote	irrational	numbers;	the	reason	that	IBMchose	‘J’	was	that	there	was	less	ambiguity	than	‘I’	when	it	was	written	on	a	boardin	a	classroom.Bob	 Smith	 and	 I	moderated	 an	 open	discussion	 of	 expanding	 the	domain	 of	iota.The	 index	 generator	 function	 could	 be	 expanded	 to	 ‘sequence’	 with	 an	 optionalstep.	 Although	 John	 Scholes	 was	 not	 there,	 some	mention	was	made	 of	 his	a..bnotation	 to	 accomplish	 this.	 Dyadic	iota	 could	 be	 extended	 to	 allow	 a	matrix	 leftargument;	the	result	would	be	the	index	pairs	which	correspond	to	each	elementof	 the	 right	 argument.	 Another	 possibility	 would	 be	 to	 indicate	 the	 row	 which

VECTOR Vol.26 No.2&3

27

Dog	&	Pi

corresponds	 to	 the	 vector	 on	 the	 right.	 The	 variant	 operator	 would	 allow	 acomparison	method,	e.g.,	trailing	blanks	or	handling	special	cases.Morten	 Kromberg	 from	Dyalog	 discussed	 the	 Version	 14	 language	 features.	 Newoperators	 include	rank	 and	key	 as	 well	 as	trains,	 forks	 and	atop.	 In	 Dyalog	 APL,function	 trains	 of	 length	 two	 are	 equivalent	 to	 the	atop	 operator:	⍺(fg)⍵	 isequivalent	to	f⍺g⍵.	One	signiEicant	beneEit	of	this	is	that	an	expression	like	?1E6⍴6can	 be	 written	1e6(?⍴)6,	making	 it	 easy	 for	 the	 implementer	 to	 special-case	 theoperation	and	avoid	creating	the	million-element	intermediate	result.	An	extendedversion	of	dyadic	iota	 is	in	the	works	as	well	as	a	new	function,	tally	(monadic	≢),which	counts	the	number	of	items	or	rows	in	a	matrix	and	produces	a	scalar	result.While	he	was	explaining	the	tally	function,	he	stopped	and	looked	at	the	screen	fora	moment,	 and	 commented	 that	he	didn’t	 know	who	would	actually	write	 a	 tallylike	 that,	 with	 three	 lines	 instead	 of	 four.	 Someone	 (Bob	 Smith,	 I	 think)immediately	replied	that	“that’s	the	way	that	cartoon	characters	write	a	tally.”	Welldone.The	 new	 constructs	isolates	 and	futures,	 which	 let	 programs	 run	 on	 differentprocessors,	 were	 also	 discussed.	 Morten	 also	 demonstrated	 the	 new	 paralleloperator	by	executing	code	containing	⎕dl 3	three	times	in	four	seconds	by	assigneach	to	a	different	isolate.Ray	 Polivka	 and	 Mike	 Van	 Der	 Meulenheld	 an	 open	 discussion	 about	 APL	 onalternative	 platforms,	 Raspberry	 Pi,Robots,	 natural	 language	 interfaces	 andmobile	platforms.	The	Raspberry	Pi	 is	aninexpensive	 processor	 that	 can	 beprogrammed	 in	 APL	 as	 well	 as	 Python.Morten	 Kromberg	 demonstratedRaspberry	 Pi	 by	 giving	 commands	 to	 arobot	using	APL.	This	got	the	attention	ofthe	dogs,	Tess	and	Grace,	who	were	both	amused	and	a	little	scared.	Later	we	saw	ademonstration	 on	 the	 web	 of	 helicopters	 Elying	 in	 formation	 with	 no	 centralauthority;	 their	 motions	 were	 affected	 by	 the	 position	 and	 motion	 of	 theneighboring	helicopters.	(Kind	of	like	the	free	market!)Ray	Polivka	and	Bob	Bernecky	discussed	education	and	getting	more	people	 intoarray-oriented	languages.	This	was	followed	by	the	usual	 lament	that	the	averageage	of	APLers	was	going	up	by	one	year	every	year.	Ray	Polivka	has	been	teachinghigh	 school	 and	 college	 students	 for	 three	years	using	 a	 classroom	 in	 a	 rent-freemodel	 house.	 He	 found	 that	 the	 language	 bar	 was	 a	 tremendous	 help	 and	 thatbecause	 students	 are	 generally	 open-minded,	 they	 had	 no	 problem	 with	 the

VECTOR Vol.26 No.2&3

28

symbols	or	scanning	rules.	Students	are	less	concerned	with	how	APL	is	used	thanwho	uses	it.This	was	followed	by	a	discussion	of	how	APL	was	used	in	industry.	This	includedEinding	 deadbeats	 in	 the	 utility	 industry,	 product	 reliability,	 mortgage	 Einance,insurance,	 actuarial,	 medical	 imaging	 data	 management,	 petrochemical	 analysis,travel	 reservation	 systems,	 process	 control	 and	 ticket	 sales.	 Even	 Bill	 Gates’investment	management	was	done	in	APL.Shannon	Bailey	of	Native	Cloud	Systems	brought	back	memories	of	the	early	80’swith	 visuals	 of	 the	 old	 IBM	 3279	 terminal	 and	 the	 original	 IBM	 PC	 when	 shepresented	 “APL—	 A	 Love	 Story.”	 She	 was	 introduced	 to	 APL	 at	 Marist	 Collegewhere	everyone	had	 to	use	APL	 for	Computer	 Science	101.	 In	 that	 class	 she	wasable	 to	 rewrite	 a	multi-player	 game	 from	 scratch	 in	 STSC	 APL*PLUS	 PC	 in	 eightweeks.	Her	current	work	includes	a	cloud-based	system	that	supports	an	APL-likeprogramming	language	and	transaction-based	Native	Cloud	Objects	for	distributedarrays.Mike	Van	Der	Meulen	wowed	us	with	a	demo	of	his	experimental	APL	applicationusing	 voice	 recognition	 software.	He	 asked	 the	 computer	 about	 the	weather,	 hadthe	 computer	 translate	 “When	 is	 the	 next	 train”	 into	 Chinese,	 had	 the	 computerplay	 “Hey	 Jude”	 and	 asked	 it	 to	 show	 a	 picture	 of	 Ken	 Iverson.	 There	 was	 oneglitch.	When	 he	 asked	 it	 the	 question	 “Who	 invented	 FORTRAN?”,	 the	 computershowed	a	picture	of	the	Roman	god	Bacchus!Ron	Murray	revealed	that	although	dead	men	tell	no	tales,	dead	processes	talk!	Indistributed	systems	the	 failure	of	a	computer	you	didn’t	know	existed	may	causeyour	system	to	fail.	To	get	to	the	heart	of	the	matter	one	must	be	able	to	change	thesystem	without	stopping	it.Adrian	Smith	from	across	the	pond	showed	how	to	embed	a	matrix	into	a	databaseby	 inserting	vectors	 as	 items	 into	 columns.	His	 son	Richard	 showed	how	 just-in-time	compiling	in	the	parse	table	step	improved	performance	in	“Adventures	in	JITcomputing	APL.”Paul	Grosvenor	demonstrated	COSMOS,	a	data	visualization	tool	largely	written	inAPL.	COSMOS	is	a	top-down,	drill-down	system	used	to	analyse	medical	data.	Thesystem	 talks	 to	 statistical	 language	 R	 and	 has	 often	 been	 referred	 to	 as	 a	 ‘thesisgenerator’.Bob	 Armstrong	 got	 CoSy	 with	 FORTH	 and	 showed	 us	 how	 to	 go	 FORTH	 andmultiply.	He	also	challenged	the	global	warming	community	with	a	hot	topic:	“Howto	Calculate	the	Temperature	of	the	Earth	for	a	Libertarian	Society.”

VECTOR Vol.26 No.2&3

29

On	the	last	night	of	the	conference,	the	highlight	was	jazz	guitarist	Stanley	Jordan,who	 presented	 us	with	 “Music	 and	 APL.”	 He	 used	 APL	 and	 the	 circle	 of	 Eifths	 tomeasure	distance	between	various	musical	scales.	He	demonstrated	soniEication	byshowing	us	how	to	generate	music	from	stock	charts	and	listen	to	patterns.	Finally,he	 did	 a	 MIDI	 edit	 using	 APL	 to	 generate	 music	 and	 rhythm	 on	 several	 tracks.Afterwards	he	entertained	us	on	the	guitar	with	several	original	compositions.	HisEinal	 comment	was:	 “You	don’t	 speed-read	poetry.	APL	 is	 like	poetry;	 everythinghas	meaning.	You	may	have	to	read	it	several	times	to	understand	it.”

Minnowbrook	2013

VECTOR Vol.26 No.2&3

30

Impending	kOS
by	Stephen	Taylor	(sjt@5jt.com)

It	began	badly.	We	were	walking	along	the	South	Downs	Way	in	early	summer,	thesun	glittering	on	the	English	Channel	on	our	right,	the	Weald	of	Sussex	stretchingaway	to	our	left.	“How	big,”	asked	Arthur,	“should	a	text	editor	be?”I’ve	 known	 Whitney	 most	 of	 my	 life.	 I	 know	 what	 he	 does.	 I	 know	 his	 stupidquestions.	And	still	I	can’t	resist	trying	to	give	helpful	answers.	“I	don’t	know.	Onecould	find	out,	surely?	What	do	Emacs	and	Vim	weigh	–	tens	of	megabytes?”“I’ve	got	a	text	editor	in	four	lines	of	K.	Just	need	to	add	Copy	and	Paste.”Ah,	 we’re	 back	 to	 that.	 Of	 course.	 K	 is	 the	 language	 part	 of	 kdb+,	 Arthur’sfrighteningly	 fast	 column-store	 database,	 used	 by	 trading	 rooms	 to	 handle	 hugereal-time	 data	 Elows	 from	 Einancial	 exchanges.	 It	 started	 off	 at	Morgan	 Stanley	 inthe	1980s	as	an	APL	stripped	for	speed	and	became	A+[1],	and	for	two	decades	thebank’s	 development	 environment	 for	 trading	 applications.	 For	 the	 last	 twentyyears	 it	 has	 evolved	 as	 kdb+,	 trading	 as	 Kx	 Systems,	 Inc.[2]	 It’s	 a	 two-orders-of-magnitude	 sort	 of	 thing:	 two	 orders	 of	magnitude	 faster	 than	 industry-standarddatabase,	two	orders	of	magnitude	smaller	code	volume.	Four	lines	of	K	equate	toabout	four	hundred	lines	of	C.The	 kdb+	 interpreter	 is	 tiny:	 about	 100Kb.	 (And	 yes,	 kdb+	 programs	 areinterpreted,	 not	 compiled.)	 As	 the	 code	 base	 improved,	 kdb+	 releases	 becamefaster	 –	 and	 smaller.	 Kdb+	 has	 sharp	 elbows.	 Impatient	 with	 the	 speed	 ofWindows,	kdb+	wins	a	×3	performance	improvement	by	managing	memory	itself.Whitney	 is	no	respecter	of	 rules.	One	of	 the	scariest	 things	 I	ever	did	as	a	youngman	was	following	him	through	central	Toronto	on	a	bicycle.An	apocryphal	 story.	At	 the	 Eirst	of	 the	 three	universities	he	claims	 to	have	beenthrown	out	of,	Whitney’s	class	was	given	an	assignment:	write	a	program	that	willprint	 the	 most	 successive	 prime	 numbers	 possible	 with	 limited	 CPU	 time	 andlimited	green-striped	paper.	(Yes,	that	long	ago.)	His	solution	won	by	a	handsomemargin	 and	 was	 disqualiEied	 on	 two	 counts.	 In	 the	 Eirst	 place	 he	 had	 ignoredeverything	 the	 class	 had	 been	 taught	 about	modularisation	 and	 code	 re-use.	 Hejust	 wrote	 code	 optimised	 to	 solve	 one	 problem	 spectacularly	 fast.	 He	 had	 alsonoticed	 the	 problem	 did	 not	 specify	 printing	 spaces	 between	 the	 primes.	 Theprintouts	were	a	sea	of	ink.	And	his	code	looked	like	woodgrain.

VECTOR Vol.26 No.2&3

31

As	a	rule,	it	was	the	fittest	who	perished;	the	misfits,Forced	by	failure	to	emigrate	into	unsettled	niches,Who	altered	their	structure	and	prospered.—	WH	AudenKdb+	is	a	testament	to	the	rewards	available	from	Einding	the	right	abstractions.	Kprograms	routinely	outperform	hand-coded	C.	This	is	of	course,	impossible,	as	The
Hitchhiker’s	Guide	to	the	Galaxy	likes	to	say.	K	programs	are	interpreted	into	C.	Forevery	K	program	there	is	a	C	program	with	exactly	the	same	performance.	So	howdo	K	programs	beat	hand-coded	C?	As	Whitney	explained	at	 the	Royal	Society	 in2004,	 “It	 is	 a	 lot	 easier	 to	 Eind	 your	 errors	 in	 four	 lines	 of	 code	 than	 in	 fourhundred.”What	 would	 computing	 be	 like	 if	 it	 were	 all	 done	 this	 way?	 The	 decades-longsleigh-ride	of	Moore’s	Law[3]	has	ended.	What	if	we	could	get	another	two	ordersof	magnitude	of	performance	out	of	the	hardware?This	 question	 has	 been	 asked	 before,	 notably	 by	 Alan	 Kay	 at	 the	 ViewpointsResearch	Institute.[4]Whitney	means	to	 Eind	out.	The	Eirst	phase	of	 the	project	 is	 to	escape	the	bloatedembrace	of	the	operating	systems	and	run	kdb+	on	the	bare	metal.“If	 you	keep	on	 chipping	 at	 that	 rust,	 eventually	 you’ll	 reach	 Elat,	 brightmetal.”	–	Herman	Wouk,	The	Caine	MutinyWhitney	 started	 replacing	 calls	 to	 Linux,	working,	 alone	 as	 always,	 in	 his	 garageofEice.	Characteristically,	it’s	a	simple	workplace:	a	pool	table,	a	desk,	a	chair	and	aPC	with	a	single	monitor.	When	I	saw	it	 in	2007	it	was	running	Windows	XP	andhad	 Eive	 windows	 open:	 two	 MS-DOS	 and	 three	 Notepad.	 Brutally	 simple	 IDE.Doubtless	things	have	improved	since.Oleg	and	Pierre	had	heard	of	Whitney	and	kdb+.	They	study	computer	science	inSt	 Petersburg.	 (Russia,	 not	 Florida.)	 With	 a	 great	 deal	 of	 trepidation	 and	 somesupport	from	a	teacher	they	wrote	asking	Whitney	what	he	was	doing.	He	repliedwith	some	C	code	he	was	working	on.Everyone	 knows	 how	 C	 programs	 look:	 tall	 and	 skinny.	 Whitney’s	 don’t.	 I	 Eirstencountered	them	in	the	1980s.	I	was	working	for	I.P.	Sharp	Associates	in	Sydney.My	 boss	 wanted	 to	 port	 the	 SHARP	 APL	 interpreter	 onto	 the	 fast	 new	 Hewlett-Packard	 HP1000	 minicomputer.	 I	 recommended	 Whitney,	 then	 the	 youngestmember	 of	 the	 IPSA	 systems-programming	 team,	 for	 the	 job.	 (Probably	 the	 bestthing	I’ve	done	in	my	professional	life.)

VECTOR Vol.26 No.2&3

32

There	 was,	 of	 course,	 a	 catch.	 The	 interpreter	 was	 a	 500Kb	 program	 developedover	15	years	and	supported	by	an	11-man	team.	The	original	language	had	beenconsiderably	extended	–	most	 recently	with	 ‘general’	 or	 ‘nested’	 arrays	–	and	allthe	extensions	had	to	be	ported	too.	Although	the	target	machine	was	attractivelyfast,	most	of	the	speed	disappeared	for	programs	larger	than	80Kb.	The	interpreterhad	not	just	to	be	ported,	but	also	made	six	times	smaller.	Game	over?Whitney’s	 strategy	was	 to	 implement	 a	 core	 of	 the	 language	 –	 including	 the	 bitseveryone	thought	most	difEicult,	the	operators	and	nested	arrays	–	and	use	that	toimplement	the	rest	of	the	language.	The	core	was	to	be	written	in	self-expanding	C.As	far	as	I	know,	the	kdb+	interpreter	is	built	the	same	way.Unlike	 the	 tall	 skinny	 C	 programs	 in	 the	 textbooks,	 the	 code	 for	 this	 interpreterspills	sideways	across	the	page.	It	certainly	doesn’t	look	like	C.In	 Sydney	 we	 assigned	 Whitney	 two	 coding	 assistants.	 Not	 that	 he	 needed	 orwanted	help,	but	when	he	eventually	 left	we’d	need	some	 idea	how	it	all	worked.His	 assistants	 had	 a	 very	 hard	 time.	 They	would	 struggle	 through	 the	week,	 gettheir	assignments	half	Einished,	then	on	Monday	discover	Whitney	had	dropped	inover	 the	 weekend,	 rewritten	 most	 of	 the	 interpreter,	 and	 included	 theirassignments.	 (The	 interpreter	 got	 Einished.	 A	 decade	 later	 I	 saw	 one	 of	 the	 HPmachines	 still	 running	 on	 Westpac’s	 trading	 Eloor.	 Not	 long	 after	 that,	 Whitneystarted	work	at	Morgan	Stanley	on	what	became	A+.)Whitney	sent	Oleg	and	Pierre	some	of	the	C	code	he	was	working	on,	and	notes	ona	problem	he	didn’t	know	how	to	solve.	They	emailed	back	a	solution,	coded	in	hisstyle.	A	partnership	was	born:	a	garage	in	California,	a	school	in	Russia.Whitney	 demonstrated	 his	 “research	 K	 interpreter”	 at	 the	 Iverson	 Collegemeeting[5]	 in	 Cambridge	 in	 2011.	We	 had	 visitors	 from	Microsoft	 Research.	 Theperformance	was	impressive	as	always.	The	tiny	language,	mostly	familiar-lookingto	 the	APL,	 J	and	q	programmers	participating,	must	have	 impressed	 the	visitors.Perhaps	 conscious	 that	with	 the	occasional	wrong	 result	 from	an	expression,	 theinterpreter	 could	 be	 mistaken	 for	 a	 post-doctoral	 project,	 Whitney	 commentedbrightly,	“Well,	we	sold	ten	million	dollars	of	K3	and	a	hundred	million	of	K4,	so	Iguess	we’ll	sell	a	billion	dollars	worth	of	this.”Someone	 asked	 about	 the	 code	 base.	 “Currently	 it’s	 247	 lines	 of	 C.”	 Someexpressions	 of	 incredulity.	 Whitney	 displayed	 the	 source,	 divided	 between	 Eivetext	files	so	each	would	fit	entirely	on	his	monitor.	“Hate	scrolling,”	he	mumbled.At	 Iverson	 College	 in	 2013	 he	 demonstrated	 the	 new	 graphics	 layer,	 z	 –	 9Kb	 ofcode	to	replace	the	X	Windows	system.	For	the	Eirst	time	we	saw	the	kOS	desktop,solid	black	with	a	Tolkienesque	legend	top	left:	one	system/all	devices.	Arrayed	on

VECTOR Vol.26 No.2&3

33

the	right	edge,	the	icons	of	Eive	kOS	apps.	He	launched	the	text	editor	app	and	thenwrote	a	new	one,	working	out	the	key	callbacks	in	front	of	us	and	explaining	themas	 he	worked.	 As	 he	 deEined	 each	 callback	 the	 new	 app	 acquired	 it:	 no	 compile,load,	install	cycle.	In	eight	lines	of	K	he	had	replicated	the	core	function	of	Notepad.At	this	point,	with	the	new	z	layer	in	place,	kOS	weighed	62Kb.Last	 autumn	 the	 kOS	 team	 recruited	 a	 fourth	 member,	 Geo,	 and	 in	 Novemberannounced	it	had	removed	the	last	connection	to	Linux.	kOS	was	running	on	baremetal.	Whitney	announced	the	project	would	now	go	dark	and	return,	perhaps	inthe	summer	of	2014,	with	a	platform	on	which	apps	can	be	built.kOS	is	coming.[6]	Nothing	will	be	the	same	afterwards.
References1.	 http://www.aplusdev.org2.	 	http://www.kx.com3.	 	http://www.en.wikipedia.org/wiki/Moore's_law4.	 	http://www.vpri.org/pdf/tr2007008_steps.pdf5.	 	http://www.sites.google.com/site/iversoncollege6.	 	http://www.kparc.com

VECTOR Vol.26 No.2&3

34

http://www.aplusdev.org
http://www.kx.com
http://www.en.wikipedia.org/wiki/Moore's_law
http://www.vpri.org/pdf/tr2007008_steps.pdf
http://www.sites.google.com/site/iversoncollege
http://www.kparc.com

Searching	for	the	state	in	whichWonderful	Things	are	inevitable
by	Gianfranco	Alongi	(gianfranco.alongi@gmail.com)

“Fear	leads	to	anger,	anger	leads	to	hate,	hate	leads	to	suffering.”-	Master	YodaI	love	this	quote,	fear	is	the	mind	killer;	our	minds	are	like	parachutes,	they	don’twork	 unless	 they	 are	 open.	 If	 we	 feel	 threatened,	 we	 get	 defensive,	we	 stoplistening,	 we	 stop	 thinking	 clearly,	 and	 will	 make	 emotionally	 tainted	decisionswhich	 sub	 optimize	 the	 value	 for	 the	 company/customer.	 In	 short	 -	we	will	 takedecisions	 which	 protect	 our	 ego,	 instead	 of	 solving	the	 problem	 we	 get	 paid	 towork	on.As	 programmers	 working	 with	 APL	 ‘The	 Tool	 Of	 Thought’	 -	 it	 should	 be	 toppriority	 to	 keep	 our	 thoughts	 unclouded	 by	 fear,	 so	 we	 can	 focus	 on	 writingsuspiciously	powerful	and	yet	alarmingly	beautiful	APL	code.My	team	at	Ericsson	has	been	through	a	lot	(God	bless	them)	since	I	joined	in	 thelate	 summer	 of	 2011.	 By	 now,	 I	 guess	 there	 is	 nothing	 they	 can	 fear	any	 more.More	or	less	forcefully	subjected	to	all	kinds	of	things	like	TDD,	Pair	Programming,Crush	 Sessions,	Hero	Avoidance,	 endless	 Code	Dojos	 and	 now	the	 latest	 additionwhich	is	Mob	Programming	-	the	learning	is	endless.I	am	on	the	never	ending	quest	of	continuously	improving	everyone	around	me,	sothat	 they	will	 get	 better	 than	me.	Why?	Because	 the	 best	way	 to	 get	 better	is	 byworking	with	 those	who	 are	 better.	 You	 can	 observe,	 ask,	 and	mimic.	 Instead	 oftrying	to	Eigure	everything	out	yourself,	you	can	leverage	the	fact	that	someone	cangive	you	distilled	knowledge	mixed	with	wisdom,	this	is	accelerated	learning.If	 we	 all	 continuously	 strive	 to	 improve	 those	 who	 we	 work	 with,	 someone	 isalways	trying	to	improve	you	in	return	as	you	are	trying	to	improve	them.	It	is	buta	matter	of	time	before	this	little	select	group	is	the	best	of	the	best.What	 I	 describe	 is	 undeniably	 sensible,	 although	 it	 does	 require	 a	 lot	 of	courageand	trust.	What	I	will	describe	now,	is	the	different	practices	 I	have	used	with	myteam	and	other	teams	in	order	to	nudge	the	team	dynamics	in	the	right	direction.Pair	Programming	 (PP)	was	 the	 Eirst	 thing	 I	 introduced;	 two	developers	working

VECTOR Vol.26 No.2&3

35

on	 the	 same	 problem,	 on	 the	 same	 machine.	 There	 is	 much	 written	 about	 PPalready,	 but	 let	 me	 mention	 the	 interesting	 discussions	 and	 what	 I	 observed.	Acommon	 misconception	 that	 needs	 to	 be	 buried	 when	 it	 comes	 to	 PP,	 is	 thatsupposedly	productivity	would	be	halved.This	is	only	true	if	the	productivity	bottle	neck	is	the	typing	speed.If	two	developers	have	a	1:1	relation	between	their	productivity	and	typing	speed,then	yes:	removing	a	keyboard	would	put	your	productivity	at	50%.	However,	thisis	definitely	not	the	case.Studies	 by	 Microsoft	 and	 IBM	 have	 shown	 multiple	 times	 that	 the	 so	 calledRead/Write	Ratio	 (R/W	Ratio)	 is	 our	main	 concern	when	 it	 comes	 to	working	 inlarge	software	systems.	 In	short,	 the	R/W	Ratio	 in	 large	software	systems	is	~10-15.	This	means	that	on	average,	a	developer	needs	to	spend	10-15	times	more	timereading	than	writing	code.Clearly,	the	main	problem	is	the	time	needed	in	understanding.Two	 minds	 will	 reduce	 the	 comprehension	 time	 dramatically,	 there	 is	 so	 muchsynergy	when	working	in	a	pair.	Just	to	mention	a	few	things	that	happeni.	 We	stop	following	the	wrong	chain	of	thought	very	early.ii.	 We	do	not	get	stuck.	There	is	always	an	alternative	idea	to	try.iii.	 We	teach	each	other	tips/tricks	related	to	how	we	work.iv.	 We	have	fun.v.	 We	share	system	knowledge	and	knowledge	about	the	ongoing	work.vi.	 We	expose	ourselves.The	 sixth	 point	 (vi)	 We	 expose	 ourselves)	 is	 the	 most	 valuable	 and	 also	 thetoughest	one.	Exposing	ourselves	 to	our	colleagues	can	be	scary.	A	 lot	of	negativethoughts	 based	 on	 fear	 can	 pop	 up.	 The	 ego	 can	 get	 hurt,	suddenly	 all	 ourweaknesses	which	we	have	 learnt	 to	 live	with	 become	 a	 very	apparent	 and	 veryreal	issue.	Typing	speed,	system	speciEic	knowledge,	tool	proEiciency,	coding	skills,thinking	 speed,	 work	 habits,	 every	 aspect	 of	work	 will	 be	 exposed	 to	 your	 PPpartner.If	we	do	not	expose	ourselves	to	others,	how	can	they	help	us	improve?In	order	to	do	this,	we	must	be	capable	of	facing	our	own	fears,	we	must	vanquishthem,	for	they	prevent	us	from	growing.Master	 Yoda	 -	 “That	 place…	 is	 strong	with	 the	 dark	 side	 of	 the	 Force.	 Adomain	of	evil	it	is.	In	you	must	go.”

VECTOR Vol.26 No.2&3

36

Luke	-	“What’s	in	there?”Master	Yoda	-	“Only	what	you	take	with	you.”Much	 like	Master	 Yoda	 told	 Luke	 to	 face	 his	 innermost	 demons,	we	must	 do	 so.Whenever	 we	 feel	 unease,	 a	 fear	 of	 exposing	 something	 related	 to	 our	 way	ofworking	or	technical	expertise	-	we	must	take	this	demon,	and	put	it	into	our	‘BookOf	Demons’.	By	systematically	putting	all	your	 technical	weaknesses	 into	 this	 list,you	not	 only	 admit	 that	 you	have	 a	 problem,	 but	 you	 also	 build	a	 very	practicalchecklist	of	things	to	improve.So,	when	do	we	have	time	to	improve?	There	is	no	time	like	the	present!One	thing	I	have	found	profoundly	successful	 is	to	practice	weaknesses	in	a	CodeDojo	setting.	Our	 team	has	2	hours	weekly,	dedicated	 to	deliberate	practice.	Thatis;	my	whole	 team	gets	paid	 two	hours	per	week	to	practice,	so	they	can	performbetter.	 Combine	 the	 Demon	 books	 from	 every	 team	 member	 into	 one	 huge	 list,next,	take	the	first	item	-	and	whoever	is	the	most	proficient	in	that	item	prepares	alecture	with	some	exercises	for	the	team	to	improve	on	the	next	Code	Dojo.This	works	well	when	the	 team	is	motivated	or	guided	by	a	 team	member	 takingpoint,	but	what	if	the	team	does	not	have	this	motivation?As	part	of	coaching	another	team	in	another	part	of	Ericsson,	I	wanted	to	nudge	theteam	into	doing	Pair	Programming.	At	Eirst	the	team	was	reluctant,	but	once	I	hadtapped	into	the	primitive	parts	of	our	psyches	-	they	were	doing	PP.We	are	animals,	and	we	have	all	been	living	in	tribes	and	clans	for	quite	some	time;physical	 tokens,	 recognition	 and	 rituals	mean	 a	 lot	 to	 us.	If	we	wish	 to	 change	 abehaviour	then	we	can	leverage	these	facts	and	utilize	them.	I	gave	the	team	I	wascoaching	a	challenge:‘For	 every	 time	 someone	does	PP	 in	 the	 team,	 the	 team	gets	 one	GoldenStar	from	me.	If	you	manage	to	get	10	golden	stars	within	a	2	week	period,you	get	a	certificate	from	me.’The	next	 time	we	met,	 they	had	done	some	PP	and	I	held	my	word,	a	golden	starwas	 put	 on	 their	 whiteboard.	 The	 Eirst	 collective	 recognition	 of	 the	team,	 one	 ofmany	 to	 come.	 This	 does	 not	 only	 bond	 the	 team	 together,	making	 the	membersappreciate	that	they	are	working	towards	the	same	goal,	 it	also	turns	the	greatestfear	of	exposure	into	a	game.Over	 time,	 the	 team	managed	 to	 collect	 10	 stars	 for	 PP,	 and	 so	 I	 ceremoniouslyproduced	 a	 diploma,	 which	 was	 given	 to	 the	 team	 during	 very	 formal

VECTOR Vol.26 No.2&3

37

circumstances	with	music	and	a	short	speech.Ceremonies	 matter,	 strong	 emotions	 and	 psychological	 mechanisms	 are	 at	 playhere,	 and	 it	 was	 very	 obvious	 that	 the	 team	 were	 happy	 to	 have	 exposedthemselves	to	each	other	so	much.Another	team	I	coached	could	not	even	get	started	with	PP,	there	was	an	obviousfear	of	exposure	to	each	other.	The	team	consisted	mainly	of	older	developers	whohad	 been	 in	 their	 comfort	 zone	 for	 quite	 a	 while	 now.	 No	 one	 immediatelyexpressed	 concerns	 for	 being	 exposed,	 but	 all	 the	 reasons	 for	not	 doing	PP	werejust	blatant	excuses.	Master	Yoda	comes	to	mind	again;“You	must	unlearn	what	you	have	learned” -	Master	YodaThis	 quote	 is	 also	 a	 golden	 nugget	 I	 carry	 with	 me.	Traditionally,	 people	 weretaught	 to	 be	 subject	 experts,	 with	 a	 lot	 of	gravitas	 and	 a	 fat	 nice	 paycheck	 to	 gowith	it.	We	learn	to	crave	to	be	the	best,	we	like	being	the	best,	our	egos	require	it.We	have	learned	to	be	heroes	-	and	will	protect	this	position	and	feeling	that	goeswith	it.	Unfortunately,	this	is	actually	a	counter	productive	thing.What	 this	 team	needed,	was	 to	 unlearn	 being	 heroes.	 Because	 the	 hero	 does	notwish	to	be	perceived	as	weak.	The	team	got	a	challenge:‘For	every	technical	area	of	improvement	you	practice	together	as	a	team,you	get	a	Brain	(brain	printed	on	a	magnet)	from	me.	If	you	manage	to	getseven	 brains	 within	 the	 time	 I	 am	 coaching	 you,	 I	 will	give	 you	 acertificate	for	your	outstanding	performance.’Suddenly,	 the	personal	weaknesses	become	a	positive	driving	 force	 for	 the	 team.The	 team	 practices	 the	 ‘area	 of	 improvement’	 (a	 more	 eloquent	 way	 of	 sayingweakness),	and	gets	a	Brain	token.	Soon	enough,	the	team	members	were	‘sharingideas’	(admitting	 problems)	 they	 had	 for	 improvements,	 so	 they	 could	 get	 thoseBrains.	Exposing	their	weaknesses	was	now	a	good	thing,	a	game.	The	team	fulfilledthe	 challenge,	 and	 as	 promised,	 a	 ‘Tiger	 Challenge’	certiEicate	 was	 printed	 anddelivered	with	music	and	a	speech.Today	Pair	Programming	is	a	given	in	the	team,	no	one	sees	this	as	anything	but	apositive	 force.	 In	 November	 2013,	 I	 had	 Woody	 Zuill[1]	 stay	 at	 my	 place	 for	 aweek.	Woody	 told	me	 about	Mob	 Programming	 and	 how	 his	 team	 practiced	 it,	Iimmediately	wanted	to	try	this	out.	Mob	programming	is	PP	taken	to	the	next	level.The	whole	team,	working	on	the	same	thing,	on	the	same	computer.

VECTOR Vol.26 No.2&3

38

Surely	this	is	crazy?	It	is	crazy	alright,	crazy	good.In	crisis	mode,	when	you	need	 to	get	 something	done	quickly,	you	always	gatherthe	 best	 people	 into	 the	 same	physical	 location	 and	 give	 them	a	 lot	 of	 space	andfreedom	 (with	 added	pressure	 of	 course).	Why	don’t	we	do	 like	 this	 all	 the	timeinstead?My	team	has	practiced	this	for	a	substantial	period,	and	it	works	extremely	well	forTrouble	Reports	 (error	 corrections).	 For	normal	development	we	 still	 do	 a	 lot	 ofPP,	 but	 we	 pull	 together	 into	 the	Mob	when	 the	 pressure	 and	 complexity	 startsmounting.When	working	 as	 a	mob,	 no	 task	will	 ever	 halt	 until	 it’s	 done,	 no	 team	memberburns	 out	 due	 to	 stress	 as	 everyone	 shares	 the	 load.	We	 all	 know	what	 we	 aredoing,	and	we	all	know	what	has	been	done.	No	meetings	are	necessary	as	we	areall	there,	we	all	take	decisions	together,	this	also	means	that	we	can	quickly	undo	adecision.	 The	most	 important	 thing	 is	 not	 to	 keep	 everyone	 busy	 by	 being	stuckand	 working	 overtime.	 The	 most	 important	 thing	 is	 to	 get	 the	 most	 valuablesolution	 out	 the	 door	 as	 quickly	 as	 possible.	 Every	 good	 thing	 from	 PairProgramming	is	magnified	tenfold	in	the	Mob.But,	 what	 comes	 next?	 Evolution	 never	 stops,	 progress	 is	 inevitable.	From	 whatI've	heard,	Dyalog	Ltd	and	Optima	Systems	Ltd	practice	something	they	call	’Swingprogramming‘	where	one	developer	from	each	company	is	traded	for	a	while!	I	justhope	 they	will	 write	 an	 article	 on	 this	 and	 share	 their	 Eindings,	it	 sounds	 reallyinteresting!Pair-/Mob-/and	 Swing-programming	 aside,	 the	 search	 for	 better	 should	 neverstop,	so	let	me	leave	you	with	this	last	quote:“All	the	right	people	and	expertise,in	the	right	place,at	the	right	time.” -	Woody	Zuill	on	Mob	Programming.
References1.	 	Zuill,	Woody	http://zuill.us/WoodyZuill/

VECTOR Vol.26 No.2&3

39

http://zuill.us/WoodyZuill/

APL
VECTOR Vol.26 No.2&3

40

One	reason	that	APL	is	so	cool
Brian	Becker

The	code	shown	in	this	article	was	not	intended	to	be	the	most	elegant	orefficient	means	to	solve	the	problem	presented,	but	rather	to	demonstratethat	APL's	suitability	for	quick,	ad	hoc,	data	analysis	and	problem	solving.
I	had	 the	good	 fortune	 to	 learn	APL	when	 I	was	but	 a	 freshman	 in	high	 school.	Ifound	 APL	 to	 be	 a	 great	 tool	 to	 solve	 problems.	The	 phrase	 “APL	 as	 a	 Tool	 ofThought”	 has	 been	 around	 for	 quite	 some	 time	 and	 it	 still	 holds	 true.	I’ve	 neverviewed	myself	as	a	programmer,	but	as	a	problem	solver.	 APL	enables	me	to	take	asolution	 I	 conceive	 in	 my	 mind	 and	 translate	 it	 into	 a	 form	 executable	 by	 acomputer	with	the	least	effort.	Over	the	years,	I’ve	been	lucky	enough	to	work	onsome	rather	interesting	problems,	but	in	my	spare	time,	I’ve	also	found	APL	to	befun	for	recreational	computing.	I’ll	 leave	it	to	the	gentle	reader	to	assess	just	howmuch	of	a	geek	this	makes	me.One	 such	 opportunity	 presented	 itself	 recently.	Our	 local	 newspaper,	 theRochester	Democrat	and	Chronicle,	along	with	other	entities	in	the	Rochester	area,including	 the	 Rochester	 Institute	 of	 Technology	 (RIT),	 had	 been	 conducting	 acontest	 for	several	weeks	called	 “Picture	The	 Impossible”.	 It	consisted	of	7	weeksof	 challenges	 and	 puzzles	 all	 relating	 to	 aspects	 of	 the	 Rochester	 area	 and	 itshistory.	Monday	 through	 Friday	 there	 featured	 puzzles	 on	 the	 web.	There	 wereweekly	excursions	or	challenges	that	one	could	participate	in	around	the	local	areaand	on	Sunday	there	was	a	crossword	puzzle	and	another	challenge	or	puzzle.	Thepuzzle	of	October	25,	2009	is	the	subject	of	this	article.This	puzzle	consisted	of	sets	of	scales	and	weights	to	be	assigned	to	various	pointson	the	scales.	For	instance,	given	the	scale:
┌───┴───┐
A ┌───┴───┬───┐
 B C D
And weights of: 2 3 7 and 12Each	point	will	be	assigned	a	weight	and	the	force	that	point	applies	is	 its	weighttimes	the	distance	from	the	fulcrum.	The	example	above	gives	the	following:
A = B + C + D
B = C + (2 x D)

VECTOR Vol.26 No.2&3

41

So,	it’s	pretty	easy	to	work	out	that	A=12,	B=7,	C=3,	and	D=4.The	 challenge	 in	 the	newspaper	 consisted	of	6	 such	puzzles	with	up	 to	9	points.Because	 of	 some	 scheduling	 constraints,	 I	 had	 less	 than	 an	 hour	 to	 solve	 all	 theproblems.	While	 I’m	a	pretty	good	puzzle	solver,	 I	decided	 that	 the	quickest	waywas	 to	 use	 APL.	I	 Eigured	 that	 I	 could	 easily	 represent	 the	 algebra	 as	 a	 set	 ofassertions	 and	 then	 run	 every	 combination	 of	 weights	 through	 those	 assertionsuntil	 I	 found	a	 set	 that	worked.	The	 Eirst	part	was	 to	build	something	 that	wouldgenerate	 all	 the	 combinations	 of	 weights.	I	 remember	 that	 the	 number	 ofcombinations	 is	 the	 factorial	 of	 the	 number	 of	 elements,	 so	 nine	 elements	wouldresult	in	362,880	possible	combinations.Now,	had	I	paid	more	attention	in	school	those	many	years	ago,	I’d	probably	havethe	 “create	 all	 combinations”	 algorithm	 committed	 to	 memory.	But,	 the	 way	 Ithought	of	the	problem	is	that	combinations	of	set	of	nine	weights	is	each	of	thoseweights	concatenated	with	all	the	combinations	of	the	other	eight	weights,	then	thecombinations	of	a	set	of	eight	weights	 is	each	of	 those	weights	concatenated	withall	the	combinations	of	the	other	seven	weights,	 then	the	combinations	of	a	set	ofseven	weights…	wait	a	minute…	this	is	recursive!	So,	the	terminal	case	is	when	youget	down	to	a	single	 item,	and	 the	only	combination	 is	 the	 item	 itself.	That’s	easyenough	to	code.
 ∇ r←allcombinations v
[1] →(1=⍴v)↓l1 ⋄ r←v ⋄ →0
[2] l1:r←v cat¨allcombinations¨(⊂v)~¨v
 ∇

 ∇ r←a cat b
[1] →(1=≡b)↓l1 ⋄ r←a,b ⋄ →0
[2] l1:r←a cat¨b
 ∇Why	 did	 I	 write	 “cat”?	Well,	 I	 started	 out	 with	 using	 APL	 concatenation,	 the	 “,”function.	But	that	resulted	in	a	nested	result	that	wasn’t	quite	what	I	was	lookingfor,	as	shown	below.	DISPLAY	is	a	wonderful	utility	that	displays	an	array	with	itsstructure.	The	result	below	is	using	the	APL	concatenate	primitive	function	insteadof	“cat”.
 DISPLAY allcombinations 1 3 5 7 ⍝ using ,
┌→──
│ ┌→──┐ ┌→──────────────
│ │ ┌→──────────────┐ ┌→──────────────┐ ┌→──────────────┐ │ │ ┌→──────────
│ │ 1 │ ┌→──┐ ┌→──┐ │ │ ┌→──┐ ┌→──┐ │ │ ┌→──┐ ┌→──┐ │ │ │ 3 │ ┌→──┐ ┌→
│ │ │ 3 │5 7│ │7 5│ │ │ 5 │3 7│ │7 3│ │ │ 7 │3 5│ │5 3│ │ │ │ │ 1 │5 7│ │7
│ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ │ │ │ │ └~──┘ └~
│ │ └∊──────────────┘ └∊──────────────┘ └∊──────────────┘ │ │ └∊──────────
│ └∊──┘ └∊──────────────
└∊──Using	cat,	I	got…

VECTOR Vol.26 No.2&3

42

 DISPLAY allcombinations 1 3 5 7 ⍝ using cat
┌→──
│ ┌→──┐
│ │ ┌→────────────────────┐ ┌→────────────────────┐ ┌→────────────────────┐ │
│ │ │ ┌→──────┐ ┌→──────┐ │ │ ┌→──────┐ ┌→──────┐ │ │ ┌→──────┐ ┌→──────┐ │ │
│ │ │ │1 3 5 7│ │1 3 7 5│ │ │ │1 5 3 7│ │1 5 7 3│ │ │ │1 7 3 5│ │1 7 5 3│ │ │
│ │ │ └~──────┘ └~──────┘ │ │ └~──────┘ └~──────┘ │ │ └~──────┘ └~──────┘ │ │
│ │ └∊────────────────────┘ └∊────────────────────┘ └∊────────────────────┘ │
│ └∊──┘
└∊──Which	is	a	lot	closer	to	what	I	wanted…However,	 I	 was	 still	 stuck	 with	 a	 nested	 array	 that	 had	 as	 many	 levels	 as	 thenumber	of	elements.
 ∇ r←n chunk a
[1] r←∊a
[2] r←((⍴r)⍴n↑1)⊂r
 ∇
 DISPLAY 4 chunk allcombinations 1 3 5 7
┌→──
│ ┌→──────┐ ┌→──────┐ ┌→──────┐ ┌→──────┐ ┌→──────┐ ┌→──────┐ ┌→──────┐ ┌→────
│ │1 3 5 7│ │1 3 7 5│ │1 5 3 7│ │1 5 7 3│ │1 7 3 5│ │1 7 5 3│ │3 1 5 7│ │3 1 7
│ └~──────┘ └~──────┘ └~──────┘ └~──────┘ └~──────┘ └~──────┘ └~──────┘ └~────
└∊──Perfect!	So,	 I’ve	 got	 the	 “all	 combinations”	 part	 of	 the	 problem	 solved.	Now,	 let’sbuild	the	rest…	The	problem	for	this	example	is:
 │
 ┌───────┴───────┬───────┐
 │ │
┌───┬───┬───┬───┴───┐ ┌───┬───┬───┬───┴───┬───┬───┐
E F │ G H I
 │
 │
 ┌───┬───┬───┴───┬───┬───┬───┐
 A B C DWeights	are:	2	4	5	8	10	13	17	18	23This	gives	the	following	relations:
3A = 2B+3C+4D
4E+F = A+B+C+D
3I = 4G+H
A+B+C+D+E+F = 2(G+H+I)This	turns	 into	the	following	APL	function.	I	won’t	go	into	all	the	aspects	of	APL’sright	 to	 left	 execution,	 etc.	If	 you	 know	APL,	 it	would	 be	 redundant,	 if	 you	 don’tknow	 APL,	 there	 are	 plenty	 of	 resources	 to	 learn	 it.	But	 basically,	 it	 tests	 eachassertion.	If	 an	 assertion	 fails,	 the	 function	 exits	 returning	 a	 result	 of	 0.	If	 allassertions	pass,	the	set	of	weights	is	displayed	and	a	1	is	returned.

VECTOR Vol.26 No.2&3

43

 ∇ r←p5 arg;a;b;c;d;e;f;g;h;i
[1] (a b c d e f g h i)←arg
[2] →(r←(3×a)=2 3 4+.×b c d)↓0
[3] →(r←(f+4×e)=a+b+c+d)↓0
[4] →(r←(3×i)=h+4×g)↓0
[5] →(r←(2×g+h+i)=a+b+c+d+e+f)↓0
[6] ⎕←arg
 ∇So,	now	we	have	something	 to	generate	all	 combinations,	and	something	 to	solvefor	a	single	combination.	It	would	be	easy	to	use	the	APL	each	operator	(¨)	to	runthe	 solution	 against	 all	 combinations,	 but	 I	 wanted	 to	 have	 it	 stop	 as	 soon	 as	 itfound	a	solution	and	not	evaluate	all	the	combinations.	So,	I	wrote	a	simple	“solve”program…
 ∇ solve z;cnt
[1] cnt←0
[2] lp:→((⍴z)<cnt←cnt+1)⍴0
[3] →(p5 cnt⊃z)↓lp
 ∇This	 will	 check	 the	 assertions	 against	 all	 the	 combinations	 until	 either	 allcombinations	have	been	checked,	or	a	 solution	 is	 found.	The	solution,	 if	 found,	 isdisplayed	and	the	program	exits.Putting	it	all	together:
 solve 9 chunk allcombinations 2 4 5 8 10 13 17 18 22
22 17 4 5 10 8 13 2 18So,	A=22,	B=17,	C=4,	D=5,	E=10,	F=8,	G=13,	H=2,	I=18.	I’ll	leave	it	to	the	reader	toverify	the	result.I	was	able	to	solve	all	6	problems	in	the	paper	in	less	than	30	minutes,	about	28	ofwhich	 were	 spent	 thinking	 about	 the	 problem	 and	 coding	 the	 solution.	Well,	 intruth,	 I	 didn’t	 solve	 them,	 APL	 solved	 them,	 but	 I	 got	 the	 results	 I	 needed	 inprobably	 less	 time	 than	 it	 would	 have	 taken	me	 to	 do	manually.	Besides,	 it	 wasfun!The	 goal	 of	 this	 paper	 is	 to	 demonstrate	 that	 APL	 is	 a	 terriEic	 tool	 for	 solvingproblems	quickly.	There	are	no	doubt	better	ways	to	code	this	in	APL,	but	elegancewasn’t	my	goal.	I	had	a	problem	to	solve	and	limited	time	to	do	it	within.	This	hasalways	 been	 one	 of	 APL’s	 strengths	 and	whether	 for	 recreational	 or	 commercialpurposes,	APL	remains	a	tool	of	thought.

VECTOR Vol.26 No.2&3

44

Notation	as	a	tool	of	proof
Robert	Pullman	(rpullman@gmail.com)

APL	is	used	to	analyze	the	symmetries	of	magic	squares.	⎕IO	of	1	used	throughout.
1.	A	Primer	On	Magic	SquaresThe	 classic	 magic	 square	 of	 order	 N	 is	 an	 arrangement	 of	⍳N*2	 into	 an	 N	 by	 Nmatrix	A	such	that	 the	sum	of	each	of	 the	N	rows,	N	columns,	and	both	diagonalsequals	the	same	value	-	(N×1+N*2)÷2.	There	is	no	solution	for	N=2	so	presume	N>2.2000	years	ago	 the	Chinese	knew	of	magic	squares	of	order	3.	There	are	8	magicsquares	out	of	9!	(362880)	possible	3	by	3	squares.In	 the	 17th	 century	 Bernard	 de	 Bessy	 determined	 that	 there	 are	 7040	 magicsquares	of	order	4.There	 are	many	 techniques	 for	 constructing	magic	 square	 but	 no	 simple	way	 ofcounting	 the	 number	 of	magic	 squares	 of	 order	N.	In	 1973	 an	MIT	 grad	 student,Richard	 Schoeppel,	 solved	 for	 N=5,	 2202441792	 solutions.	Schoeppel	 wrote	 anAssembler	 program	 which	 took	 a	 week	 to	 determine	 the	 answer.	 In	 a	 privatecommunication	he	wrote:“…	The	 approach	was	 straightforward,	 Eilling	 in	 the	 cells	 in	 a	 particularorder	and	backtracking.	There	was	a	little	bit	of	hardware	advantage:	TheDEC10	had	multi-level	indexed	indirect	addressing,	making	it	easy	to	adda	 few	numbers	 in	 a	 single	 instruction.	Another	 hack	was	 the	 instructionfor	reversing	the	bits	in	a	register.	This	made	it	fast	to	determine	quicklythe	 possible	 solutions	 to	 X+Y=K,	 using	 bit	 masks	 of	 the	 remainingavailable	numbers.Two	 other	 people	 independently	 conEirmed	 the	 count,	 using	 differentstrategies.	One	Japanese	gentleman	sent	me	his	thesis,	with	a	long	table	ofpieces	 of	 squares	 that	 he	 then	 assembled.	My	 counting	 program	 wouldprobably	run	in	a	few	minutes	today	if	converted	to	C.”For	N>5	the	number	of	solutions	is	unknown.	There	are	estimates	of	the	values,	forexample	10*19	 for	N=6.	If	this	is	accurate	I	wonder	how	long	it	would	take	that	Cprogram	to	solve	for	N=6.

VECTOR Vol.26 No.2&3

45

2.	Symmetries	of	magic	squaresThere	is	a	common	deEinition	of	 ‘	distinct"	magic	squares,	e.g.	 from	“Solving	MagicSquares”[1]“…there	 are	 exactly	 880	 distinct	 4x4	 magic	 squares,	 not	 countingrotations	and	reflections…”There	are	7040	magic	squares	of	order	4.	The	above	claims	that	for	a	magic	squareA	there	are	8	rotations	and	reElections,	which	reduces	7040	to	880	solutions.	Thisfactor	 of	 8	 is	 attributed	 to	 de	 Bessy,	 but	 de	 Bessy's	 paper	 was	 publishedposthumously	in	1693.If	A	 is	a	magic	square	 then	so	are	 the	reElections	⌽A,⊖A,and	⊖⌽A.	 Since	⌽	 and	⊖	 arecommutative	there	are	just	the	4	distinct	magic	squares.	⍉	applied	to	each	of	the	4doubles	the	result	to	8.	90	degree	rotation	of	A	is	⍉⊖A,	180	is	⊖⌽A,	and	270	is	⍉⌽A.Actually	there	are	32	magic	squares	which	can	be	derived	from	a	magic	square	oforder	4.	There	are	220	basic	solutions	from	which	all	7040	can	be	derived.More	 generally,	 for	 a	 magic	 square	 A	 of	 order	 N	 (>2)	 one	 can	 derive
(!⌊N÷2)×2*2+⌊N÷2	magic	squares.	This	formula	has	been	known	for	some	time	bymathematicians,	 Schoeppel	 for	 one,	 also	 Benson	 and	 Jacoby.	 In	 the	 followingsections	 a	 reasonable,	 if	 not	 rigorous,	 proof	 of	 this	 is	 offered.	APL	 provides	 aconvenient	notation	for	this	proof.
3.	Definitions	&	LemmasIsomorphic	vectors.	V	and	W	are	isomorphic	if	and	only	if	V[⍋V]≡W[⍋W].Lemma	 3.1:	 If	 V	 and	 W	 are	 isomorphic	 integer	 vectors,	(+/V)=+/W	 by	 theassociative	property	of	addition.Isomorphic	 squares.	 A	 and	 B	 are	 isomorphic	 if	 and	 only	 if	 each	 row	 of	 Aisomorphic	 to	 a	 row	 of	 B,	 each	 column	 of	 A	 to	 some	 column	 of	 B,	1 1⍉A	 (maindiagonal)	with	1 1⍉B,	and	1 1⍉⌽A	(opposite	diagonal)	with	1 1⍉⌽B.Lemma	3.2:	 If	A	 is	a	magic	square	and	A	and	B	are	 isomorphic,	 then	B	 is	a	magicsquare.	Follows	from	3.1	applied	to	each	row,	column,	and	diagonal	of	B.Lemma	 3.3:	 If	 A	 and	 B	 are	 isomorphic	 and	A[I;K]∊B[J;]	 then	 row	 I	 of	 A	 isisomorphic	with	row	J	of	B.	Proof:	A[I;K]	can	only	be	in	one	row	of	B,	so	since	Aand	B	are	isomorphic	that	row	must	be	isomorphic	with	A[I;].Corollary:	A[K;I]∊B[;J]	then	column	I	of	A	if	isomorphic	with	column	J	of	B.

VECTOR Vol.26 No.2&3

46

4.	Symmetric	transforms
4.1.	T1	of	a	magic	square	AFor	any	pair	I,J	such	that	I<J≤⌊N÷2,	apply	these	row	switches:
A[I,J,(N+1-I),(N+1-J);]←A[J,I,(N+1-J),(N+1-I);]Rows	and	 columns	of	 the	 result	 are	 isomorphic	with	 rows	and	 columns	of	A	butthe	diagonals	are	not.Then	switch	columns	in	the	same	way:
A[;I,J,(N+1-I),(N+1-J)]←A[;J,I,(N+1-J),(N+1-I)]Rows	and	columns	of	the	result	are	again	isomorphic.The	diagonals	of	the	result	are	also	isomorphic	with	the	same	diagonals	of	A	sincewe	have	switched	4	pairs	of	diagonal	items	on	the	upper	left	(A[I;I] & A[J;J]),upper	right	(A[I;N+1-I]	&	A[J;N+1-J]),	 lower	left	(A[N+1-J;I]	&	A[N+1-I;J])and	lower	right	(A[N+1-I;I]	&	A[N+1-J;J]).	So	the	result	is	also	a	magic	square.Through	a	series	of	switches	any	permutation	of	the	Eirst	⌊N÷2	items	on	the	upperleft	diagonal	can	be	accomplished.So	!⌊N÷2	distinct	magic	squares	can	be	derived	from	A	via	T1.
4.2	T2	of	a	magic	square	AFor	any	I≤⌊N÷2,	switch	row	I	with	row	N+1-I:
A[I,(N+1-I);]←A[(N+1-I),I;]Rows	and	columns	of	the	result	are	isomorphic	with	A,	diagonals	are	not,	since	twoitems	of	each	diagonal	are	no	longer	on	the	same	diagonal.Then	switch	column	I	with	column	N+1-I.
A[;I,(N+1-I)]←A[;(N+1-I),I] Rows	and	columns	are	again	isomorphic.Diagonals	 are	 isomorphic	 to	 the	 same	 diagonals	 since	 the	 only	 change	 is	A[I;I]has	 switched	 with	A[N+1-I;N+1-I]	 and	A[N+1-I;I]	 has	 switched	 with
A[I;N+1-I].	So	the	result	is	a	magic	square.Each	of	first	⌊N÷2	rows	can	be	switched,	so	there	are	2*⌊N÷2	distinct	magic	squares

VECTOR Vol.26 No.2&3

47

which	can	be	derived	from	A	via	T2.
4.3	T1	and	T2	are	disjointSince	(N+1-I)>⌊N÷2	 no	 T2	 can	 satisfy	I<J<⌊N÷2.	 So	 there	 are	(!⌊N÷2)×2*⌊N÷2distinct	magic	squares	which	can	be	derived	from	A	via	T1	and	T2.
4.4	Closure	Under	T1	and	T2If	A	and	B	are	isomorphic	magic	squares,	B	can	be	derived	from	A.I f	A[I;J]=B[I;J]	 then	 (by	 lemma	3.3)	 row	 I	of	A	 is	 isomorphic	with	 row	 I	of	B,and	column	J	of	A	with	column	J	of	B.Since	the	main	diagonals	are	isomorphic	we	can	apply	T1	and	T2	to	obtain	C	suchthat	C[I;I]=B[I;I]	for	all	I≤⌊N÷2.So	row	I	of	C	are	isomorphic	with	row	I	of	B	and	column	I	of	C	with	column	I	of	B.Since	 the	 diagonals	 are	 isomorphic	 it	 follows	 that	C[I;N+1-I]=B[I;N+1-I]	 and
C[N+1-I;I]=B[N+1-I;I].So	row	N+1-I	of	C	is	isomorphic	with	row	N+1-I	of	B	and	column	N+1-I	of	C	withcolumn	N+1-I	of	B.If	N	is	even	this	shows	that	C[I;J]=B[I;J]	for	all	I,J	so	C≡B.If	 N	 is	 odd	 there	 is	 exception	 of	 the	 middle	 row	 and	 middle	 column.	For
I≠(N+1)÷2,	 N-1	 items	 in	 row	 I	 and	 column	 I	 match,	 which	 forces
C[I;(N+1)÷2]=B[I;(N+1)÷2]	and	C[(N+1)÷2;I]=B[(N+1)÷2;I].	That	leaves	justthe	central	item	[(N+1)÷2,(N+1)÷2]	which	is	also	forced	to	match	and	so	C≡B.
4.5	T3:	ReflectionsIf	A	is	a	magic	square	and	B←⌽A	or	B←⊖A	then	B	is	a	magic	square.Under	⊖,	B[;I]	is	isomorphic	with	A[;I]	and	B[N+1-I;]≡A[I;].Under	⌽,	B[I;]	is	isomorphic	with	A[I;]	and	B[;N+1-I]≡A[;I].In	each	1 1⍉B	 is	 isomorphic	with	1 1⍉⌽A	 and	1 1⍉⌽B	 with	1 1⍉A,	so	B	is	a	magicsquare.However	B	is	not	isomorhpic	to	A	since	1 1⍉B	is	not	isomorphic	with	1 1⍉A.On	the	other	hand	if	both	are	applied,	say	B←⌽⊖A	then	B	is	isomorphic	with	A.

VECTOR Vol.26 No.2&3

48

It	follows	that	⊖A	or	⌽A	cannot	be	arrived	at	by	T1	and	T2	so	reElection	doubles	thenumber	of	solutions	obtained	by	T1	and	T2.So	the	number	of	solutions	via	T1,	T2,	and	T3	is	(!⌊N÷2)×2*1+⌊N÷2
4.6	T4:	TransposeFor	any	magic	square	A,	B←⍉A	is	also	a	magic	square	with	(1 1⍉A)≡1 1⍉B.The	rows	of	A	are	isomorphic	with	the	columns	of	B,	and	the	columns	of	B	with	therows	of	A.	So	B	is	certainly	not	isomorphic	with	A	and,	by	transitivity,	not	with	anyisomorphism	of	A.Suppose	 C	 is	 isomorphic	 with	 A.	Since	(1 1⍉A)≡1 1⍉B	 by	 transitivity	1 1⍉B	 isisomorphic	with	1 1⍉C,	so	1 1⍉B	cannot	be	isomorphic	with	1 1⍉⌽C	or	1 1⍉⊖C.	So
B≢⌽C	and	B≢⊖C.This	completes	the	proof	that	(!⌊N÷2)×2*2+⌊N÷2	distinct	magic	squares	which	canbe	derived	from	any	one	solution.
5.	Footnote:	Associative	Magic	SquaresAn	 associative	 magic	 square	 has	 the	 property	 that	 the	 sum	 of	 any	 item	 and	 itsdiametric	 opposite	 is	1+N*2.	 This	 property	 is	 preserved	 under	 any	 of	 the	 fourtransforms.There	are	no	associative	magic	squares	of	order	N if 2=4|N.	This	was	shown	byA.H.	Frost	in	1878.	The	proof	is	too	detailed	to	present	here.	See	“Associative	magicsquare”[2]
References1.	 “Solving	Magic	Squares”	http://mathpages.com/home/kmath295.htm2.	 “Associative	magic	square”http://en.wikipedia.org/wiki/Associative_magic_square

VECTOR Vol.26 No.2&3

49

http://mathpages.com/home/kmath295.htm
http://en.wikipedia.org/wiki/Associative_magic_square

A	tool	of	thought
Dan	Baronet	(danb@dyalog.com)

I	 am	 often	 asked	 “what	 is	 APL	 good	 for”?	 I	 reply	 that	 APL	 is	 good	 for	 almostanything	but	 that	 it	 is	also	very	good	at	prototyping.	With	 it	you	can	experimentand	 use	 it	 as	 a	 tool	 for	 thinking	 about	 the	 problem	 at	 hand.	 It	 is	 easy	 in	 APL	 tomanipulate	data	and	build	tools	to	get	a	better	view	of	the	problem	and	come	upwith	 solutions.	 In	 the	 following	 text	 we	will	 use	 APL	 to	 think	 of	 a	 solution	 to	 aproblem	 involving	 calculations	 to	 solve	 a	 mathematical	 problem.	 The	 problemoriginates	from	Kakuro[1],	a	popular	puzzle	found	in	newspapers,	where	you	needto	know	the	sets	of	numbers	making	up	a	solution.
The	problemIn	 this	problem	we	need	 to	come	up	with	all	 the	sets	of	N	unique	positive	singledigit	numbers	 (1..9)	making	up	a	particular	 sum	S.	N	and	S	are	 the	key	numbershere,	they	will	be	the	input	to	our	problem.	The	output	is	all	the	possible	sets.	Theformat	is	unimportant;	it	could	be	e.g.	a	list	of	sets	or	a	square	matrix,	N	wide.Most	 of	 the	 code	 should	work	 in	 any	modern	 APL.	 However,	 the	 examples	werecreated	 with	 Dyalog	 Version	 14.	When	 features	 are	 used	which	 are	 available	 inDyalog	APL	only	this	is	mentioned.	⎕IO←1	is	assumed.For	example,	there	are	only	2	sets	of	4	unique	digits	1	to	9	adding	up	to	12:	(1	2	36)	and	(1	2	4	5).
Attempt	#1The	 Eirst	 thought	 is	 the	 easiest:	 brute	 force.	 Can	we	 generate	 all	 the	 possibilitiesand	screen	out	unwanted	ones?We	need	to	form	sequences	of	N	numbers,	each	from	1	to	9.	For	example,	pairs	are(1,1)	 (1,2)	 (1,3)…(2,1)	 (2,2)…	 (9,9),	 81	 combinations	 in	 all.	We	 can	 use	catenate(,)	to	put	numbers	together:
 i3 ← ⍳3 ⍝ define a vector of the numbers 1, 2 and 3
 i3 , i3
1 2 3 1 2 3Not	quite	what	we	want,	we	want	to	catenate	each	number	to	each	other:
 i3 ,¨ i3

VECTOR Vol.26 No.2&3

50

 1 1 2 2 3 3In	Dyalog	APL	V14	 there	 is	 a	new	user	 command	 that	 allows	us	 to	box	 enclosedarrays	automatically	to	better	see	their	nature:
]box on
Was OFF
 i3 ,¨ i3
┌───┬───┬───┐
│1 1│2 2│3 3│
└───┴───┴───┘Again	 this	 is	 not	 what	 we	 want,	 what	 we	 want	 is	 to	 do	 the	 catenation	 for	 eachelement	in	i3	to	each	other	element	in	i3,	like	this:
 1 ,¨ i3
┌───┬───┬───┐
│1 1│1 2│1 3│
└───┴───┴───┘
 2 ,¨ i3
┌───┬───┬───┐
│2 1│2 2│2 3│
└───┴───┴───┘
 3 ,¨ i3
┌───┬───┬───┐
│3 1│3 2│3 3│
└───┴───┴───┘APL	allows	us	to	do	this	nicely,	distributing	the	function	,	without	 looping,	using
jot-dot	(∘.)	:
 i3 ∘., i3
┌───┬───┬───┐
│1 1│1 2│1 3│
├───┼───┼───┤
│2 1│2 2│2 3│
├───┼───┼───┤
│3 1│3 2│3 3│
└───┴───┴───┘That’s	better.	This	will	work	is	all	modern	APLs.	In	Dyalog	we	can	use	commute	(⍨)to	 avoid	 repeating	 the	 argument.	 Commute	 normally	 swaps	 (commutes)	 thearguments	 of	 a	 function	 so	a∊⍨b	 becomes	b∊a,	 but	 when	 used	 monadically	 itrepeats	the	argument	so	+⍨a	becomes	a+a:
 ∘., ⍨ i3
┌───┬───┬───┐
│1 1│1 2│1 3│
├───┼───┼───┤
│2 1│2 2│2 3│
├───┼───┼───┤
│3 1│3 2│3 3│
└───┴───┴───┘

VECTOR Vol.26 No.2&3

51

Let's	do	it	for	the	numbers	1	to	9:
 ∘., ⍨ ⍳9
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│1 1│1 2│1 3│1 4│1 5│1 6│1 7│1 8│1 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│2 1│2 2│2 3│2 4│2 5│2 6│2 7│2 8│2 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│3 1│3 2│3 3│3 4│3 5│3 6│3 7│3 8│3 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│4 1│4 2│4 3│4 4│4 5│4 6│4 7│4 8│4 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│5 1│5 2│5 3│5 4│5 5│5 6│5 7│5 8│5 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│6 1│6 2│6 3│6 4│6 5│6 6│6 7│6 8│6 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│7 1│7 2│7 3│7 4│7 5│7 6│7 7│7 8│7 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│8 1│8 2│8 3│8 4│8 5│8 6│8 7│8 8│8 9│
├───┼───┼───┼───┼───┼───┼───┼───┼───┤
│9 1│9 2│9 3│9 4│9 5│9 6│9 7│9 8│9 9│
└───┴───┴───┴───┴───┴───┴───┴───┴───┘Let's	keep	this	 list	 in	a	variable	and	Eind	the	sum	of	each	and	let's	 Eind	those	thatadd	up	to,	say,	6:
 v← , ∘.,⍨ ⍳9 ⍝ turn the table into a list with ravel (,)
 sum← +/¨ v ⍝ sum each set
 six← 6=sum ⍝ find the 6s
 six/v ⍝ extract them
┌───┬───┬───┬───┬───┐
│1 5│2 4│3 3│4 2│5 1│
└───┴───┴───┴───┴───┘Let's	write	a	function	to	Eind	pairs	adding	up	to	a	speciEic	number.	Here	we’ll	useDyalog’s	dynamic	functions:
 pairs←{ok←⍵=+/¨all←, ∘., ⍨ ⍳9 ⋄ ok/all}
 pairs 6
┌───┬───┬───┬───┬───┐
│1 5│2 4│3 3│4 2│5 1│
└───┴───┴───┴───┴───┘There	are	2	problems	with	this	code:#1,	the	rule	says	digits	must	be	unique,	so	let’s	add	code	to	only	keep	the	numbersthat	are	different:
 pairs←{ok←⍵=+/¨all←, ∘.,⍨ ⍳9 ⋄ ok←ok ∧ ≠/¨all ⋄ ok/all}
 pairs 6
┌───┬───┬───┬───┐
│1 5│2 4│4 2│5 1│
└───┴───┴───┴───┘That's	better,	but	we	still	need	to	solve	problem	#2:	some	are	duplicates,	e.g.	(1	5)and	(5	1)	are	the	same.	We	should	remove	them.	Let's	create	a	sorting	function	to

VECTOR Vol.26 No.2&3

52

reorder	the	sets:
 Sort←{⍵[⍋⍵]}and	 use	 it	 in	 our	 function	 to	 reorder	 each	 set	 and	 use	unique	 (∪)	 to	 extract	 theunique	ones:
 pairs←{ok←⍵=+/¨all←,∘.,⍨⍳9 ⋄ ok←ok∧≠/¨all ⋄ ∪ Sort¨ ok/all}

 pairs 6 ⍝ pairs that add up to 6
┌───┬───┐
│1 5│2 4│
└───┴───┘
 pairs 9 ⍝ pairs that add up to 9
┌───┬───┬───┬───┐
│1 8│2 7│3 6│4 5│
└───┴───┴───┴───┘Looks	good.	What	about	triples?	We	can	use	∘.,	twice:
 i3 ∘., i3 ∘., i3 ⍝ generate a 3 x 3 x 3 of 1, 2 and 3s
┌─────┬─────┬─────┐
│1 1 1│1 1 2│1 1 3│
├─────┼─────┼─────┤
│1 2 1│1 2 2│1 2 3│
├─────┼─────┼─────┤
│1 3 1│1 3 2│1 3 3│
└─────┴─────┴─────┘
┌─────┬─────┬─────┐
│2 1 1│2 1 2│2 1 3│
├─────┼─────┼─────┤
│2 2 1│2 2 2│2 2 3│
├─────┼─────┼─────┤
│2 3 1│2 3 2│2 3 3│
└─────┴─────┴─────┘
┌─────┬─────┬─────┐
│3 1 1│3 1 2│3 1 3│
├─────┼─────┼─────┤
│3 2 1│3 2 2│3 2 3│
├─────┼─────┼─────┤
│3 3 1│3 3 2│3 3 3│
└─────┴─────┴─────┘
 triples←{ (⍵=+/¨all)/ all←, i ∘., i ∘., i←⍳9 }
 triples 6
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐
│1 1 4│1 2 3│1 3 2│1 4 1│2 1 3│2 2 2│2 3 1│3 1 2│3 2 1│4 1 1│
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘Some	doubles	are	still	there	-	we	can't	use	≠	this	time.	≠/	on	more	than	2	numbersis	meaningless:
 ≠/4 1 1 ⍝ same as 4≠ (1≠1) or 4≠FALSE!!!
1We’ll	use	the	nub	(unique)	of	each	set	to	see	if	 it	 is	valid	with	function	{⍵≡∪⍵}:	 ifthe	 digits	 are	 unique	 we’ll	 keep	 the	 set.	 We’ll	 then	 sort	 each	 set	 and	 keep	 theunique	ones:

VECTOR Vol.26 No.2&3

53

 clean←{ ∪Sort¨ ({⍵≡∪⍵}¨⍵)/⍵ }
 triples←{all←(⍵=+/¨all)/all←,i ∘., i ∘., i←⍳9 ⋄ clean all}
 triples 6
┌─────┐
│1 2 3│
└─────┘That's	 better;	we	now	need	 to	write	 a	 function	 that	will	 do	 it	 for	 any	number	ofdigits.	The	left	argument	will	be	the	number	of	digits	required.	That	means	loopingover	∘.,	 until	 we	 have	 the	 proper	 number	 of	 iterations.	 In	 Dyalog	 the	poweroperator	(⍣)	will	help	with	this,	it	will	do	the	looping	for	us:
 (i3 ∘., i3 ∘., i3) ≡ (i3 (∘., ⍣ 2) i3)
1So	we	can	write	(for	N	digits	we	need	to	run	∘.,	N-1	times)
 NCat←{⍵ (∘., ⍣(⍺-1)) ⍵} Or,	since	the	argument	is	the	same	on	both	sides,	we	can	use	⍨	:
 NCat←{ ∘., ⍣(⍺-1)⍨ ⍵}
 ntuple←{ok←⍵=+/¨all←, ⍺ NCat ⍳9 ⋄ all←ok/all ⋄ clean all }Let’s	find	how	many	ways	we	can	make	twelve	with	four	different	numbers:
 4 ntuple 12
┌───────┬───────┐
│1 2 3 6│1 2 4 5│
└───────┴───────┘
 ⍴4 ntuple 12
2Just	 two.	There	should	also	be	only	one	way	 for	9	digits	 to	add	up	 to	45	 (all	 thenumbers	1	to	9):
 ⍴9 ntuple 45
WS FULL
NCat[0] NCat←{∘.,⍣(⍺-1)⍨⍵}
 ∧Oops!	Looks	like	we	have	a	problem	Houston.	We're	trying	to	generate
 9 × 9*9
3486784401more	 than	 3	 billion	 numbers!	 This	 is	 too	 big	 on	 my	 machine,	 even	 with
⎕wa=64039748.

VECTOR Vol.26 No.2&3

54

 6 ntuple 35
┌───────────┬───────────┬───────────┬───────────┐
│1 4 6 7 8 9│2 3 6 7 8 9│2 4 5 7 8 9│3 4 5 6 8 9│
└───────────┴───────────┴───────────┴───────────┘
 7 ntuple 39
WS FULL
NCat[0] NCat←{∘.,⍣(⍺-1)⍨⍵}
 ∧Looking	at
 i3 ∘., i3 ∘., i3
┌─────┬─────┬─────┐
│1 1 1│1 1 2│1 1 3│
├─────┼─────┼─────┤
│1 2 1│1 2 2│1 2 3│
├─────┼─────┼─────┤
│1 3 1│1 3 2│1 3 3│
└─────┴─────┴─────┘
…we	can	 see	 that	 the	numbers	 in	 the	boxes	are	 the	 indices	of	 each	box.	APL	has	aprimitive	to	produce	the	indices	of	any	structure:	iota	(⍳)	:
 (i3 ∘., i3 ∘., i3) ≡ ⍳ 3 3 3
1This	primitive	 should	 take	 less	 space	 to	 generate	 and	 is	 a	 lot	 faster	 than	 loopingover	:
 ntupleB←{ok←⍵=+/¨all←,⍳ ⍺⍴9 ⋄ all←ok/all ⋄ clean all}Let’s	see	how	much	faster	it	 is.	There	is	a	user	command	in	Dyalog	that	allows	uscompare	timings:
]runtime "6 ntuple 35" "6 ntupleB 35" -compare

 6 ntuple 35 → 2.4E¯1 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
 6 ntupleB 35 → 1.4E¯1 | -43% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ But	it	still	suffers	from	space	problems:
 7 ntupleB 39
WS FULL
ntuple2[0] ntupleB←{ok←⍵=+/¨all←,⍳⍺⍴9 ⋄ all←ok/all ⋄ clean all}
 ∧But	wait,	maybe	we	can	do	it	another	way.	How	about	using	encode?	Here	are	the81	pairs	again:

VECTOR Vol.26 No.2&3

55

 1+ 9 9 ⊤ ¯1+ ⍳9*2
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2

 3 4 5 6 7 8 9 1 2 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9
 5 5 5 5 5 5 5 6 6 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

 9 9 9 9 9 9 9 9
 2 3 4 5 6 7 8 9Again,	 that	would	also	require	 too	many	numbers	when	N	 is	greater	 than	6.	Thisbrute	force	method	fails	for	large	N,	let's	see	if	we	can	modify	it.
Attempt	#2Maybe	we	can	refine	the	process.	Let’s	have	a	look	at	pairs	again:
 pairs
{ok←⍵=+/¨all←,∘.,⍨⍳9 ⋄ ok←ok∧ ≠/¨all ⋄ ∪Sort¨ok/all}We	don’t	really	need	Sort	nor	the	unique	(∪)	after.	We	can	eliminate	a	lot	of	casesby	 reordering	 the	 checks	 and	 taking	 into	 account	 that	 the	 numbers	 in	 the	 setsmust	be	in	increasing	order:
 pairs2← {all←(</¨all)/all←, i9 ∘., i9←⍳9 ⋄ (⍵=+/¨all)/all}
 pairs2 9
┌───┬───┬───┬───┐
│1 8│2 7│3 6│4 5│
└───┴───┴───┴───┘Triples	 are	 similar.	 We	 cannot	 use	 </	 on	 3	 numbers	 but	 since	 the	 last	 ones	 arealready	ordered	we	can	use	</	on	the	first	2	.	We	could	write
 triples2←{
 all←(</¨2↑¨all) /all←, i9 ∘., (</¨all)/all←,i9 ∘., i9←⍳9
 (⍵=+/¨all)/all
 }
 triples2 19
┌─────┬─────┬─────┬─────┬─────┐
│2 8 9│3 7 9│4 6 9│4 7 8│5 6 8│
└─────┴─────┴─────┴─────┴─────┘Seems	 to	work.	Quadruples	would	work	similarly.	We	should	use	a	 function,	 likeNcat,	to	generate	the	combinations,	something	like
 Gen←{ ((</¨2↑¨all)/ all←,(⍳9) ∘., ⍵}We	can	use	the	user	command]ROWS	(newly	introduced	in	Version	14.0	of	Dyalog)to	cut	the	output	to	the	width	of	the	window	(paper	here):
]rows -style=cut
Was -style=long
 Gen ⍳9

VECTOR Vol.26 No.2&3

56

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬──•
│1 2│1 3│1 4│1 5│1 6│1 7│1 8│1 9│2 3│2 4│2 5│2 6│2 7│2 8│2 9│3 4│3 •
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴──•
 Gen Gen ⍳9
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬•
│1 2 3│1 2 4│1 2 5│1 2 6│1 2 7│1 2 8│1 2 9│1 3 4│1 3 5│1 3 6│1 3 7│•
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴•
 Gen Gen Gen ⍳9
┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬──•
│1 2 3 4│1 2 3 5│1 2 3 6│1 2 3 7│1 2 3 8│1 2 3 9│1 2 4 5│1 2 4 6│1 •
└───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┴──•Let’s	try	it:
 ntuple2←{ ok←⍵=+/¨all← Gen⍣(⍺-1) ⍳9 ⋄ ok/all}
 3 ntuple2 19
┌─────┬─────┬─────┬─────┬─────┐
│2 8 9│3 7 9│4 6 9│4 7 8│5 6 8│
└─────┴─────┴─────┴─────┴─────┘The	ultimate	test:	can	it	Eind	the	only	solution	to	a	9	digits	sequence	adding	up	to45	+/⍳9?
 9 ntuple2 45
┌─────────────────┐
│1 2 3 4 5 6 7 8 9│
└─────────────────┘It	works!	We	now	have	a	solution.	Mission	accomplished.	Let’s	see	how	much	spaceis	 needed	 to	 run	 it;	 the	 user	 command]spaceneeded	 will	 provide	 thatinformation:
]space "9 ntuple2 45"
85824Not	bad.	How	much	CPU	does	it	take?
]runtime "9 ntuple2 45" -repeat=1s

* Benchmarking "9 ntuple2 45", repeat=1s
 Exp
 CPU (avg): 2.835227273
 Elapsed: 2.8664772733	ms.	That’s	good	enough.Out	of	curiosity,	could	we	have	done	better?
Attempt	#3Looking	carefully	at	pairs	we	see	that	the	Eirst	number	can	be	1	to	9	and	that	thesecond	number	can	be	whatever	remains	(as	long	as	it	 is	 in	the	range	1	to	9)	butnot	the	same,	i.e.	for	pairs	adding	up	to	a	speciEic	Sum	e.g.	10,	we	have	1	and	(10-1),	2	and	(10-2),	3	and	(10-3),	etc.	In	APL	⌈:

VECTOR Vol.26 No.2&3

57

 (⍳9) ,¨ 10-⍳9
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│1 9│2 8│3 7│4 6│5 5│6 4│7 3│8 2│9 1│
└───┴───┴───┴───┴───┴───┴───┴───┴───┘The	sets	should	be	ordered	in	increasing	order	so	we	can	limit	the	numbers	1	to	4as	Eirst	number	because	the	largest	combination	we	will	have	will	be	n	followed	byn+1,	i.e.	10=n+n+1	or	n=4.5,	or	4	since	we	only	deal	with	integers.
 pairs3← {i,¨ ⍵-i← ⍳⌊ (⍵-1)÷2 }
 pairs3 9
┌───┬───┬───┬───┐
│1 8│2 7│3 6│4 5│
└───┴───┴───┴───┘
 pairs3 10
┌───┬───┬───┬───┐
│1 9│2 8│3 7│4 6│
└───┴───┴───┴───┘Fine.	How	about	 triples?	Using	 the	 same	 idea	we	 Eind	 that	 the	 largest	 set	will	 ben,(n+1),(n+2)	so	we	can	use	the	numbers	from	1	to	⌊(Sum-3)÷3	followed	by	all	thepairs	of	Sum	minus	that	number.	For	example
 Sum←10
 (Sum-3) ÷ 3 ⍝ we start with the numbers 1 and 2
2.333333333
 1,¨ pairs3 Sum-1
┌─────┬─────┬─────┬─────┐
│1 1 8│1 2 7│1 3 6│1 4 5│
└─────┴─────┴─────┴─────┘
 2,¨ pairs3 Sum-2
┌─────┬─────┬─────┐
│2 1 7│2 2 6│2 3 5│
└─────┴─────┴─────┘Not	quite.	We	should	 ignore	any	pair	 starting	with	a	number	 smaller	or	equal	 toour	first	number.Let’s	 modify	pairs3	 to	 accept	 a	 (optional)	 left	 argument	 specifying	 the	 startingnumbers	to	skip:
 pairs3← {⍺←0 ⋄ i,¨ ⍵-i← ⍺↓ ⍳⌊ (⍵-1)÷2 }
 pairs3 9
┌───┬───┬───┬───┐
│1 8│2 7│3 6│4 5│
└───┴───┴───┴───┘
 1 pairs3 9
┌───┬───┬───┐
│2 7│3 6│4 5│
└───┴───┴───┘

 1,¨ 1 pairs3 Sum-2
┌─────┬─────┐
│1 2 6│1 3 5│
└─────┴─────┘

VECTOR Vol.26 No.2&3

58

 2,¨ 2 pairs3 Sum-2
┌─────┐
│2 3 5│
└─────┘Triples?
 triples3←{i← ⍳⌊ (⍵-3)÷3 ⋄ i,¨ i pairs3¨ ⍵-i }
 triples3 9
┌───────────┬───────┐
│┌─┬───┬───┐│┌─┬───┐│
││1│2 6│3 5│││2│3 4││
│└─┴───┴───┘│└─┴───┘│
└───────────┴───────┘Not	quite,	we	need	to	use	each	(¨)	twice:
 triples3←{i← ⍳⌊ (⍵-3)÷3 ⋄ i,¨¨ i pairs3¨ ⍵-i }
 triples3 9
┌─────────────┬───────┐
│┌─────┬─────┐│┌─────┐│
││1 2 6│1 3 5│││2 3 4││
│└─────┴─────┘│└─────┘│
└─────────────┴───────┘That’s	 better	 but	 this	 enclosing	 business	 is	 getting	 out	 of	 hand.	 Let’s	 work	withmatrices:
 pairs3B←{⍺←0 ⋄ i,⍪⍵-i←⍺↓⍳⌊(⍵-1)÷2}
 pairs3B 9
1 8
2 7
3 6
4 5
 2 pairs3B 9
3 6
4 5
 triples3B← {i← ⍳⌊ (⍵-3)÷3 ⋄ ↑⍪/i,¨ i pairs3B¨ ⍵-i }
 triples3B 9
1 2 6
1 3 5
2 3 4Seems	to	work.	But	there	is	a	pattern	here.	It	looks	like	a	recursive	definition.If	we	want	a	single	digit	set	then	the	set	is	the	sum	if	it	is	below	10.If	we	want	a	N	digit	set	then	it	is	all	the	digits	from	1	to	⌊(Sum-+/⍳N-1)÷Nfollowed	by	the	N-1	digit	set	of	Sum	minus	that	number.We’ll	need	to	adjust	the	starting	number	and	remove	any	number	smaller	or	equalto	the	first	digit.	We	need	to	supply	that	number	as	argument,	something	like:

VECTOR Vol.26 No.2&3

59

 ntuple3← {
 ⍝ Generate all monotonic combinations of ⍺ numbers adding to ⍵
 (nn sn)←2↑⍺ ⍝ # of numbers needed, numbers to skip
 nn=1 : (⍵≤9)⌿ ⍪⍵ ⍝ solution for 1 number is ⍵ if ≤9
 ⍝ More than 1 #, drop any number ≤ sn
 n1←sn↓⍳8⌊0⌈⌊(⍵- +/ ⍳ nn-1)÷nn ⍝ all possible starting #
 0∊⍴n1 : 0 nn⍴0 ⍝ no solution?
 ⍝ All are starting # followed by the new combination
 ↑⍪/ n1 ,¨ ((nn-1),¨n1) ∇¨ ⍵-n1
 }This	solution	returns	a	matrix	instead	of	a	list	of	vectors.	Let’s	try	it:
 4 ntuple3 12
1 2 3 6
1 2 4 5
 9 ntuple3 45
1 2 3 4 5 6 7 8 9How	does	it	compare	with	the	previous	solution?
]runtime "9 ntuple2 45 " "9 ntuple3 45" -compare

 9 ntuple2 45 → 2.9E¯3 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
* 9 ntuple3 45 → 5.3E¯5 | -99% ⎕
]space "9 ntuple3 45"
3620Quite	a	difference.	With	just	a	little	more	effort	we	improved	our	original	solutiona	lot.	And	there	are	even	faster	solutions.
ConclusionAPL	 provides	 us	 with	 an	 environment	 where	 we	 can	 experiment	 “hands	 on”	 tostudy	 situations,	 verify	 results	 and	 make	 better	 decisions.	 With	 it	 we	 can	 evencome	up	with	prototypes	that	we	can	use	to	make	further	forays	into	our	problem.There	is	a	lot	of	thinking	that	could	have	been	done	mentally	but	being	able	to	usethe	computer	really	is	a	bonus.If	you	want,	there	is	a	video	accompanying	this	article	you	can	have	a	look	at.	Go	toYouTube	 and	 look	 for	 “Brute	 force	 method	 to	 Einding	 all	 the	 sets	 in	 a	 row	 ofKakuro”.	You	can	also	try	this	link:	http://youtu.be/bJssWsdXjmYHave	fun!
References1.	 	Kakuro

VECTOR Vol.26 No.2&3

60

http://www.youtube.com/
http://youtu.be/bJssWsdXjmY/
http://en.wikipedia.org/wiki/Kakuro

Table	Diff
Dhrusham	Patel	(dhrusham.patel@equiniti.com)

The	objective	of	tablediff	is	to	compare	two	tables:	an	old	table	and	a	new	table,where	the	new	table	is	assumed	to	have	been	derived	from	the	old	table	by	way	ofrow-edits,	insertions	 and	 deletions.	 The	 result	should	therefore	 identify	 anddistinguish	 between	 these	 types	 of	modiEication.	 To	 achieve	 this,	 the	 functioncompares	 two	tables	 and	 returns	 a	 pair	 of	 aligned	 tables.	In	addition	 to	 aligningthe	 matched	 rows,	 the	 aligned	 tables	contain	 empty	 rows	 corresponding	 toinsertions	 and	deletions.	The	 process	 of	 matching	 rows	 is	 based	 on	 solving	 theLongest	Common	Subsequence	(LCS)	problem[1]	for	rows	of	the	tables.Here	is	an	example	of	the	function	in	operation:
old new2 (old tablediff new)
 A A A v v v A A A
 B B B w w w v v v
 C C C - B B w w w
 D D D C - C B B B - B B
 E E E - D - C C C C - C
 F F F x x x D D D - D -
 G G G y y y E E E
 H H H H H H F F F
 I I I D I D G G G
 J J J M M M x x x
 K K K z z z y y y
 L L L H H H H H H
 M M M I I I D I D
 N N N J J J
 O O O K K K
 L L L
 M M M M M M
 N N N
 O O O
 z z zAs	 can	 be	 seen	 above:	 rows	 align	 according	 to	 where	 there	 is	a	 match,	 exact	 orpartial.	 Empty	 rows	 in	 the	old	 and	new	 tables	 represent	 row	insertions	 and	 rowdeletions	 respectively.	 Note	 that	 partial	matches	 have	 also	 been	 aligned;representing	 where	 rows	 have	been	 edited.	 In	 particular,	 notice	 the	 instanceswhere	partial	matches	have	been	aligned	despite	better	matches	being	available,	asdoing	so	would	yields	a	better	alignment	for	the	tables	as	a	whole.The	cells	contain	strings,	i.e.	character	vectors.	In	this	example	all	the	strings	havelength	1,	merely	for	convenience	in	presentation.

VECTOR Vol.26 No.2&3

61

The	 key	 variation	 in	 this	 function	 from	 the	 standard	 LCS	 problem	is	 that	 ittolerates	partial	matches,	 thereby	allowing	 the	 function	to	 trace	minor	row	edits.By	 calculating	degree	 of	 match	 in	 the	 range	 0	 –	 1,	 we	 Eind	 the	 highest-scoringcommon	subsequence.The	strategy	is	to	match	rows	in	new	to	their	originals	in	old;	then	expand	the	twotables	to	align	them.The	function	has	four	steps:1.	 Find	row	matches:	both	partial	and	exact.2.	 Generate	and	select	candidate	solutions	to	evaluate.3.	 Find	the	best	match:	i.e.	the	highest-scoring	common	subsequence.4.	 Align	matching	rows	by	creating	a	pair	of	boolean	expansion	vectors.
Step	1:	Tabulate	all	row	matches
 matches←(↓old)∘.≡↓newSplit	 the	 tables	and	use	an	outer-product	match	 to	 Eind	which	 rows	 in	new	matchwhich	rows	in	old.	But	we	want	to	honour	partial	matches,	where	a	row	has	beenedited.
 matches←(↓old)∘.(≡¨)↓newNow	each	cell	of	the	result	is	a	3-element	boolean.	Sum	each	cell	and	divide	by	thenumber	of	columns	to	get	a	score	for	each	match	in	the	range	0	–	1.
 rnew cnew←⍴new
 ms←(+/¨(↓old)∘.(≡¨)↓new)÷cnew ⍝ match scoresBut	this	can	be	written	more	simply[2]:
 ms←(old+.≡⍉new)÷cnew ⍝ match scoresThe	 resulting	 table	 of	 row	 match	 scores	ms	 represents	 the	likeness	 of	 each	 rowfrom	the	old	table	compared	with	each	row	of	the	new	table.

VECTOR Vol.26 No.2&3

62

Step	2:	Generate	and	select	candidate	solutions	to	evaluate

	
Figure	1:	Two	solution	paths	through	the	match	scores	table.The	above	two	Eigures	show	two	possible	match	paths.	Origin	0,	 the	 Eirst	matchesrows	2	3	4	7	8	9	of	new	to	rows	1	2	3	7	8	12	of	old.	The	second	matches	rows	2	3	78	of	new	to	1	2	3	12	of	old.Because	rows	are	not	moved	(only	inserted,	deleted	or	edited)	a	match	path	mustspecify	progressively	rising	indexes	of	old	and	new.The	challenge	is	to	identify	all	possible	match	paths	and	find	the	highest-scoring.We	start	by	tabulating	all	possible	selections	of	rows	of	new.	 In	 the	 Eigures	above,the	 selections	 from	new	 correspond	 to	 columns	 with	 matches:	 in	 both	cases	 theselection	is	0	0	1	1	1	0	0	1	1	1	0.The	expression	(rnew/2)⊤⍳2*rnew	gives	all	possible	selections	from	new:

 disp←{'.⎕'[⍵]}
 disp 60↑[1] (rnew/2)⊤⍳2*rnew ⍝ first 60 of 2048 cols
..
..
..
..
..
...............................⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
...............⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕................⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
.......⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕
...⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕
.⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕.
⎕.

VECTOR Vol.26 No.2&3

63

We	can	eliminate	selections	that	select	rows	of	new	that	have	no	matches	at	all.
 disp {⍵/⍨∧⌿~(~∨⌿×ms)⌿⍵} (rnew/2)⊤⍳2*rnew
..
..
................................⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
................⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕................⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
........⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕⎕⎕⎕........⎕⎕⎕⎕⎕⎕⎕⎕
..
..
....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕....⎕⎕⎕⎕
..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕..⎕⎕
.⎕
..That	reduces	the	number	of	selections	to	test	from	2048	to	64.The	more	matches	the	better.	So	we’ll	try	the	most	promising	selections	first.
 disp sstt←{⍵[;⍒+⌿⍵]} {⍵/⍨∧⌿~(~∨⌿×ms)⌿⍵} (rnew/2)⊤⍳2*rnew
..
..
⎕.⎕⎕⎕⎕⎕.....⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕..........⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕..........⎕⎕⎕⎕⎕.....⎕.
⎕⎕.⎕⎕⎕⎕.⎕⎕⎕⎕....⎕⎕⎕⎕⎕⎕....⎕⎕⎕⎕⎕⎕......⎕⎕⎕⎕......⎕⎕⎕⎕....⎕....⎕..
⎕⎕⎕.⎕⎕⎕⎕.⎕⎕⎕.⎕⎕⎕...⎕⎕⎕.⎕⎕⎕...⎕⎕⎕...⎕⎕⎕...⎕...⎕⎕⎕...⎕...⎕....⎕...
..
..
⎕⎕⎕⎕.⎕⎕⎕⎕.⎕⎕⎕.⎕⎕.⎕⎕..⎕⎕.⎕⎕.⎕⎕..⎕.⎕⎕..⎕..⎕..⎕⎕..⎕..⎕...⎕....⎕....
⎕⎕⎕⎕⎕.⎕⎕⎕⎕.⎕⎕⎕.⎕⎕.⎕.⎕.⎕⎕.⎕⎕.⎕.⎕.⎕.⎕.⎕..⎕..⎕.⎕.⎕..⎕...⎕....⎕.....
⎕⎕⎕⎕⎕⎕.⎕⎕⎕⎕.⎕⎕⎕.⎕⎕.⎕..⎕⎕⎕.⎕⎕.⎕..⎕⎕.⎕..⎕...⎕⎕.⎕..⎕...⎕....⎕......
..From	 2048	 possible	 selections	 of	 rows	 of	new,	 we’ve	 found	 64	 to	 evaluate,	 andsorted	the	most	promising	to	the	left.
Step	3:	Find	best	solutionA	candidate	solution	is	a	selection	of	rows	from	new,	all	of	which	match	rows	from
old.	 Because	 table	 rows	 have	 not	 been	 reordered,	 the	 solution	must	 pick	 outsuccessive	rows	of	old.Each	 selection	 of	new	 will	 produce	 zero	 or	more	match	 paths.	The	 criterion	 thatrow	matches	are	monotonically	 rising	(i.e.	 terms	of	 solution	must	be	consecutive,but	 not	necessarily	 contiguous,	 terms	 of	 the	 original	 sequences)	means	 that	 it	 ispossible	for	there	to	be	zero	match	paths.	The	longest	match	path	corresponds	tothe	longest	common	subsequence.Scoring	 the	matches	 introduces	 an	 additional	 variable	 for	consideration:	we	nowwant	 the	highest-scoring	 common	subsequence.	Note	 that	 if	 there	are	partial	 rowmatches	 the	 longest	common	 subsequence	 is	 not	 necessarily	 the	 highest-scoringcommon	subsequence.

VECTOR Vol.26 No.2&3

64

Each	selection	of	rows	of	new	gives	a	corresponding	selection	of	the	match-scorestable,	 in	 which	 to	 look	 for	match	 paths.	 The	soln	 function	 returns	 the	 highest-scoring	match	path,	and	its	score.
soln←{
 ⍝ best solution (origin-0) and score for match scores ⍵ (matrix)
 ⎕IO←0
 where←{⍵/⍳⍴⍵}
 cmbn←{↑,⊃∘.,/⍵,⊂⊂⍬} ⍝ combine lists
 rr←{∧/↑>/1 ¯1↓[1]¨⊂⍵} ⍝ rising rows
 mrr←{⍵⌿⍨(rr ⍵)∧∧/⍵=⌈\⍵} ⍝ monotonically rising rows
 rows←mrr cmbn where¨↓[0]×⍵ ⍝ solns are sequences of rows
 0∊⍴rows:⍬ 0 ⍝ no solution, zero score
 nc←⊃⌽⍴⍵ ⍝ count cols in ⍵
 scores←+/(,⍵)[(rows×nc)+[1]⍳nc] ⍝ score by soln
 (scores⍳⌈/scores)∘⊃¨(↓rows)(scores)
 }To	 Eind	 the	 highest-scoring	 match	 path	 we	 apply	soln	 to	 the	 selections	 in	 turn,starting	 with	the	 most	 promising.	But	we	don’t	 need	 to	 evaluate	 every	 selection.We	 can	 stop	when	 the	 next	 selection	 could	 not	 produce	 a	 higher-scoring	matchpath.	We	 don’t	 need	 to	 apply	 soln	 to	 see	 that.	 If	 the	next	 selection	has	 only	 fourElags	and	the	highest	score	so	far	is	4.66,	then	we	need	look	no	further,	because	themaximum	score	for	a	selection	with	four	flags	is	4.
i←0 ⋄ end←↑⌽⍴sstt ⋄ (sc mo mn)←0 ⍬ ⍬ ⍝ score maskold masknew
:while sc<+/sstt[;i] ⍝ scope to improve?
 ∆←(soln ∆/ms),⊂∆←sstt[;i] ⍝ evaluate next
 (sc mo mn)←(sc<↑∆) ⌽ (sc mo mn) ∆
:until end=i←i+1After	 the	 loop,	mo	 and	mn	 contain	a	 pair	 of	 boolean	 vectors	which	 represent	 thepositions	of	matching	row	numbers	for	each	of	the	old	and	new	tables.
 mo mn ⍝ match booleans
┌→──┐
│ ┌→────────────────────────────┐ ┌→────────────────────┐ │
│ │0 1 1 1 0 0 0 1 1 0 0 0 1 0 0│ │0 0 1 1 1 0 0 1 1 1 0│ │
│ └~────────────────────────────┘ └~────────────────────┘ │
└∊──┘

Step	4:	Align	matching	rowsOnce	the	best	solution	 is	 found,	our	 Einal	step	 is	 to	create	two	boolean	expansionvectors	that	will	align	the	two	tables.Three	ways	to	do	this:
Looping	functionThis	 function	 recognises	 patterns	 in	 the	two	 booleans	mo	 and	mn	 andassembles	 (column-wise)	 a	 2-row	 table	 representing	 a	pair	 of	 expansion

VECTOR Vol.26 No.2&3

65

vectors.
Z←2 0⍴⍬
:Repeat
 :Select ⊃¨mo mn
 :Case 0 0 ⋄ x←1 0 ⍝ Row deleted
 :Case 0 1 ⋄ x←1 0 ⍝ Row deleted
 :Case 1 0 ⋄ x←0 1 ⍝ Row inserted
 :Case 1 1 ⋄ x←1 1 ⍝ match
 :EndSelect
 Z,←x
 (mo mn)↓⍨¨←x
:Until ∨/⊃¨0=⍴¨ mo mn
Z,←↑~ mo mn
expansion←↓ZThe	 select	 structure	 above	represents	 a	mapping	 that	 can	be	 expressed	 as	 ashort	D	function:
x←{0 0≡⍵:1 0 ⋄ ⌽⍵}⊃¨ mo mn

Recursive	functionThe	loop	can	be	rewritten	concisely	as	a	D	function	with	tail	recursion.
stephen←{
 0∊≢¨⍵:↑~⍵
 x←(0 1)(1 1)(1 0)⊃⍨(1 0)(1 1)⍳⊂⊃¨⍵ ⍝ inserted, preserved, deleted
 (⍪x),∇ x↓¨⍵
 }
expansion←↓stephen mo mn

Morten’s	non-looping	function

morten←{
 rn← ≢ ¨⍵
 ord←⍋(2×∊+\¨⍵)-(∊⍵)
 O m←(⊂⊂ord)⌷¨(rn/0 1)(∊⍵)
 {((~m∧O≠⍵)/O=⍵)}¨0 1
 }
expansion←morten mo mnThis	function	takes	the	booleans	as	 its	right	argument.	It	“orders	the	enlistedbooleans	so	matching	rows	are	adjacent.”	Morten	has	discussed	his	function	inmore	detail	over	on	a	blog	post	[3].

VECTOR Vol.26 No.2&3

66

Finally,	the	resulting	expansion	vectors	are	used	to	align	the	tables.
 ,¨/expansion (expansion⍀¨old new)
 1 A A A 0
 0 1 v v v
 0 1 w w w
 1 B B B 1 - B B
 1 C C C 1 C - C
 1 D D D 1 - D -
 1 E E E 0
 1 F F F 0
 1 G G G 0
 0 1 x x x
 0 1 y y y
 1 H H H 1 H H H
 1 I I I 1 D I D
 1 J J J 0
 1 K K K 0
 1 L L L 0
 1 M M M 1 M M M
 1 N N N 0
 1 O O O 0
 0 1 z z z

ListingPutting	the	four	steps	together:
∇ Z←old tablediff new;⎕IO;rnew;cnew;ms;aps;wps;sstt;i;end;sc;mo;mn;∆
 ⎕IO←0
 rnew cnew←⍴new

 ⍝ 1. Tabulate match scores
 ms←cnew÷⍨old+.≡⍉new

 ⍝ 2. Generate subsequences to test
 aps←{(⍵/2)⊤⍳2*⍵} ⍝ all possible selections
 wps←{⍵/⍨∧⌿~(~∨⌿×ms)⌿⍵} ⍝ with possible solutions
 sstt←{⍵[;⍒+⌿⍵]} wps aps rnew ⍝ subsequences to test

 ⍝ 3. Select subsequence with highest score
 i←0 ⋄ end←↑⌽⍴sstt ⋄ (sc mo mn)←0 ⍬ ⍬ ⍝ score, maskold, masknew
 :while sc<+/sstt[;i] ⍝ scope to improve?
 ∆←(soln ∆/ms),⊂∆←sstt[;i] ⍝ evaluate next
 (sc mo mn)←(sc<↑∆) ⌽ (sc mo mn) ∆
 :until end=i←i+1

 ⍝ 4. Align the tables vertically
 Z←old new⍀⍨¨morten mo mn
∇

Scope	for	improvement1.	 The	problem	is	symmetrical.	That	is:
old tablediff new ←→ ⌽ new tablediff oldThe	 longest	 common	 subsequence	 cannot	 be	 longer	 than	⌊/⊃¨⍴¨old new.	 So

VECTOR Vol.26 No.2&3

67

only	 the	 shorter	 table	 should	be	 searched	 for	 subsequences.	 In	 this	 example
new	is	the	shorter	table.	tablediff	can	be	improved	by	switching	old	 and	newif	the	latter	is	longer	then	correspondingly	reversing	the	2-element	result.2.	 cmbn←{↑,⊃∘.,/⍵,⊂⊂⍬}	is	space	hungry	and	inefficient	for	large	tables.	Instead,Morten	recommends	a	depth-first	search.[4].3.	 The	match	scores	might	be	calculated	faster	if	the	strings	were	first	hashed	tointegers.	Or,	if	there	are	many	repeated	elements,	to	indexes	to	a	list	of	theunique	elements.

AcknowledgementsI	 am	 indebted	 to	Morten	Kromberg	of	Dyalog,	my	colleague	Stephen	Taylor,	 MikeThomas	of	Bedarra	and	Arthur	Whitney	of	Kx	for	help	with	this	work.	Any	errorsare	of	course	mine.
References1.	 Longest	Common	Subsequenceen.wikipedia.org/wiki/Longest_common_subsequence_problem2.	 I	have	Morten	Kromberg	to	thank	for	spotting	this	equivalence.	Watch	out:	thisinner	product	returns	wrong	results	in	both	APL+Win	12.0	and	APLX	4.1.6.	Inthese	interpreters	use	the	longer	outer-product	expression,	which	returns	acorrect	result.3.	 Morten’s	blog	post:dyalog.com/blog/2014/07/aligning-diff-output-2/4.	 John	Scholes	on	Depth-first	searching	in	Dyoutube.com/watch?v=DsZdfnlh_d0

VECTOR Vol.26 No.2&3

68

http://en.wikipedia.org/wiki/Longest_common_subsequence_problem
http://www.dyalog.com/blog/2014/07/aligning-diff-output-2/
https://www.youtube.com/watch?v=DsZdfnlh_d0

A	letter	from	Dijkstra	on	APL
Roger	K.W.	Hui

Acknowledgments.	I	would	like	to	thank	Bob	Bernecky,	Nicolas	Delcros,	Jay	Foad,and	Eric	Iverson	for	comments	on	the	manuscript.Nick	Nickolov	brought	to	my	attention	comments	by	Dijkstra	on	APL	[1]	that	I	hadnot	 seen	 before.	 I	 contacted	 the	 author	 of	 the	 website	 and	 obtained	 a	 copy	 ofDijkstra’s	letter,	transcribed	below:
 Burroughs
 PROF DR EDSGER W DIJKSTRA PLATAANSTRAAT 5
 RESEARCH FELLOW 5671 AL NUENEN THE NETHERLANDS

 Dr A.Caplin
 [street address]
 CROYDON, Surrey
 United Kingdom
 Tuesday 12 January 1982

 Dear Dr Caplin,

 thank [sic] you for your letter dated 31 May (?) 1981. You were right in
 your reference to an APL “cult”: some adore it and others abhor it with very
 few in between. Allow me to offer you another explanation for that
 phenomenon.

 I think that most people (be it subconsciously) realize that “ease of use”
 is not the most significant aspect. Experience has show that, provided
 people are sufficiently thrilled by a gadget, they are willing to put up with
 the most terrible interfaces. Much more important is that the tool shapes the
 one who trains himself in its usage, just as the words we use shape our
 thoughts and the instrument forms the violinist. I think that a major reason
 for shunning APL is that many people are repelled by the influence APL has
 on its devotees. They implement the prayer “Dear Lord, don’t let me
 become like them” by ignoring it.

 A typical characteristic of the APL devotee is, for instance, his closeness
 to an implementation of it. I know of a visiting professor at an American
 University [sic] who, trying to teach APL, bitterly complained about the
 absence of APL terminals. He was clearly unable to teach it without them.
 And you, too, write to me that you would like to meet me in your part of the
 world, so that you can “demonstrate APL” to me. This is in sharp contrast to
 people who prefer programming languages that can be adadequately [sic]
 “demonstrated”—i.e. shown, taught and discussed—with pencil and paper.

 The fact that the printed or written word is apparently not the proper
 medium for the propagation of APL may offer a further explanation for its
 relative isolation; at the same time that fact may be viewed as one of its
 major shortcomings.

 Your writings made me wonder in which discipline you got your
 doctor’s degree.

VECTOR Vol.26 No.2&3

69

 With my greetings and best wishes,
 yours ever,
 (signed) Edsger W. Dijkstra

 PS. I apologize for the quality of my signature; having broken my right arm
 I have to sign with my left hand.
 EWDI	 Eind	 Dijkstra’s	 comments	 deeply	 ironic,	 because	 Ken	 Iverson	 invented	 hisnotation	 as	 a	means	 of	 communications	 among	 people	[2],	 and	 it	was	 only	 yearslater	 that	 the	 notation	was	 implemented	 on	 a	 computer	 at	which	 time	 it	 becameAPL.	Moreover,	Dijkstra	encountered	“Iverson	notation”	no	later	than	August	1963before	 there	was	 an	 implementation	[3].	 Even	with	APL,	 perhaps	 especially	withAPL,	 one	 can	 reasonably	 do	 non-trivial	 things	 without	 ever	 executing	 it	 on	 acomputer.I	 have	 read	 at	 least	 one	 of	 Dijkstra’s	 EWDs	 in	 which	 he	 wrote	 programs	 usingformal	methods,	 at	 the	 end	of	which	 is	 derived	 a	provably	 correct	program.	As	 Iread	it/them,	I	thought	to	myself,	“APL	should	have	been	natural	for	Dijkstra”.	Onecan	argue	what	“provably	correct	program”	means.	To	me,	it	means	what	a	typicalmathematician	means	when	he/she	says	a	 theorem	has	been	proven.	 I	know	 it	 isfar	from	saying	that	the	program	will	produce	a	correct	result	in	all	circumstances(compiler/interpreter	 has	 a	 bug,	 somebody	 pulled	 the	 plug,	 cosmic	 ray	 strikes	 atransistor,	 etc.),	 but	 I	 believe	 I	 am	using	 “prove”	 in	 the	 same	 sense	 that	Dijkstradid.Like	 Dijkstra’s	 “visiting	 professor	 at	 an	 American	 university”,	 I	 would	 bedistressed	 if	 I	 had	 to	 teach	 a	 course	 on	 APL	without	 an	 APL	machine.	Were	 it	 acourse	on	formal	methods,	one	can	get	by	without	a	machine;	but	even	in	a	courseon	 formal	methods	 executability	 would	 be	 an	 asset,	 because	 executability	 keepsyou	honest,	a	faithful	servant	that	can	be	used	to	check	the	steps	of	a	proof.	Were	ita	general	programming	course,	it	seems	extreme	to	eschew	the	use	of	a	machine	inshowing,	 teaching,	 and	 discussing.	 It	 would	 be	 like	 trying	 to	 learn	 a	 naturallanguage	without	ever	conversing	with	a	speaker	of	that	language.Herewith,	 two	 examples	 of	 using	 APL	 in	 formal	 manipulations.	 Further	 suchexamples	 can	 be	 found	 in	 Iverson’s	 Turing	 Award	 Lecture	 [4].	 A	 proof	 is	 herepresented	 as	 in	[4],	 a	 sequence	 of	 expressions	 each	 identical	 to	 its	 predecessor,annotated	with	the	reasoning.A	Summary	of	Notation	is	provided	at	the	end.
Example	1:	Ackermann’s	FunctionThe	 derivation	 Eirst	 appeared	 in	 1992	[5]	 in	 J	 and	 is	 transcribed	 here	 in	DyalogAPL.

VECTOR Vol.26 No.2&3

70

Ackermann’s	function	is	defined	on	non-negative	integers	as	follows:
 ack←{
 0=⍺: 1+⍵
 0=⍵: (⍺-1) ∇ 1
 (⍺-1) ∇ ⍺ ∇ ⍵-1
 }

 2 ack 3
9
 3 ack 2
29Lemma:	If	⍺ ack ⍵ ←→ f⍢(3∘+) ⍵	,	then	(⍺+1)ack ⍵ ←→ f⍣(1+⍵)⍢(3∘+) 1	.Proof:	By	induction	on	⍵	.
(⍺+1) ack 0 basis
⍺ ack 1 definition	of	ack
f⍢(3∘+) 1 antecedent	of	lemma
f⍣(1+0)⍢(3∘+) 1 ⍣

(⍺+1) ack ⍵ induction
⍺ ack (⍺+1) ack ⍵-1 definition	of	ack
f⍢(3∘+) (⍺+1) ack ⍵-1 antecedent	of	lemma
f⍢(3∘+) f⍣(1+⍵-1)⍢(3∘+) 1 inductive	hypothesis
¯3∘+ f 3∘+ ¯3∘+ f⍣(1+⍵-1) 3∘+ 1 ⍢
¯3∘+ f f⍣(1+⍵-1) 3∘+ 1 +
¯3∘+ f⍣(1+⍵) 3∘+ 1 ⍣
f⍣(1+⍵)⍢(3∘+) 1 ⍢												QEDUsing	the	lemma	(or	otherwise),	it	can	be	shown	that:
0∘ack = 1∘+⍢(3∘+)
1∘ack = 2∘+⍢(3∘+)
2∘ack = 2∘×⍢(3∘+)
3∘ack = 2∘*⍢(3∘+)
4∘ack = */∘(⍴∘2)⍢(3∘+)
5∘ack = {*/∘(⍴∘2)⍣(1+⍵)⍢(3∘+) 1}

Example	2:	Inverted	Table	Index-OfPresented	at	the	2013	Dyalog	Conference	[6].A	table	 is	a	set	of	values	organized	into	rows	and	columns.	The	rows	are	records.Values	in	a	column	have	the	same	type	and	shape.	A	table	has	a	speciEied	numberof	 columns	 but	 can	 have	 any	 number	 of	 rows.	 The	 extended	index-of	 on	 tablesfinds	record	indices.

VECTOR Vol.26 No.2&3

71

 tx ty tx ⍳ ty
┌──────┬─┬───┬──┐ ┌──────┬─┬───┬──┐ 3 1 5 2 5 5
│John │M│USA│26│ │Min │F│CN │17│
├──────┼─┼───┼──┤ ├──────┼─┼───┼──┤ tx ⍳ tx
│Mary │F│UK │24│ │Mary │F│UK │24│ 0 1 2 3 4
├──────┼─┼───┼──┤ ├──────┼─┼───┼──┤
│Monika│F│DE │31│ │John │M│UK │26│ ty ⍳ ty
├──────┼─┼───┼──┤ ├──────┼─┼───┼──┤ 0 1 2 3 4 4
│Min │F│CN │17│ │Monika│F│DE │31│
├──────┼─┼───┼──┤ ├──────┼─┼───┼──┤
│Max │M│IT │29│ │Mesut │M│DE │24│
└──────┴─┴───┴──┘ ├──────┼─┼───┼──┤
 │Mesut │M│DE │24│
 └──────┴─┴───┴──┘An	inverted	table	is	a	table	with	the	values	of	a	column	collected	together.	Comma-
bar	each	(⍪¨)	applied	to	an	 inverted	table	makes	 it	 look	more	 like	a	table.	And	ofcourse	 the	 columns	 have	 the	 same	tally	 (≢).	 A	 table	 can	 be	 readily	 inverted	 and
vice	versa.
 x
┌──────┬─────┬───┬──────────────┐
│John │MFFFM│USA│26 24 31 17 29│
│Mary │ │UK │ │
│Monika│ │DE │ │
│Min │ │CN │ │
│Max │ │IT │ │
└──────┴─────┴───┴──────────────┘
 ⍪¨x ≢¨x
┌──────┬─┬───┬──┐ 5 5 5 5
│John │M│USA│26│
│Mary │F│UK │24│
│Monika│F│DE │31│
│Min │F│CN │17│
│Max │M│IT │29│
└──────┴─┴───┴──┘

 invert ← {↑¨↓⍉⍵}
 vert ← {⍉↑⊂⍤¯1¨⍵}

 x ≡ invert tx
1
 tx ≡ vert x
1A	table	has	array	overhead	per	element.	An	inverted	table	has	array	overhead	percolumn.	 The	 difference	 that	 this	 makes	 becomes	 apparent	 when	 you	 have	 asufEiciently	large	number	of	rows.	The	other	advantage	of	an	inverted	table	is	thatcolumn	access	is	much	faster.An	 important	 computation	 is	x index-of y	 where	x	 and	y	 are	 compatibleinverted	tables.	Obviously,	it	can	not	be	just	x⍳y	.	The	computation	obtains	by	Eirst
verting	 the	 arguments	 (un-inverting	 the	 tables)	 and	 then	 applying	⍳	 ,	 but	 oftenthere	is	not	enough	space	for	that.

VECTOR Vol.26 No.2&3

72

 ⍪¨x ⍪¨y
┌──────┬─┬───┬──┐ ┌──────┬─┬───┬──┐
│John │M│USA│26│ │Min │F│CN │17│
│Mary │F│UK │24│ │Mary │F│UK │24│
│Monika│F│DE │31│ │John │M│UK │26│
│Min │F│CN │17│ │Monika│F│DE │31│
│Max │M│IT │29│ │Mesut │M│DE │24│
└──────┴─┴───┴──┘ │Mesut │M│DE │24│
 └──────┴─┴───┴──┘
 x ⍳ y
4 4 4 4

 (vert x) ⍳ (vert y)
3 1 5 2 5 5We	derive	a	more	efficient	computation	of	index-of	on	inverted	tables:
(vert x) ⍳ (vert y) (a)
({⍉↑⊂⍤¯1¨⍵}x) ⍳ ({⍉↑⊂⍤¯1¨⍵}y) (b)
(⍉↑⊂⍤¯1¨x) ⍳ (⍉↑⊂⍤¯1¨y) (c)
(⍉↑x⍳¨x) ⍳ (⍉↑x⍳¨y) (d)(a)	The	indices	obtain	by	Eirst	uninverting	the	tables,	that	is,	by	Eirst	applying	vert.(b)	Replace	vert	by	its	definition.(c)	 Replace	 the	 D-fn	 by	 its	 deEinition.	We	 see	 that	⊂⍤¯1	 plays	 a	 major	 role.	⊂⍤¯1encloses,	or	alternatively	computes	a	scalar	representation.(d)	For	purposes	of	index-of	x⍳¨x	 and	x⍳¨y	have	 the	same	 information	as	⊂⍤¯1¨xand	⊂⍤¯1¨y	,	but	are	much	more	efficient	representations	(small	integers	v	the	dataitself).Point	(d)	illustrated	on	column	0:
 ⊂⍤¯1⊢x0←0⊃x
┌──────┬──────┬──────┬──────┬──────┐
│John │Mary │Monika│Min │Max │
└──────┴──────┴──────┴──────┴──────┘
 x0 ⍳ x0
0 1 2 3 4

 ⊂⍤¯1⊢y0←0⊃y
┌──────┬──────┬──────┬──────┬──────┬──────┐
│Min │Mary │John │Monika│Mesut │Mesut │
└──────┴──────┴──────┴──────┴──────┴──────┘
 x0 ⍳ y0
3 1 0 2 5 5That	 is,	 the	 function	{(⍉↑⍺⍳¨⍺)⍳(⍉↑⍺⍳¨⍵)}	 computes	index-of	 on	 invertedtables.

VECTOR Vol.26 No.2&3

73

I	 believe	 that	 in	 another	 language	 a	 derivation	 such	 as	 the	 one	 above	would	 bevery	long	(in	part	because	the	program	would	be	very	long),	possibly	impracticallylong.
Summary	of	NotationThe	following	table	lists	the	APL	notation	used	in	the	paper.	A	complete	languagereference	can	be	found	in	[7].	D-fns	are	described	in	[7,	pp.	112-127]	and	[8].
←→ equivalent	(extralingual)
← assignment
⍺ left				argument
⍵ right	argument
× times
* exponentiation
⍴ reshape;	n⍴s	makes	n	copies	of	s
⍉ transpose
⍳ index-of
⊂ enclose
⊃ pick
↑ mix	(disclose)
↓ split	(enclose	rows)
⍪ table,	ravel	the	major	cells
≡ match
≢ tally,	the	length	of	the	leading	dimension
⊢ right	(identity	function)
f∘g function	composition
a∘f currying	(fix	left				argument)
f∘a currying	(fix	right	argument)
f⍤r rank	operator;	f	on	rank	r	subarrays
f⍣n power	operator;	n	applications	of	f	;	the	n-th	iterate	of	f(f⍣¯1	is	the	inverse	of	f)
f⍢g dual	operator;	g⍣¯1∘f∘g	(not	yet	implemented	in	Dyalog	APL)
f/ reduce	(fold)
f¨ each	(map)
{⍺ … ⍵} D-function
∇ D-function:	recursion
: D-function:	guard
References1.	 	Daylight,	Edgar	Graham,	A	Letter	about	APL,	2012-04-05.http://www.dijkstrascry.com/node/902.	 	Iverson,	Kenneth	E.,	A	Personal	View	of	APL,	IBM	Systems	Journal,	Volume	30,Number	4,	1991-12.	http://www.jsoftware.com/papers/APLPersonalView.htm3.	 	Iverson,	Kenneth	E.,	Formalism	in	Programming	Languages,	Communications	of

VECTOR Vol.26 No.2&3

74

http://www.dijkstrascry.com/node/90
http://www.jsoftware.com/papers/APLPersonalView.htm

the	ACM,	Volume	7,	Number	2,	1964-02.	See	the	last	question	in	the	discussion.http://www.jsoftware.com/papers/FPL.htm4.	 	Iverson,	Kenneth	E.,	Notation	as	a	Tool	of	Thought,	Communications	of	theACM,	Volume	23,	Number	8,	1980-08.http://www.jsoftware.com/papers/tot.htm5.	 	Hui,	Roger	K.W.,	Three	Combinatoric	Puzzles,	Vector,	Volume	9,	Number	2,1992-10;	also	in	Ackermann’s	Function,	J	Wiki	Essay,	2005-10-14.http://www.jsoftware.com/jwiki/Essays/Ackermann%27s%20Function6.	 	Hui,	Roger	K.W.,	Rank	&	Friends,	2013	Dyalog	Conference,	2013-10-22.http://www.dyalog.com/dyalog_13/presentations/D08_Rank_and_Friends/friendsscript.htm7.	 	Dyalog	Limited,	Dyalog	APL	Programmer’s	Guide	&	Language	Reference,Version	13.1,	2012.http://docs.dyalog.com/13.1/Dyalog%20APL%20Programmer%27s%20Guide%20&%20Language%20Reference.pdf8.	 	Scholes,	John,	D:	A	Functional	Subset	of	Dyalog	APL,	Vector,	Volume	17,Number	4,	2001-04.	http://archive.vector.org.uk/art10007770Written	in	honor	of	Ken	Iverson’s	93rd	birthday.

VECTOR Vol.26 No.2&3

75

http://www.jsoftware.com/papers/FPL.htm
http://www.jsoftware.com/papers/tot.htm
http://www.jsoftware.com/jwiki/Essays/Ackermann%27s Function
http://www.dyalog.com/dyalog_13/presentations/D08_Rank_and_Friends/friendsscript.htm
http://docs.dyalog.com/13.1/Dyalog APL Programmer%27s Guide & Language Reference.pdf
http://archive.vector.org.uk/art10007770

Legacy	code,	survival	strategies	and	Fire
Kai	Jaeger	(kai@aplteam.com)

This	article	explains	why	Fire	for	Dyalog	APL	came	into	existence	at	all,	and	why	Ispent	about	5	–	unpaid	–	month	of	work	on	this	project	over	the	last	three	years.The	 name	 “Fire”	 points	 to	 the	 two	 main	 features:	 FInd	 and	 REplace.	 Fire	 isspeciEically	designed	to	support	programmers	who	have	to	deal	with	legacy	code:code	 that	 is	 typically	 quite	 old,	 with	 little	 or	 outdated	 documentation	 if	 any,without	 test	 cases,	 no	 clear	 structure	 and/or	 design	 and	 more	 often	 than	 notwithout	 any	 kind	 of	 reasonable	 modularisation,	 often	 with	 none	 of	 the	 originalauthors	being	around	anymore.Maintaining	 and	 enhancing	 a	 legacy	 system	 is	 a	 big	 challenge	 in	 any	 case,	 inparticular	 because	 rewriting	 it	 seems	 to	 be	 the	 only	 reasonable	 thing	 to	 do	 butthat’s	not	an	option	because	either	the	client	(or	management)	is	not	prepared	toaccept	this	or	it’s	too	complex	or	has	too	many	interfaces	to	other	systems	to	allowthis.Rewriting	an	application	can	also	pose	a	threat	to	APL	because	it	might	be	used	asan	excuse	 to	get	 rid	of	APL	altogether,	 although	clearly	 the	problems	causing	 theheadache	 are	 not	 an	 intrinsic	 feature	 of	 APL	 at	 all,	 they	 are	 caused	 by	 baddecisions	made	by	ordinary	humans.	In	most	if	not	all	cases	the	client	is	part	of	theproblem,	not	the	solution.	When	asked	to	pay	for	improving	the	situation	you	arevery	likely	to	get	an	answer	along	the	lines	of	“How	many	new	features	are	you	aregoing	to	add?	None?!	Forget	it!”The	only	way	to	survive	in	a	situation	like	that	in	the	long	run	is	to	add	test	casesand	to	improve	design,	modularisation	and	documentation	step	by	step	wheneveryou	touch	the	code.	In	the	beginning	this	will	look	like	a	simple	waste	of	resourceswithout	gaining	anything,	but	 it	will	 improve	 the	 situation,	 leading	 to	better	 andmore	stable	code.In	particular	adding	test	cases	will	make	it	easier	to	carry	out	changes	because	youwill	 become	 more	 and	 more	 conEident	 that	 those	 changes	 will	 not	 break	 theapplication	in	many	different	ways,	a	typical	problem	with	legacy	code.For	that	reason	spending	time	on	improving	the	code	base	is	also	in	the	interest	ofthe	 client/management,	 although	 they	 would	 probably	 be	 incapable	 of	 realisingthis	 if	 told,	 so	 you	 better	 keep	 your	 mouth	 shut	 and	 hide	 behind	 feature

VECTOR Vol.26 No.2&3

76

enhancements	and	bug	fixes.Improving	a	code	base	often	requires	changes	on	a	large	scale	like	renaming	plentyof	objects	etc.,	something	that	one	would	prefer	to	carry	out	automatically,	at	leastto	 some	 extent.	 Fire	 is	 designed	 to	 support	 a	 programmer	 in	 this	 respect.	 Let’sdiscuss	some	typical	problems	and	how	they	can	be	solved	with	Fire.
Case	study	I.Imagine	 a	 workspace	 where	 you	 started	 developing	 quite	 a	 number	 of	 classesdedicated	 to	 solve	 a	 certain	 problem	 (GUI	 utilities	 in	 this	 case),	 with	 all	 theseclasses	 situated	 in	 the	 root	 together	with	 a	 couple	 of	 general	 classes	 addressingcommon	 problems	 and	 used	 by	 the	 GUI-related	classes,	 and	 a	 namespace	 called“Demo”	which	holds	quite	a	number	of	functions	designed	to	demonstrate	certainaspects	of	the	GUI-related	classes.This	is	how	the	namespaces	in	the	root	might	look:

In	the	 future	 I	want	 to	use	Phil	Last’s	excellent	code	management	system	acre[1].In	 order	 to	 do	 so	 I	 decided	 to	 restructure	 the	 code	 so	 that	 all	 the	 GUI-relatedclasses	 and	 namespace	 scripts	 go	 into	 an	 ordinary	 namespace	#.GUI	 .	 That	 is	 all

VECTOR Vol.26 No.2&3

77

those	shown	in	boxes.That’s	 relatively	 easy	 to	 achieve	 because	 I	wrote	my	 own	 tool	 that	 allows	me	 tomove	scripts	around;	unfortunately	the	Workspace	Explorer	is	still	not	capable	ofdoing	this.	After	that	the	root	looks	like	this:
]ListObjects -n=9
 ⎕NC Name Type
 === ==== ====
 9.1 APLTreeUtils Namespace
 9.4 CompareSimple Class
 9.1 GUI Namespace
 9.1 Demo Namespace
 9.4 IniFiles Class
 9.1 TestCases Namespace
 9.4 Tester Class
 9.4 WinFile Class
 9.4 WinReg Class
 9.4 WinSys Class But	 that	 is	 not	 enough:	 the	 functions	 in	 the	#.Demo	 namespace	 as	well	 as	 all	 thetest	cases	still	try	to	address	the	GUI	utilities	in	the	root.	Those	references	need	tobe	changed,	and	that	is	a	perfect	task	for	Fire.The	Eirst	goal	is	to	Eind	out	how	many	functions	and	how	many	lines	of	code	needto	 be	 changed.	 For	 this	we	 enter	#.	 in	 the	 “Search	 for”	 box	 and	#.Demo	 into	 the“Start	looking	here”	box	as	shown	here:

There	are	26	functions	with	122	hits	(see	the	status	bar	of	Fire)	which	potentiallyneed	to	be	changed.With	the	next	step	we	check	whether	the	hits	we	got	are	really	what	we	are	after.The	report	can	be	created	via	the	“Report	hits”	command	from	the	“Reports”	menu.It	gives	an	excellent	overview:

VECTOR Vol.26 No.2&3

78

As	you	can	see	there	are	quite	a	number	of	functions	that	carry	#.⎕NEW	 in	them	–these	statements	must	remain	unchanged.	However,	those	functions	also	carry	hitswe	are	interested	in.	What’s	the	best	way	to	deal	with	this	situation?First	we	create	a	hit	 list	with	objects	that	do	not	contain	the	string	#.⎕”	 .	We	canachieve	this	with	these	settings:

Note	that	the	“Negate	search”	option	was	ticked,	therefore	Fire	just	lists	functionsthat	do	not	contain	the	string	#.⎕.Now	we	untick	“Negate	search”	and	tick	“Search	hit	list”.	Then	we	search	for	#.	asshown	here:

VECTOR Vol.26 No.2&3

79

That	results	in	17	functions.	This	is	again	the	“Report	hits”	report:

This	is	indeed	a	big	step	forward:	apparently	only	stuff	that	needs	to	be	changed	isreported.However,	if	there	were	still	some	items	inthe	 hit	 list	 we	 don’t	 want	 to	 change	 wecould	easily	remove	them	from	the	hit	listvia	the	Hit	Report’s	context	menu:After	 pressing	 the	 “Replace”	 button	 weget	the	“Replace”	dialog	box	were	we	canenter	this:

VECTOR Vol.26 No.2&3

80

After	clicking	on	“Preview”	we	get	this:

Everything	is	Eine	except	number	19	which	is	the	function	#.Demo.YesOrNo	:	apartfrom	 two	 lines	 that	we	want	 to	 change	 indeed	 (3	 and	 6)	 there	 is	 also	 a	 line	wedon’t	want	to	change:	line	number	2.One	way	to	deal	with	this	is	to	change	the	function	anyway	and	then	to	Eix	line	2	inthe	 editor	 afterwards.	Here	 however	we	use	 a	 different	 approach	which	 is	muchmore	appropriate	 in	case	we	want	 to	exclude	not	 just	one	but	quite	a	number	ofchanges:	we	simply	untick	the	checkbox	number	10	in	the	tree	view.	That	leads	tothis:

VECTOR Vol.26 No.2&3

81

#.Demo.YesOrNo	is	now	greyed,	indicating	that	the	function	will	not	be	processedany	more.Finally	 we	 press	 the	 “Fix	 changes”	 button.	 First	 part	 of	 the	 task	 is	 done	 –	 themajority	of	the	necessary	changes	have	been	carried	out	already.In	order	 to	 address	 the	 remaining	problems	we	 Eirst	want	 to	 get	 a	 list	 of	 objectsthat	do	not	contain	any	reference	to	#.GUI.	because	those	that	do	are	the	ones	wehave	 just	 changed,	 so	we	are	not	 interested	 in	 them.	 In	order	 to	 achieve	 that	wetick	the	"Negate	search"	check	box	and	repeat	the	search:

Eleven	objects	do	not	contain	any	reference	to	#.GUI	as	of	yet.	These	still	need	tochange.	Now	let’s	search	this	hit	list	for	any	references	to	#.

VECTOR Vol.26 No.2&3

82

Note	that	the	"Search	hit	list"	check	box	is	ticked	now;	that	restricts	the	search	thethe	objects	in	the	hit	list:

That	has	reduced	the	number	of	objects	down	to	10.We	 already	 know	 that	 all	 remaining	 objects	 do	 need	 to	 be	 changed	 but	we	 alsoknow	 that	 some	 of	 them	 have	 references	 to	#.	 which	 must	 remain	 unchanged.There	 is	no	escape	route;	 this	problem	cannot	be	solved	automatically.	However,Fire	can	still	be	of	great	help	in	this	situation.After	a	click	on	the	“Replace”	button	we	modify	the	default	setting	of	the	“Replace”dialog	box:

Note	 that	 here	 we	 assume	 that	 you	 have	 installed	 the	 excellent	 3rd-party	 tool“CompareIt!”	 on	 your	 machine.	 If	 that	 is	 not	 the	 case	 than	 a	 very	 basic	 built-in

VECTOR Vol.26 No.2&3

83

comparison	tool	will	be	used.This	 allows	 the	user	 to	 accept	 –	 or	 deny	 –	 changes	 on	 a	 hit-by-hit	 bases	 for	 oneobject	after	the	other:

The	highlighted	areas	can	be	moved	 from	the	right	pane	 to	 the	 left	by	clicking	atthe	arrow(s)	but	not	 the	other	way	around:	 the	 icon	shown	 in	 the	caption	of	 theright	pane	indicates	that	the	right	pane	is	read-only.	You	can	also	simply	edit	thecode	in	the	left	pane.Either	way,	we	should	end	up	with	the	following	and	the	problem	is	solved.

Case	study	II.With	version	3.3.0	Fire	 itself	 changed	 its	user	 interface:	 a	new	check	box	 “Strict”became	available:The	option	 is	active	only	when	the	“Match	APL	name”	checkbox	is	ticked.	With	both	check	boxes	ticked	an	entry	like	Foo.in	 “Search	 for”	 is	 rejected	 by	 Fire.	 With	 just	 “Match	 APLname”	ticked	but	not	“Strict”	you	can	search	for	Foo.,	.Foo	or
.Foo.	 and	 it	will	 Eind	 such	 strings	while	 a	 reference	 to	Foowithout	 a	 dot	won’t	 be	 found.	 In	 April	 2014	 I	 realized	 thatthis	is	a	very	useful	feature	and	added	it	immediately	to	Fire.That	 posed	 a	 problem:	 Fire	 comes	 with	 a	 large	 set	 of	 test	 cases:	 at	 the	 time	 of

VECTOR Vol.26 No.2&3

84

That	 posed	 a	 problem:	 Fire	 comes	 with	 a	 large	 set	 of	 test	 cases:	 at	 the	 time	 ofwriting	121.	The	 vast	majority	 Eires	up	 the	GUI	 and	 then	 sets	 properties.	 This	 ishow	a	typical	test	case	looks:
R←Test_Search_001(stopFlag batchFlag);n;⎕TRAP
⍝ Search for "a" everywhere with "Names only"
 ⎕TRAP←(999 'C' '. ⍝ Deliberate error')(0 'N')
 R←1

⍝ Preconditions
 1 #.Fire.Run 0
 n←#.Fire.GUI.n

 n.SearchFor.Text←'a'
 n.LookIn.Text←'#'

 n.Case.State←0
 n.APL_Name.State←0
 n.FullLineOnly.State←0
 n.AsNumber.State←0

 n.Vars.State←1
 n.FnsOprsTrad.State←1
 n.FnsOprsDirect.State←1
 n.Classes.State←1
 n.Interfaces.State←1

 n.ScriptedNamespaces.State←1

 n.Code.State←1
 n.NoComments.State←1
 n.NoText.State←0
 n.CommentsOnly.State←0
 n.TextOnly.State←0

 n.NamesOnly.State←1
 n.HeaderOnly.State←0
 n.LocalsOnly.State←0

 n.NamedNamespaces.State←1
 n.UnnamedNamespaces.State←0
 n.GuiInstances.State←1

 n.Recursive.State←1
 n.RecursiveOneLevel.State←0
 n.RecursiveNone.State←0

 n.Negate.State←0
 n.ReuseSearch.State←0
 n.acre.State←0
 n.acre.State←0

 {}∆Select n.StartBtn
 ∆Process n.Form
 →PassesIf(0<0⊃⍴n.HitList.ReportInfo)

⍝ Tidy up
 CloseFire
 R←0 ⍝ OkayThese	lines	pose	the	problem:

VECTOR Vol.26 No.2&3

85

 n.Case.State←0
 n.APL_Name.State←0
 n.FullLineOnly.State←0After
n.APL_Name.State←0 there	should	be	a	line:
n.StrictOnNames.(Active State)←0That	can	be	achieved	with	Fire	quite	easily.	First	we	search	for	n.APL_Name.Statejust	in	#.TestCases	:

“Report	hits”	 conEirms	 that	we	are	on	 the	 right	path,	 although	 it	 also	 shows	 thatsometimes	the	“APL	Name”	check	box	is	ticked	and	sometimes	it	 isn’t,	so	we	needto	carry	out	the	work	in	two	steps:

VECTOR Vol.26 No.2&3

86

Next	we	repeat	the	search	for
n.APL_Name.State←1 simply	because	that	will	result	in	lesser	hits.	Indeed	we	get	just	43	hits:

VECTOR Vol.26 No.2&3

87

In	 “Replace”	 we	 Eirst	 tick	 the	 “Multi-line”	 check	 box	 and	 then	 repeat	 the	 searchstring	followed	by	a	second	line	with	the	statement	(line)	we	want	to	add:Note	 that	 the	 “Mark	 them”	 check	 box	 is	 ticked	 and	 the	 combo	 box	 underneathcarries	“Same	line”.	That	means	that	the	added	line	will	be	marked,	by	default	bythe	string:
⍝ 2014-04-29 by {⎕AN} & FireAfter	a	click	on	“Preview”	we	can	check	the	results	for	one	function	after	the	other:

For	 a	 large	 number	 of	 changes	 this	 canturn	out	 to	be	annoying.	However,	 if	youfeel	conEident	that	everything	will	just	beEine	 you	 can	 tick	 the	 "Carry	 out	 anyremaining	 changes	 without	 further	 ado"check	box	and	you	are	done:Of	course	that	is	dangerous,	so	keep	a	backup!	In	a	separate	step	we	can	repeat	thisfor
 n.APL_Name.State←0

VECTOR Vol.26 No.2&3

88

and	add
n.StrictOnNames.(Active State)←0We	have	changed	more	than	100	functions	within	a	matter	of	minutes.Note	that	the	“Strict”	option	has	a	different	meaning	when	you	search	for	#	 or	##.Let’s	 look	 at	 an	 example:	 in	 a	 WS	 we	 have	 just	 4	 objects,	 two	 class	 scripts(APLTreeUtils	 and	WinFile,	 both	members	 of	 the	 APLTree	 project [2])	 and	 twofunctions	located	in	an	ordinary	namespace	#.MyApp:
∇ Run;A
[1] A←#.APLTreeUtils
[2] ∆WSID←A.Uppercase ⎕WSID
[3] #.WinFile.PolishCurrentDir
[4] WorkHorse ⍬
 ∇
∇ {r}←WorkHorse.WorkHorse dummy
[1] r←⍬
[2] ⎕←##.WinFile.PWD
 ∇ The	 coding	 of	 the	 functions	 does	 not	 make	 too	 much	 sense	 but	 they	 are	 goodenough	 to	 highlight	 the	 topic.	 Note	 that	Run	 carries	 references	 to	#	 and	##	 while
Workhorse	carries	only	a	reference	to	##	.Now	let’s	assume	that	we	want	 to	use	these	two	functions	 in	a	user	command	bycopying	 the	 code	 over	 to	 a	 user	 command	 script.	 Although	with	Workhorse	 thatwould	work	without	 further	 ado,	Run	might	or	might	not	 run	because	 it	 relies	 in
WinFile	 and	APLTreeUtils	 to	 live	 in	#.	 If	 they	are	not	 to	be	 found	 in	#	 the	usercommand	generates	a	VALUE	ERROR.Of	 course	a	user	 command	should	not	make	 such	assumptions:	 instead	 it	 shouldrefer	 to	 the	parent	 for	utilities	and	stuff.	 In	practice	however	 this	 scenario	mightwell	occur	because	the	application	might	have	been	written	without	considering	itto	run	as	a	user	command	one	day.	It	is	also	quite	easy	to	try	to	address	an	objectwi th	##.	 but	 occasionally	 to	 address	 it	 as	#.	 anyway.	 Worse,	 running	 theapplication	 in	 normal	mode	would	 not	 reveal	 such	problems	because	 both	wayswould	work	just	fine.In	 short,	 to	 convert	 an	 application	 into	 a	 user	 command	 we	 need	 to	 Eind	 allreferences	 to	#.	 and	 convert	 them	 to	##.	 while	 all	 references	 to	##	 can	 be	 leftalone.	The	problem	is	that	searching	for	#	 or	#.	would	not	help	because	 it	wouldalso	find	##	or	##.	.“Name”	and	“Strict”	to	the	rescue:	with	both	options	ticked	Fire	will	perform	somesort	of	 special	 search	 that	deals	with	 the	problem.	 In	our	 case	Fire	would	 ignore

VECTOR Vol.26 No.2&3

89

Workhorse	because	it	does	not	contain	any	reference	to	#	.	The	function	Run	wouldchange;	here	the	change	preview:

Finally	I	want	to	draw	your	attention	to	the	boxes	displayingan	 “i”	 for	 information:	 these	are	 links	 to	Fire’s	help	 Eile.	 Forexample,	clicking	at	this	box:brings	 up	 the	 help	 page	 that	 is	 associated	 with	 that	 verytopic:

VECTOR Vol.26 No.2&3

90

Over	 time	 you	 might	 Eind	 all	 these	 information	 boxes	 distracting.	 No	 problem,unticking	the	menu	command	Help	>	Show	info	buttons	make	them	disappear:Converted	 into	a	Word	document	Fire’s	help	 Eile	 comprises	33	pages.	 Scanning	aworkspace	 and	 trying	 to	 change	 selected	 objects	 can	 be	 a	 surprisingly	 complexbusiness.Although	 this	article	describes	 just	a	 few	of	 the	 features	of	Fire	 I	hope	you	agreethat	these	already	proved	how	valuable	Fire	can	be	when	dealing	with	legacy	code.However,	Fire	offers	many	features	which	make	it	also	a	useful	tool	when	dealingwith	non-legacy	code	as	well.Fire	is	part	of	the	APLTree	project[2,3]	and	as	such	sort	of	Open	Source[4]:	you	canuse	it	freely,	you	can	contribute	to	the	code	basis	or	even	take	a	copy	and	modify	itfor	your	own	purposes	and	do	whatever	you	like	with	that	code.Fire	has	its	own	page	on	the	APL	wiki[5]	and	can	be	downloaded	from	there[6].
References1.	 	acre's	home	page	on	the	APL	wiki:	http://aplwiki.com/acre2.	 	“Sharing	code:	the	APLTree	project”	by	Kai	Jaeger,	Vector	25-3,http://archive.vector.org.uk/art105007303.	 	The	APLTree	project	on	the	wiki:	http://aplwiki.com/CategoryAplTree4.	 	The	APLTree	project	license:	http://aplwiki.com/AplTreeLicensing5.	 	Fire's	home	page	on	the	APL	wiki:	http://aplwiki.com/Fire6.	 	The	APLTree	download	page:	http://download.aplwiki.com/apltree/

VECTOR Vol.26 No.2&3

91

http://aplwiki.com/acre
http://archive.vector.org.uk/art10500730
http://aplwiki.com/CategoryAplTree
http://aplwiki.com/AplTreeLicensing
http://aplwiki.com/Fire
http://download.aplwiki.com/apltree/

Fig.	1:	Startup	screen	to	enter	the	four	modules

Writing	a	simple	Japanese	dentist	officesystem	in	APL2
Kyosuke	Saigusa,	APL	Consultants	of	Japan	Ltd.

IntroductionWe	have	written	several	ofEice	systems	for	small	businesses	mainly	to	explore	thepotentials	of	APL2.	Some	of	them	have	been	used	daily	for	ten	years	or	more.	Theyall	run	under	IBM	workstation	APL2	runtime.	Users	do	not	know	what	language	isbeing	used,	nor	need	to.	I	would	like	to	introduce	my	current	work	which	aims	toaddress	a	rather	wider	range	of	users	for	the	Eirst	time.	It	is	an	ofEice	system	for	thedentists	 in	 general	working	under	 the	 Japanese	health	 insurance	 setup.	 It	 is	 saidthat	we	have	more	dentist	 ofEices	 than	 the	 number	 of	 convenience	 stores	 in	 thiscountry	and	many	of	them	cannot	afford	to	use	expensive	commercial	systems.
System	OutlineIt	 consists	 of	 the	 following	 four	 modules	 as	 represented	 in	 the	 Eigure	 shown	 inFig.1.1.	 Client	information(Upper	left	box	on	the	left)2.	 Reservation	information(Upper	right	box	on	the	left)3.	 CARTE	information(Lower	left	box	on	the	left)4.	 RECEPT*	information(Lower	right	box	on	the	left)*note:	document	to	submit	to	the	national	insurance	union	for	insuranceclaims. In	 the	 screen,	 the	 left	 side	 four	 boxesrepresent	 the	 referenced	 modules	 andthe	right	side	table	shows	a	list	of	clientsin	the	waiting	room.Upper	 two	 boxes	 are	 mainly	 used	 byclerks	 at	 reception	 desk,	 and	 the	 lowerboxes	are	for	dentists	to	use.	These	can	beconcealed	as	required.	

VECTOR Vol.26 No.2&3

92

Fig.2:	Client	information	screen

The	system	operates	on	Microsoft	Windows	XP	and	later	versions.	It	is	installed	atrespective	user	sites	but	linked	via	VPN	to	our	centre	for	maintenance.
Client	information	moduleThe	 following	 screen	 records	 client	personal	 information	 regarding	 the	means	ofcontact,	social	insurance	and	government	subsidies.	This	is	used	to	record	the	timethe	 client	 has	 arrived	 at	 the	 dentist	 ofEice,	 to	 alter	 the	 personal	 informationrecorded,	 to	 issue	 bills	 and	 prescriptions	 after	 treatment	 and	 to	 link	 to	 thereservation	module	by	way	of	a	popup	menu.For	a	new	client,	 a	unique	client	numberis	 automatically	 assigned.	Initialinformation	 and	 later	 alterations	 can	 beentered	 manually	 or	 for	 some	 items	 byway	 of	 menus.	Automatic	 translation	 ofnational	post	code	is	also	implemented.	

By	 way	 of	 mutually	 exclusive	 control	 ofthe	 AP	 211	 of	 the	 IBM	 APL2	 interpreter,	 multiple	 screens	 can	 be	 operatedconcurrently	by	clerks	for	different	clients.	The	recorded	data	is	accessed	for	readand	write	by	different	modules	simultaneously	as	well.	The	data	takes	the	form	ofAPL2	general	arrays	and	hence	it	is	flexible,	powerful	and	easy	to	handle	by	APL2.
Reservation	information	moduleThis	module	can	be	started	via	the	link	from	the	client	information	screen	to	enteror	 to	 alter	 the	 reservation	date	 and	 time.	As	 any	desired	date	 box	 is	 clicked,	 thereservation	status	list	is	shown	for	the	date.	As	you	click	the	time	zone	on	the	leftof	 the	 list,	 the	 set	 of	 client	 name	 and	number	 is	 automatically	 entered	 and	uponconEirmation,	it	is	recorded	in	the	database.	Aside	from	the	client	number	and	thename,	 you	 can	 also	 specify	 the	 kind	 of	 treatment	 and	 expected	 time	 required	 tofinish	the	treatment	as	an	option	(probably	by	dentist).When	 the	 reservation	 screen	 is	 entered	 directly	 from	 the	 main	 screen,	 it	 only

VECTOR Vol.26 No.2&3

93

Fig	3:	Reservation	information	screen

works	as	a	reference	and	the	contents	cannot	be	altered.The	calendar	is	shown	by	weeks	and	calculated	by	APL2	to	begin	with	the	currentweek.	The	national	and	public	holidays	are	centrally	entered,	based	on	the	publicweb　　　information　by　the　central　maintenance　via　remote　access.　Scheduled　operating	dates	and	off-days/time　information	can　be　entered　andmaintained	 at	 individual	 dentist	 ofEices.	 The	 calendar	 can	 be	 scrolled	 back	 andforth	between	the	current	week	and	any	pre-speciEied	future	week.	Each	hour	onthe	 calendar	 is	 made	 to	 accommodate	 up	 to	 Eive	 clients,	 divided	 optionally	 byfifteen	or	thirty	minutes. Dentists	are	entitled	 to	charge	additionalfees	 from	 the	 clients	 and	 the	 insuranceunion,	 if	 the	 treatment	 is	 done	 at	 anirregular	time.	

CARTE	information	moduleEach	client	(patient)’s	ailment	and	treatment	 information	is	recorded	in	the	sameformat	 as	 the	ofEicially	designated	 form	of	 the	ministry	of	 labour	 and	welfare	 forcompatibility	with	 the	manual	systems.	This	 is	a	single	sheet	 form	which	recordsailment	 information	 on	 the	 Eirst	 (front)	 page	 and	 treatment	 information	 in	 thesecond	(rear)	page.	These	two	pages	are	shown	side	by	side	on	the	screen,	so	thatthe	 related	 information	 can	 be	 viewed	 at	 a	 glance	 and	 new	 data	 entered	 withminimum	 errors.	 The	 records	 can	 be	 viewed	 historically	 by	 scrolling.	 Theadvantage	of	this	approach	is	that	it	can	eliminate	the	need	to	store	an	increasingvolume	of	physical	paper	documents	in	the	ofEice	and	to	search	for	the	appropriatepage	of	 the	documents	 in	a	short	 time.	The	 target	document	page	 is	displayed	onthe	 screen	 any	 time	 for	 reference	 and	 for	 hard	 copy	 printout	 if	 required.	 Thedocuments	 are	 dually	 recorded	 in	 the	 center	 at	 speciEied	 intervals	 for	 back-upsand	recovery	of	user	data	in	case	accidents	occur.	The	dentist	can	enter	the	nameof	 the	 ailment	 and	 code	 and	 the	 ailing	 teeth,	 if	 any,	 by	 mouse	 click	 on	 theillustration	 of	 the	 teeth	 in	 the	 Eirst	 page.	 Treatment	 is	 entered	 from	 the	multipleselection	 popup	menu	 in	 tree	 structure,	 together	with	 the	 date	 of	 treatment	 andthe	fees	in	points	with	appropriate	calculations.

VECTOR Vol.26 No.2&3

94

Fig.4-1:	CARTE	information	screen

Fig.4-2:	Popup	menu	to	enter	ailment

Patient’s	personal	 information	 is	 enteredas	 you	 click	 the	 client	 number	 from	 thelist	 of	 clients	 in	 the	waiting	 room,	whichis	shown	as	you	click	the	blank	space	

The	 registered	 ailment	 names	 and	 codesare	 shown	 in	 the	 popup	 menu	 bycategory	 in	 tree	 structure	 to	 select	 fromto	avoid	errors	in	entry.	

The	names	of	the	ailment	are	recorded	inhistorical	 order	 in	 the	 next	 line	 withoutlimit.	The	lines	scroll	automatically	as	the	space	runs	out	for	new	lines	or	manuallywhen	the	past	records	are	referenced.	The	treatment	information	on	the	right	pagerelating	 to	 the	 selected	 ailment	 line	 framed	 in	 red	 on	 the	 left	 page	 also	 changesautomatically.Both	pages	permit	 alterations	 and	deletion	by	 the	discretion	of	 the	dentists.	 Thetreatment	information	is	entered	or	altered	by	selecting	the	target	line	on	the	rightpage.	Each	 line	records	 Eive	 items:	date	of	 treatment,	 treated	 teeth,	treatment,	 thefees	in	points	and	other	information.	Today’s	date	is	automatically	recorded	but	ifthis	column	is	clicked,	a	popup	calendar	allows	the	alteration	of	the	date.	When	thetreated	teeth	column	is	clicked,	a	popup	menu	appears	to	select	the	teeth	to	treatfrom	 the	 list	 of	 ailing	 teeth	 recorded	 on	 the	 left	 page	 for	 this	 ailment.	When	 thetreatment	column	is	clicked,	a	popup	menu	appears,	showing	the	possible	kind	oftreatment,	care	or	medicine	in	tree	structure	for	multiple	selections	to	replace	thepreviously	 selected	 list	of	 treatments	 for	 the	same	day	 if	 any.	De-selection	worksthis	 way.	 Points	 are	 automatically	 calculated	 according	 to	 the	 rules	 set	 by	 thenational	dentist	union	and	insurance	union.

VECTOR Vol.26 No.2&3

95

Fig.4-3:	Popup	menu	to	enter	treatment	and	care

RECEPT	information	module	(currently	being	built)

VECTOR Vol.26 No.2&3

96

Fig	5:	RECEPT	information	screenRECEPT	 is	 an	 ofEicial	 document	 dentists	 are	 required	 to	 submit	 to	 the	 nationalinsurance	 union	 for	 insurance	 claims	 on	 monthly	 bases	 for	 each	 client	 treatedduring	 the	 past	 month.	 Theoretically,	 RECEPT	 is	 created	 automatically	 fromCARTE,	 if	 the	 information	 there	 is	 all	 correct.	 In	 fact	 this	 is	where	dentist	 ofEicesspend	 much	 time	 to	 eliminate	 entry	 errors	 to	 avoid	 rejection	 and	 repeated	 re-submission	and	penalties.	Therefore,	 this	document	can	be	viewed	for	any	errorswith	 references	 to	 the	 details	 recorded	 in	 the	 CARTE	 before	 submission	 to	 theinsurance	union	by	hard	copy	or	optionally	via	internet.The	 form	of	 the	RECEPT	is	printed	 in	very	small	characters	 ,	 therefore	when	 it	 isviewed	on	the	screen,	the	system	can	augment	the	displayed	size	of	the	copy	andpermits	scrolling	of	the	drawing	by	mouse	drags	to	view	the	entire	copy	in	detailsand	also	for	the	last-minute	corrections.
Why	APL2	is	suitable	to	write	small	systemsThrough	my	observation	of	 the	development	of	APL2,	 I	understood	 that	 IBM	hasused	 a	 tremendous	 amount	 of	 energy	 and	 brains	 to	 make	 it	 a	 practical	 tool	 todevelop	 computer	 applications	 to	 the	 present	 day	 level.	 To	 us	 in	 the	 Far	 East,symbolic	 representations	 of	 the	 primitive	 functions	 should	 be	 the	 best	 choice	 toconvey	 the	 precise	meanings	 at	 a	 glance	 like	 Chinese	 characters,	which	we	 havebeen	using	over	centuries.	Aside	from	the	philosophy	of	the	language	itself,	I	mustsay	 that	 existence	 of	 the	 auxiliary	 and	 associated	 processors	 have	 playedindescribably	 important	 rolls	 to	 make	 interface	 programming	 very	 easy	 andsimple.	Hence	it	 is	easy	to	introduce	internet	access	for	the	reservation	by	way	ofPC	or	smart	phones	and	the	like	with	the	use	of	QR	code	or	regular	bar	code.	HereAPL2’s	AP	119	socket	interface	and	HTML	helps.Writing	 programs	 in	 APL	 is	 quite	 private	 in	 the	 sense	 that	 it	 depends	much	 onpersonal	 interpretations	 of	 the	 effects	 of	 limitless	 combinations	 of	 simplefunctions,	 analogous	 to	 the	 game	 of	 GO.	 This	 aspect	 of	 the	 language	 makes	 itdifEicult	to	produce	extremely	large	application	systems	by	groups	of	programmerswithout	failure.On	the	other	hand,	small	systems	require	only	a	small	team	of	application	expertsand	a	single	well-trained	and	qualified	APL	programmer.Small	systems	can	grow	into	more	comprehensive	systems	in	time	as	I	aim	to	makethis	dental	system	eventually	 to	cover	 the	entire	segment	of	professional	medicaldoctor’s	 ofEice	 systems	 in	 town	 because	 they	 all	 run	 under	 the	 same	 publicinsurance	system.

VECTOR Vol.26 No.2&3

97

J
VECTOR Vol.26 No.2&3

98

J-ottings	57	Heavens	above!
by	Norman	Thomson	(ndt4@btinternet.com)

J-ottings	 56	 decribed	 the	 development	 of	 a	 verb	rotate	 which,	 given	 a	 leftargument	 (axis,	 angle)	delivers	 the	 result	of	performing	a	3-D	 rotation	of	 a	pointwhose	 coordinates	 form	 the	 right	 argument.	axis	 is	 deEined	 by	 the	 threecoordinates	of	any	point	on	it	other	than	the	origin,	so	the	left	argument	is	a	4-itemlist.	Here,	repeated	from	J-ottings	56,	is	the	verb	rotate	along	with	its	subverbs	:
 rotate=.] - (m1 * rmdata) + m2 * }:@[xp]
 rmdata=.rm@dircos@(}:@[) +/ .*] NB. rotn matrix*data
 rm =.(id - */~)@dircos NB. rotation matrix
 id=.=@i.@# NB. identity matrix
 dircos=.% %:@(+/@:*:) NB. direction cosines
 xp=.4 : ‘1 _1 1*det each<”(2) 1+\.(dircos x),.y’
 NB. normalised cross product
 det=.-/ .* NB. determinant
 each=.&>
 m1=.-.@(2&o.@({:@[)) NB. (1-cos angle)
 m2=.1&o.@({:@[) NB. sin angleDavid	Edwards	has	pointed	out	that	the	verb	xp	the	above	delivers	the	normalisedcross-product;	 if	 a	 conventional	 cross-product	 is	 required	 as	 part	 of	 anotherapplication,	magnitude	must	be	taken	into	account	by	e.g.
 mag=.%:@:(+/)@:*: NB. magnitude
 xprod =.4 : ‘(mag x)*x xp y’ NB. cross-product
 0 4 5 xprod 2 1 3
7 10 _8In	this	article	rotate	is	used	to	perform	some	basic	calculations	in	astronomy.	Trigratios	 as	 well	 as	 conversions	 to	 and	 from	 radians	 and	 degrees	 are	 frequentlyrequired,	and	so	it	is	convenient	to	define	in	advance	a	few	utility	verbs	:
 dtor=.180%~o. NB. degrees to radians
 rtod=.dtor^:_1 NB. radians to degrees

 sin=.1&o.@dtor NB. sine (angle in degs)
 cos=.2&o.@dtor NB. cosine (angle in degs)
 asin=.rtod@(_1&o.) NB. arcsine in degrees
 acos=.rtod@(_2&o.) NB. arccosine in degrees

Plotting	star	movementsThis	 is	 a	 special	 case	 of	 3-D	 rotation	 in	which	 all	 data	 points	 in	 the	 heavens	 areidentiEied	 by	 two	 rather	 than	 than	 three	 parameters.	Astronomers	 measure	 star

VECTOR Vol.26 No.2&3

99

	

positions	 as	 observed	 from	 Earth	 in	 angular	 rather	 than	 Cartesian	 measure.SpeciEically	 the	 two	 angles	 used	 are	altitude	 A	 which	 corresponds	 to	 celestiallatitude,	 and	azimuth	 Z	 which	 correponds	 to	 longitude	 in	 terrestrialmeasurement.	The	 stars	 themselves	 lie	 on	 the	 surface	 of	 a	 sphere	 called	 the
celestial	sphere	which	is	continuously	rotating	about	the	extended	Earth	axis	andon	which	 every	 star	has	 a	 latitude	 and	 a	 longitude	which	 are	 called	 respectivelydeclination	 D	 and	right	 ascension	 ra.	Analogous	 to	 the	 Greenwich	meridian	 onEarth	 the	 celestial	 sphere	 requires	 an	 arbitrary	 zero	 line	 or	celestial	meridianfrom	 which	ra	 is	 measured.	This	 is	 conventionally	 taken	 to	 be	 the	 Eirst	 point	 inAries,	 which	 is	 observable	 as	 the	 rightmost	 star	 in	 the	 constellation	 Cassiopea.Azimuth	 is	 often	 measured	 in	 sidereal	 hours,	 minutes	 and	 seconds	 rather	 thandegrees;	 the	signiEicance	of	sidereal	is	that	a	sideral	year	is	one	day	longer	than	asolar	year,	 that	 is	 the	 Eixed	stars	appear	 to	 rotate	at	 a	 slightly	 slower	 speed	 thanthe	sun,	the	difference	being	about	four	minutes	per	day.	Stars	rise	in	the	east	andset	 in	 the	west,	 and	so	 to	an	Earth-bound	observer	 looking	outwards	 to	 the	PoleStar,	the	celestial	sphere	appears	to	rotate	in	an	anticlockwise	direction.To	convert	star	positions	deEined	by	A	and	Z	into	(x,	y,	z)	coordinates	assume	thex-axis	 runs	 west	 to	 east,	 the	 y-axis	 south	 to	 north,	 and	 the	 z-axis	 upward.	Theplane	x=0	is	then	a	meridian	on	a	Eixed	celestrial	sphere	from	which	Z	is	measuredclockwise.	(x,	y,	z)	coordinates	are	then	given	by

x = cosA sinZ ; y = cosA cos Z ; z = sinAInverting	these	formulae	to	convert	from	(x,	y,	z)	coordinates	to	(A,	Z)	coordinates	:
A = sin-1z ; Z = cos-1 y

1− z2
or sin-1 x

1− z2

Transits A	star	is	said	to	transit	or	culminate	whenit	 is	 at	 its	 highest	 point	 in	 the	 sky	whenseen	 by	 an	 observer	 on	 Earth,	 at	 whichtime	x=0.	 The	 diagram	 below	 shows	 acircle	 of	 celestial	 longitude	 through	 thetransit	 point	 T	 of	 a	 star	 S	 as	 it	 traversesits	daily	circuit	shown	as	a	dotted	line	:N	 is	 the	 zenith,	 P	 is	 the	 Pole	 Star.	 As	 Smoves	 on	 from	 transit,	 the	 curvedtriangle	 NPS	 comes	 out	 of	 the	 pagetowards	the	reader.

VECTOR Vol.26 No.2&3

100

Side	SP	is	90°–d	where	d	is	S’s	declination.Side	NP	is	90°–l	where	l	is	the	observer’s	latitude.The	lengths	of	both	of	these	remain	fixed	as	S	progresses.Q1	and	Q2	are	points	on	the	celestial	equator.Quantities	which	change	as	the	star	S	proceeds	along	its	course	are	:side	NS	=	90°	–	A	where	A	is	the	altitude;angle	NPS	=	the	angle	of	rotation	about	the	polar	axis,	known	as	the	hour
angle;angle	TNS	=	the	terrestrial	azimuth	Z	based	on	the	transit	plane	as	zeromeridian.The	diagram	below	 shows	 the	 same	 cross-section	of	 the	 celestial	 sphere	 throughthe	plane	 x=0	 for	 a	speciEic	 star	with	declination	20°	observed	 from	a	 latitude	of50°	North.	40	+	20	=	60,	and	so	the	(x,y,z)	transit	coordinates	are	 (0,cos	(180-60)°,sin	(180-60)°),	that	is	(0,cos	120°,	sin	120°).

This	diagram	can	be	generalised	to	show	that	the	altitude	at	transit	is	(90°-	l)	+	d

VECTOR Vol.26 No.2&3

101

provided	 that	 d	 <	 l	 as	 in	 the	 case	 of	 the	 star	 illustrated.	This	 star	 transits	 south,that	 is	 to	 the	 left	of	 the	zenith	and	dips	below	 the	 terrestrial	horizon	 for	at	 leastpart	of	its	circuit.	If	d	>	l	a	star	is	circumpolar	and	transits	north.	Here	the	altitudeat	transit	is	(90°	+	l)	–	d,	or	combining	the	two	cases,	the	altitude	of	every	star	attransit	is
 90° – abs(l - d) .

Plotting	star	positionsUnlike	 locations	on	a	geographical	map,	a	star’s	position	has	time	as	a	parameter,which	can	be	either	local	time	–	where	was	a	star	six	hours	ago?	–	or	time	by	year–	 where	 was	 it	 three	 months	 ago	 at	 the	 current	 time	 of	 day?	The	 star	 sphereappears	 to	 Earth	 observers	 to	 revolve	 from	 east	 to	 west	 around	 the	 pole,completing	 a	 revolution	 in	 a	 sidereal	 day	 which	 is	 shorter	 by	 1/365th	of	 a	 day(that	is	approximately	four	minutes)	than	the	solar	day.	Thus	the	position	of	a	starsix	 hours	 ago	 (¼	 of	 a	 day)	 is	 the	 same	 as	 its	 position	 three	months	 ago	 (¼	 of	 ayear).For	example,	consider	the	star	illustrated	above	with	declination	20°,	and	ask	whatare	 the	 (x,y,z)	 coordinates	of	 its	position	six	hours	earlier,	 that	 is	when	 the	hourangle	is	-90°	.	The	list	‘0,	cos	x,	sin	x’	is	required	sufEiciently	frequently	in	deEiningaxes	and	points	that	it	is	convenient	to	have	a	verb
 cs=.0,cos,sin NB. e.g. rotn. axis in y-z plane
 ((cs 50),dtor _90)rotate cs 120
0.939693 0.219846 0.262003This	 result	 can	 be	 conEirmed	 by	 spherical	 trigonometry	 applied	 to	 triangle	 NPS(see	next	section).The	 next	 step	 is	 to	 make	 the	 hour	 angle	 a	 parameter	(clockwise	 90°	 =	 anti-clockwise	-90°):
 v=.monad :'((cs 50),-dtor y)rotate cs 120';and	plot	values	as	this	moves	towards	transit	at	10°	intervals	:
 v each 90 80 70 60 50 40 30 20 10 0
0.94 0.22 0.262
0.925 0.0948 0.367
0.883 _0.0264 0.469
0.814 _0.14 0.564
0.72 _0.243 0.65
0.604 _0.332 0.725
0.47 _0.404 0.785
0.321 _0.457 0.83
0.163 _0.489 0.857
0 _0.5 0.866

VECTOR Vol.26 No.2&3

102

More	generally,	it	is	useful	to	convert	time	to	angular	measure	with	24	hours	beingequivalent	to	a	complete	rotation,	which	suggests	three	more	utility	verbs	:
 ttor=.o.&(%&43200@(60&#.)) NB. time (hms) to radians
 ttor 12 0 0 NB. check 12 hrs = pi rads
3.14159

 dtot=.60 60 60&#:@(*&240) NB. deg to time (hms)
 dtot 180 NB. check 180 deg.= 12 hours
12 0 0

 atod=.%&3600@(60&#.@(3&{.)) NB. angle(deg,min,sec) to degrees
 atod 49 15 NB. check 49o 15’ 0” = 49.25
49.25The	cooordinates	of	the	above	star	15	and	a	half	minutes	after	transit,	are	given	by
 ((cs 50),ttor 0 15 30)rotate cs 120
_0.0635044 _0.498354 0. 864645that	is	a	little	bit	to	the	west,	a	shade	less	south	and	a	bit	lower,	all	as	expected.
Spherical	TrigonometryThe	 cos	 formula	 for	 a	 spherical	 triangle	 ABC	 states	 that	 if	 a,	 b	 and	 c	 are	 sidesmeasured	 in	 angles,	 and	 A,	 B	 and	 C	 are	 the	 angles	 between	 the	 sides	 with	 Aopposite	a,	etc.	then
 cos a = cos b cos c - sin b sin c cos AAlthough	the	sides	are	nominally	measured	as	angles	they	are	nevertheless	lengths–	length	being	defined	by	the	angle	subtended	at	the	centre	of	the	sphere.There	are	two	forms	of	‘Pythagoras’	theorem’	in	spherical	trigonometry,	viz.
 if cosA = 90° (n.b. do not confuse this A with A = altitude)
 if cosc = 90°Applying	 this	 to	 the	 Eirst	 diagram	 above,	 triangle	 NPS	 has	 sides	 SP=(90°	 –	 d),NS=(90°	–	A)	and	NP=(90°	–	l),	and	angle	NPS	is	180°	–	Z,	so	in	general	.In	the	worked	example	angle	P	was	chosen	to	be	-90°	and	so	the	first	‘Pythagorean’form	applies,	that	is,	for	the	star	with	declination	20°	observed	at	50°	latitude,	thealtitude	six	hours	earlier	is	given	by	:
 sin A = sin 50° sin 20°

VECTOR Vol.26 No.2&3

103

The	values	of	sin	A	and	cos	A	are	thus	given	by,
]sinA=.*/sin 50 20 NB. sin Altitude = z coordinate
0.262003
]cosA=.cos asin sinA NB. cos Altitude
0.965067The	sine	formula	in	spherical	trigonometry	states	that

sin a
sin A =

sin b
sin B =

sin c
sin CApply	 this	 to	 triangle	 TNS.	The	 dotted	 line	 is	 a	 circle	 of	 latitude	 and	 so	 angleNTS	=	90°.	If	the	hour	angle	P	is	90°	the	side	it	subtends	at	the	celestial	equator	issin	90°	=	1,	hence	the	dotted	line	TS	at	declination	20°	has	length	cos	20°.

Thus cos 20
0

sin Z = cos A1

]Z=.asin(cos 20)%cosA NB. azimuth
76.8322which	enables	the	x	and	y	coordinates	to	be	found	using	formulae	given	earlier	:
 cosA*(sin,cos)Z NB. x,y coords
0.939693 0.219846

The	case	of	the	sunUnlike	other	stars	whose	declination	is	constant,	the	sun’s	declination	varies	in	thecourse	of	 a	 year	 from	 -23.5°	 to	+23.5°	 and	back	 again.	At	 sunrise	and	 sunset	 thesun’s	 altitude	 is	 zero,	 so	 side	 NS	 of	 triangle	 NPS	 is	 90°	 and	 now	 the	 second‘Pythagorean’	form	applies	to	give
sind = cos l cos Zat	these	times.From	this
cos Z = sindcos lThen	using	the	sin	formula,
sinP = sinZcos dwhere	P	is	the	hour	angle.

VECTOR Vol.26 No.2&3

104

Consider	 London	 (latitude	 of	 51°	 30′)	 on	 the	 21st	 December	 when	 the	 sun’sdeclination	is	-23°	30′,	and	its	altitude	at	noon,	that	is	at	transit,	is	(90°	-	51°	30′)	-	23°	30′	=	15°00.
]Z=.acos(sin 23.5)% cos atod 51 30 NB. azimuth
50.17
]P=.dtot asin(sin Z)%cos 23.5 NB. time to noon
3 47 27.2637that	is,	in	midwinter	the	sun	is	above	the	horizon	for	about	100÷360	of	the	day	or7½	hours.Now	 use	rotate	 to	 spin	 the	 sun	 from	 noon	 for	 3	 hrs	 47	 minutes	 and	 27.26seconds:
 lat=.atod 51 30
 dec=.atod -23 30
 tim=.3 47 27.26
 alt=.90-|lat-dec

 ((cs lat),ttor tim)rotate cs 180-alt
_0.7679 _0.6405 1.278e_7As	expected	the	sun	is	south	and	west	at	altitude	zero.Both	of	the	examples	used	above	have	involved	special	‘Pythagorean’	cases	whichhelp	 to	 clarify	 principles	 from	 which	 more	 extended	 spherical	 trigonometrycalculations	can	be	made.

VECTOR Vol.26 No.2&3

105

Squares,	neighbours,	probability,	and	J
John	C.	McInturff

The	 following	problem	 is	 taken	 from	the	Mathcounts	School	Handbook	 for	2012-2013[1].

Two	unit	squares	are	chosen	at	random,	without	replacement,	from	the	4	x	4	gridshown.	What	is	the	probability	that	the	squares	do	not	share	a	side?	Express	youranswer	as	a	common	fraction.A	student	at	the	6	through	8	grade	level	will,	most	likely,	devise	some	method	forcounting	 the	 neighbors,	 and	 divide	 this	 number	 by	 the	 total	 number	 ofpossibilities.The	purpose	here	is	to	illustrate	two	methods	that	apply	to	a	square	of	4	sides	thatcan	be	easily	communicated	and	executed	on	a	computer	using	J,	 then	illustrate	ageneralisation	to	n	sides.
Method	1This	 method,	 suggested	 by	 Colin	 A.	 Hedges,	 a	 high	 school	 mathematics	 teacher,involves	 classifying	 the	 square	 into	 3	mutually	 exclusive	 categories:	Execution	 isshown	for	n=. 4	.Corners,	C The	chance	of	selecting	a	corner	is	C=. 4%*:n.Sides,	S These	are	bordering	squares	but	not	corners.	The	chance	of	selecting	such	asquare	is	S=. 4*(n-2)% *:n.Interior,I These	squares	are	landlocked	squares.	The	chance	of	selecting	an	interiorsquare	is	I=. (*:(n-2))% *:nLet	Z=. C,S,I	.
 +/Z
1

VECTOR Vol.26 No.2&3

106

It	is	seen	that	they	sum	to	unity,	as	they	should.After	 selecting	 a	 cell,	 there	 are	k=. <: (*: n)	 cells	 remaining.	A	 corner	 squarehas	 2	 neighbors,	 a	 side	 square	 has	 3	 neighbors,	 and	 an	 interior	 square	 has	 4neighbors.	Therefore	the	conditional	probability	of	selecting	one	of	 these	squaresis	X=. 'c s i'=. 2 3 4 % k	 .	The	conditional	probability	that	the	square	has	noneighbor	is	Y=. -.X	.	It	is	seen	that	X+Y	sum	to	unity	in	each	of	the	three	cases:
 X+Y
1 1 1The	inner	product,	(ip=. +/ . *),	of	Z	 and	X.	gives	the	unconditional	probabilitythat	two	squares	share	a	side.	The	inner	product	of	Z	 and	Y	is	the	probability	theydo	 not.	These	 two	 probabilities,	W,	 sum	 to	 unity	 as	 they	 should,	 and	 are	 shownbelow	expressed	both	as	a	decimal	and	as	a	common	fraction.
]W=. (Z ip X),(Z ip Y)
0.2 0.8

 +/W
1

 x: W
1r5 4r5The	 monadic	 verb,	Fo	 ,	 simpliEies	 the	 above	 formulation.	It	 produces	 theprobability	 that	 a	 square	 shares	 a	 side	 for	 any	 square	 having	 n	 sides.	Theexpression	(-. Fo n)	produces	the	complementary	probability,e.g.
 Fo=. 4 % (* >:)
 Fo 4
0.2

 (Fo 4);(-.Fo 4)
┌───┬───┐
│0.2│0.8│
└───┴───┘

 Fo 2 3 4 5
0.666667 0.333333 0.2 0.133333

Method	2This	method	 is	 simple	 and	 straightforward	 and	may	 be	 the	method	 a	 student	 ingrades	 6	 through	 8	 may	 use.	It	 compares	 every	 square	with	 every	 other	 squareand	 counts	 the	 neighbors	 it	 encounters	 in	 the	 process.	The	 following	 patternemerges	and	conclusions	soon	become	evident:Each	row	except	the	last	has	the	same	pattern	wherein	each	square,	except	the	last,has	 2	 neighbors,	 a	 row	 neighbor	 to	 its	 immediate	 right,	 and	 a	 column	 neighbor

VECTOR Vol.26 No.2&3

107

below.	The	 last	 square	 in	a	 row	only	has	a	 column	neighbor.	For	 the	4	x4	matrixgiven	this	pattern,	p1	would	be	p1=. 2 2 2 1	(for	a	total	of	7	neighbors).The	last	row,	being	at	the	bottom	has	no	neighbors	below	it,	and	the	last	square	inthe	last	row	has	no	neighbors,	only	a	single,	row,	neighbor.	Therefore,	this	last	rowhas	the	pattern,	p2	.
p2=. 1 1 1 0.The	4x4	matrix	would	then	have	the	following	neighbor	pattern,	p	:
]p=. > p1;p1;p1;p2
2 2 2 1
2 2 2 1
2 2 2 1
1 1 1 0The	total	number	of	neighbors,	N,	is	easily	seen	to	be	(N=. +/,p)	or	24.The	total	number	of	possible	neighbors,	T,	is	n	squares	taken	2	at	a	time.	Expressedin	J,	this	is	(T=. 2!n	or	120).	A	student,	not	knowing	J	but	knowing	the	formula	forT	could	reduce	T	to	(15 *16)%2	or	120.I f	W1	 is	 the	 probability	 of	 having	 a	 neighbor,	 then	(W1=. N%T)	 or	 0.2.	Theprobability	 of	 not	 having	 a	 neighbor	 is	(W2=. -.W1)	 ,	 or	 0.8.	It	 is	 seen	 that	 thisresult	is	the	same	as	that	produced	using	Method	1.
Generalization	and	SimplificationThe	 above	 conclusions,	 which	 were	 applied	 to	 a	 matrix	 having	 n=4	 sides,	 alsoapply	 to	 a	matrix	having	n	 sides.	The	 above	 pattern,	p	 ,	 can	be	 re-expressed	as	 atally	of	neighboring	squares.
 p=. (neighbors having p1 type patterns) + (neighbors having p2 type patterns)
 p= 2(n-1)(n-1) +1(n-1) + 1(n-1)

 p= 2(n-1)(n-1)+2(n-1)
 p= 2(n-1)(n-1+1)
 p= 2(n)(n-1)
 p=. 2*n*(n-1)
 p=. h nAlthough	the	last	two	expressions	produce	the	number	of	neighbors,	and	both	areexecutable,	the	last	expression	is	more	simply	expressed	using	the	monadic	verb,	h,	where
 h=. [: +: (* <:)
 The	 expression	(F n)	 is	 the	probability	of	p	 where	(F=. h%g)	 and	(g=. 2!*:)	 ,

VECTOR Vol.26 No.2&3

108

the	 total	 number	 of	 possible	 neighbors,	 or	 equivalently,	 n	 squares	 taken	 2	 at	 atime.
 F 2 3 4 5
0.666667 0.333333 0.2 0.133333The	expression	(-. F n)	is	the	probability	of	no	neighbors.
 W -: (F n);(-. F n)
1It	is	seen	that	Method	2	produces	the	same	result	as	Method	1.
References1.	 	Mathcounts	Foundation.	“2012-2013	Mathcounts	School	Handbook.	Contains300	Creative	Math	Problems	That	Meet	NCTM*	Standards	For	Grades	6-8.”Alexandria,	VA,	USA.	Mathcounts.	p.	27.	*National	Council	of	Teachers	of	Mathematics

VECTOR Vol.26 No.2&3

109

All	integer	partitions:	J	programscompared
by	Howard	A.	Peelle	(hapeelle@educ.umass.edu)

J	programs	to	generate	all	partitions	of	an	integer	are	presented	and	compared.
Whoever	wants	to	go	about	generating	all	partitions

not	only	immerses	himself	in	immense	labor,
but	also	must	take	pains	to	keep	fully	attentive,

so	as	not	to	be	grossly	deceived.

--	Leonhard	Euler,
De	Partitione	Numerorum	(1750)

IntroductionHistorically,	 there	 has	 been	 great	 interest	 in	 partitions,	 especially	 computing	 thenumber	 of	 partitions	 of	 an	 integer.	 Relatively	 recently,	 algorithms	 and	 programsfor	 generating	 all	 integer	 partitions	 have	 appeared	 but	 have	 not	 been	 expresslycompared	 in	 a	 common	 language.	 Here,	 a	 dozen	 or	 so	 J	 programs	 are	 presenteddevelopmentally	and	then	compared	by	speed,	space,	and	spread.Note:	 Programs	 are	 organized	 generally	 in	 chronological	 order	 by	 author	 ofalgorithm,	 with	 alternative	 coding	 to	 contrast	 efEiciency,	 but	 with	 minimumexplanation.	If	you	are	still	learning	J,	please	consult	the	JSoftware	website	[1]	andread	 appropriate	 tutorials,	 notably	[7]	 and	[8].	 If	 you	 are	 only	 interested	 in	 thebest	programs,	skip	to	Comparisons	and	see	Appendix	for	their	final	definitions.
 6
 1 5
 2 4
 3 3
 1 1 4
 1 2 3
 2 2 2
 1 1 1 3
 1 1 2 2
 1 1 1 1 2
 1 1 1 1 1 1A	partition	of	an	 integer	n	 is	 represented	here	as	a	 list	of	parts:	positive	 integerswhose	sum	 is	n.	All	 integer	partitions	of	n	are	all	 the	distinct	partitions	of	n	withparts	 in	 ascending	 (non-decreasing)	 or	 descending	 (non-increasing)	 order.

VECTOR Vol.26 No.2&3

110

Partitions	may	be	 listed	 in	any	order	but	usually	are	 in	ascending	or	descendingbase	 value.	 For	 example,	 all	 partitions	 of	 6	 in	 ascending	 order,	 with	 ascendingparts:Note:	 The	 following	 utility	 names	 will	 be	 used	 often	 throughout,	 but	 theirdefinitions	will	not	be	repeated.
 ELSE =: `
 WHEN =: @.
 EACH =: &.>

Skiena’s	AlgorithmThe	 Eirst	 program	 is	 a	 simpliEied	 coding	 of	 Steven	 Skiena’s	 algorithm	[2]	 usingdouble	 recursion	 to	 produce	 partitions	 of	 input	 integer	 n	 beginning	 with	 inputlargest	 part	 p.	 It	 joins	 two	 arrays	 vertically:	 The	 top	 is	 the	 result	 of	 p	 joinedhorizontally	onto	partitions	of	n	-	p	with	the	new	largest	part	being	the	smaller	ofn	-	p	and	p;	the	bottom	is	the	partitions	of	n	with	largest	part	p	-	1.	In	tacit	J:
Skiena =: Parts ELSE Ones WHEN Under2 NB. (n) Skiena (p)
 Ones =: ,:@#
 Under2 =: 2 >]
 Parts =: Top , Bottom
 Top =:] ,. - Skiena - <.]
 Bottom =: Skiena <:For	example,	partitions	of	5	beginning	with	3	in	a	table	(padded	with	0s):
 5 Skiena 3
3 2 0 0 0
3 1 1 0 0
2 2 1 0 0
2 1 1 1 0
1 1 1 1 1All	partitions	of	6	in	descending	order:
 6 Skiena 6 NB. Skiena~ 6
6 0 0 0 0 0
5 1 0 0 0 0
4 2 0 0 0 0
4 1 1 0 0 0
3 3 0 0 0 0
3 2 1 0 0 0
3 1 1 1 0 0
2 2 2 0 0 0
2 2 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1 This	is	the	shortest	program	here,	but	it	is	inefficient	in	speed	and	space.
Knuth’s	Algorithms

VECTOR Vol.26 No.2&3

111

Donald	Knuth	proffered	two	algorithms	for	generating	partitions	in	[3].
KnuthKnuth’s	 algorithm	P	 computes	partitions	successively,	 starting	with	n	and	endingwith	a	list	of	1s:	“If	a	partition	isn’t	all	1s,	 it	ends	with	(x+1)	 followed	by	zero	ormore	1s,	for	some	x≤1;	therefore,	the	next	smallest	partition	in	lexicographic	orderis	 obtained	 by	 replacing	 the	 sufEix	(x+1)1…1	 by	x…xr	 for	 some	 appropriateremainder	r≤x.	 The	 process	 is	 quite	 efEicient	 if	 we	 keep	 track	 of	 the	 largestsubscript	q	[of	partition	a]	such	that	aq	not	equal	1…”	 [3	page	37].	Coded	explicitlyin	J,	the	program	below	performs	classic	scalar	processing	to	produce	a	table	of	allpartitions	in	descending	order:
Knuth =: 3 : 0 NB. Knuth (n) for n>:1
n =. y
all =. i.0,n
label_P1. NB. Initialize
a =. n#0
m =.0 NB. origin 0
label_P2. NB. Store final part
a =. n m}a
q =. m - (n=1)
label_P3. NB. Visit a partition
all =. all,(m+1){.a
if. (q{a)~:2 do. goto_P5. end.
label_P4. NB. Change 2 to 1,1
a =. 1 q}a
q =. q-1
m =. m+1
a =. 1 m}a
goto_P3.
label_P5. NB. Decrease q{a
if. q<0 do. all return. end.
x =. (q{a)-1
a =. x q}a
n =. (m-q)+1
m =. q+1
label_P6. NB. Copy x
if. n<:x do. goto_P2. end.
a =. x m}a
m =. m+1
n =. n-x
goto_P6.
)For	example,	all	partitions	of	6	is	the	same	result	as	6 Skiena 6:
 Knuth 6
6 0 0 0 0 0
5 1 0 0 0 0
4 2 0 0 0 0
4 1 1 0 0 0
3 3 0 0 0 0
3 2 1 0 0 0
3 1 1 1 0 0
2 2 2 0 0 0
2 2 1 1 0 0

VECTOR Vol.26 No.2&3

112

2 2 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1The	 program	 can	 be	 shortened	 drastically,	 get	 the	 remainder	 neatly,	 and	 handle
n=0	as	a	bonus:
Knuthx =: 3 : 0 NB. Knuthx (n)
all =. ,:p =. ,y
while. 1 < {.p do. i =. <: p i. 1
 x =. - <: i { p
 a =. i {. p
 s =. y - +/a
 p =. a , x +/\ s#1
 all =. all , p
end.
)Look	 at	 intermediate	 steps	 during	 a	 loop	 of	Knuthx 10	 to	 produce	 the	 nextpartition	after	4 3 1 1 1:
 y =. 10
 p =. 4 3 1 1 1
]i =. <: p i. 1
1
]x =. - <: i { p
_2
]a =. i {. p
4
]s =. y - +/a
6
]p =. a , x +/\ s#1
4 2 2 2Unfortunately,	Knuthx	 uses	 twice	 the	 space	 and	 is	 (increasingly)	 slower	 than
Knuth.A	tacit	translation	is	even	slower	and	fatter	in	space:
Knutht =: Parts ^: While ^:_ @ N
 N =: ,:@,
 While =: 1 < {.@{:
 Parts =: , Next@Last
 Last =: {: -. 0:
 Next =: A , X +/\ S#1:
 A =: I {.]
 I =: <:@i. 1:
 X =: I -.@{]
 S =:] -amp;(+/) AChanging	Knuthx	 to	 use	s=.x+(#p)–i	 for	 the	 sum	 of	 a	 sufEix	 and	 including	 acondition	to	change	a	2	to	1	1	will	 improve	its	speed	–	especially	for	large	n	withgrowing	percentage	of	2s:
Knuth2 =: 3 : 0
all =.,:p=.,y
while. 1 < {.p do. i =. <: p i. 1

VECTOR Vol.26 No.2&3

113

 x =. i { p
 if. x=2
 do. p =. 1 i} p,1
 else.
 a =. i {. p
 x =. <:x
 s =. x + (#p) - i
 p =. a , x Next s
 end.
 all =. all , p
end.
)

 Next =: -@[+/\] # 1:Better	yet,	use	a	sub-program	to	group	partitions	by	their	leading	part	and	appendan	array	of	all	leading	2s	separately,	with	a	final	row	of	1s:
Knuth2s =: 3 : 0
all =. i.0,n=.y
while. n>1
 do. nexts =. n Nexts y-n
 all =. all , n ,. nexts
 n =. n-1
 end.
all,1
)

Nexts =: 3 : 0
:
if. y<2 do. ,:,y return. end.
nexts =. ,:next =. x New y
while. 2 < {.next
 do. i =. <: next i. 1
 x =. i { next
 if. x=2
 do. next =. 1 i} next,1
 else.
 a =. i {. next
 x =. <:x
 s =. x + (#next) - i
 next =. a , x New s
 end.
 nexts =. nexts , next
 end. NB. next is 2…(1)
repeats =. >:i.#next-.1
twos =. Two ^:repeats next
nexts,twos
)

 Two =: }. , 1 1"_This	is	faster	and	much	slimmer,	but	longer.Nevertheless,	these	revisions	cannot	compete	with	Knuth	in	speed	or	space.
HindenburgKnuth’s	algorithm	H	(attributed	to	Hindenburg	[4])	computes	partitions	of	n	with

VECTOR Vol.26 No.2&3

114

m	 parts	 --	 that	 is,	m-tuples	 that	 sum	 to	n.	 “The	basic	 idea	 is	 that	 colex	order	goesfrom	one	partition	a1…am	 to	the	next	by	Einding	the	smallest	j	 such	 that	aj	can	beincreased	 without	 changing	aj+1…am.”	 [3	page	 38]	 The	 new	 partition	 will	 have	jleading	 parts	 =	aj+1	 and	 the	 same	 sum	 if	aj<a1–1.	Note	 that	 this	 algorithm	doesnot	work	for	0	or	1	parts.	Later,	see	program	AP	that	produces	m-tuples	robustly.Assuming	n≥m≥2,	code	H	in	J:
H =: 3 : 0 NB. (n) H (m)
:
n =. x NB. n>:m
m =. y NB. m>:2
ps =. i.0,m
label_H1. NB. Initialize
a =. m#0
a =. (1+n-m) 0} a NB. origin 0
a =. 1 (}.i.m)} a
a =. a , _1
label_H2. NB. Visit partition
ps =. ps , (i.m){a
if. (1{a)>:(0{a)-1 do. goto_H4. end.
label_H3. NB. Tweak 0{a and 1{a
a =. ((0{a)-1) 0}a
a =. ((1{a)+1) 1}a
goto_H2.
label_H4. NB. Find j
j =. 2 NB. origin 0
s =. (0{a)+(1{a)-1
while. (j{a)>:(0{a)-1 do. s =. s + j{a
 j =. j+1
end.
label_H5. NB. Increase j{a
if. j=m do. ps return. end.
x =. (j{a)+1
a =. x j} a
j =. j-1
label_H6. NB. Tweak (i.j){a
while. j>0 do. a =. x j}a
 s =. s-x
 j =. j-1
end.
a =. s 0} a
goto_H2.
)For	example,	partitions	of	6	with	2,	3,	and	4	parts:
 6 H 2
5 1
4 2
3 3
 6 H 3
4 1 1
3 2 1
2 2 2
 6 H 4
3 1 1 1
2 2 1 1

VECTOR Vol.26 No.2&3

115

By	 appending	 such	 results,	H	 can	 be	 used	 in	 a	 supra-program	 to	 generate	 allpartitions:
Hindenburg =: 3 : 0 NB. Hindenburg (n)
n =. y
m =. 2
all =. ,.n
while. m<:n do. all =. all , n H m
 m =. m+1
end.
all
)Notice	that	the	order	of	all	partitions	is	not	the	same	as	in	Knuth 6.
Hindenburg	is	increasingly	slower	than	Knuth	and	uses	about	twice	the	space,	so	itwill	be	omitted	from	further	comparisons.
Hui’s	Algorithm
partRoger	Hui	presented	a	concise	program	for	all	partitions	[5]:
pu =:] <@:+"1 [* </\"1@=@]
pext =: [: ~. [: /:~&.> ,&.> , ;@:(pu&.>)
part =: ,&.>`(pext/)@.(1:<#) @ ($&1)An	example	of	partitions	of	6	in	a	list	of	11	boxes	with	ascending	parts:
 part 6
┌───────────┬─────────┬───────┬───────┬─────┬─────┬───┬─────┬───┬───┬─┐
│1 1 1 1 1 1│1 1 1 1 2│1 1 1 3│1 1 2 2│1 1 4│1 2 3│1 5│2 2 2│2 4│3 3│6│
└───────────┴─────────┴───────┴───────┴─────┴─────┴───┴─────┴───┴───┴─┘To	produce	a	numeric	table	(padded	with	0s),	open	the	list:
 >part 6
1 1 1 1 1 1
1 1 1 1 2 0
1 1 1 3 0 0
1 1 2 2 0 0
1 1 4 0 0 0
1 2 3 0 0 0
1 5 0 0 0 0
2 2 2 0 0 0
2 4 0 0 0 0
3 3 0 0 0 0
6 0 0 0 0 0With	 or	without	 0s,	 this	 program	 is	woefully	 slow	 and	 obese	 in	 space.	 It	 cannotcompete	here.

VECTOR Vol.26 No.2&3

116

Boss’s	Algorithm
BossR.	 E.	 Boss	 developed	 an	 efEicient	 algorithm	[6]	 that	 sparked	 interest,	 as	 well	 assome	revisions.	His	program	computes	all	partitions	with	descending	parts:
init =: (<@<@i.@(1 0"_)) ,~ <"0@(] , (] (- <. >:@]) i.)@<:)
pps1 =: >:@i.@[<@;@:(([,. (>: {."1) #])&.>) {.
exit =: >@{.@>
Boss =: [: exit [: (],~ pps1)&.>/ initExample:
 Boss 6
1 1 1 1 1 1
2 1 1 1 1 0
2 2 1 1 0 0
2 2 2 0 0 0
3 1 1 1 0 0
3 2 1 0 0 0
3 3 0 0 0 0
4 1 1 0 0 0
4 2 0 0 0 0
5 1 0 0 0 0
6 0 0 0 0 0This	program	is	very	fast	but	fat.
AP0Boss’s	program	can	be	re-coded	more	perspicuously:
AP0 =: Exit@Part@Init NB. AP0 (n)
 Exit =: >@{.@>
 Init =: <"0@Mins , <@Empty
 Empty =: <@,:@i.@0:
 Mins =: , (<. |.)@}.@i.
 Part =: Next EACH/
 Next =: <@;@Ps ,]
 Ps =: Ns@[Join EACH {.
 Ns =: >:@i.
 Join =: [,. Select #]
 Select =: >: {."110%	shorter,	AP0	runs	at	about	the	same	speed	as	Boss	in	a	little	less	space.
HuiHui	[7]	recast	Boss's	program	using	Power	instead	of	Insert:
part =: 3 : 'final (, new)^:y <<i.1 0'
new =: (-i.)@# <@:(cat&.>)]
cat =: [;@:(,.&.>) -@(<.#) {.]
final =: ; @: (<@-.&0"1&.>) @ > @ {:

VECTOR Vol.26 No.2&3

117

part 6	 produces	 a	 list	 of	 11	boxes	 of	 partitions	with	 descending	parts	 (without0s).This	program	is	much	slower	than	Boss	and	uses	80%	more	space.	It	could	speedup	33%	 if	 0s	 in	 boxes	were	not	 removed:	NB final =: ;@>@{:	 But	 that	wouldrequire	more	space.Make	it	conform	to	other	programs	here	that	return	a	numeric	table:
Hui =: >@part

 (Hui -: Boss) 6
1This	could	be	re-coded	in	smaller	modules:
Hui0 =: Final@Parts
 Final =: ;@>@{:
 Inputs =:] ` Start
 Start =: <@<@,:@i.@0:
 Parts =: Boxes^:Inputs
 Boxes =: , <@New
 New =: (-i.)@# ;@Cat EACH]
 Cat =: [,.EACH Min {.]
 Min =: -@<. #However,	 these	 programs	 need	 excessive	 memory	 and	 will	 not	 compete	 well	 athigh	n.
AP1Here	 is	 my	 revision	 of	 Boss's	 program,	 notably	 without	 using	 an	 outer	 level	 ofboxing:
AP1 =: ;@All ELSE Ns WHEN (< 2:) NB. AP1 (n)
 All =: Ns ,.EACH Parts/@Mins
 Ns =: >:@i.
 Mins =: Smaller@}.@i. , 0:
 Smaller =: <. |.
 Parts =: Next ELSE Start WHEN Zero
 Zero =: 0 e.]
 Start =: 1 ; ,@0:
 Next =: ;@New ;]
 New =: Ns@[Join EACH {.
 Join =: [,. Select #]
 Select =: >: {."1

 (AP1 -: Boss) 6
1This	program	runs	much	faster	than	Boss	in	signiEicantly	less	space.	Indeed,	it	cando	n	=	70	whereas	Boss	runs	out	of	memory.Also	consider	an	explicit	translation:

VECTOR Vol.26 No.2&3

118

AP1x =: 3 : 0
ns =. >:i.y
mins =. (<. |.) }:ns
all =. < i.1 0
while. #mins do. new =. all New~ {:mins
 all =. all ;~ ;new
 mins =. }:mins
end.
all =. ns ,.EACH all
;all
)Notice	use	of	New	and	its	tacit	sub-programs	from	above.
AP1x	is	slower	than	AP1,	needs	a	lot	more	space,	and	is	longer.	So	it	will	bow	out	ofthe	competition.How	about	a	recursive	definition?
AP1r =: ;@All
 All =: Ns ,.EACH Mins Parts Empty
 Empty =: <@,:@i.@0:
 Ns =: >:@i.
 Mins =: Smaller@}.@i.
 Smaller =: <. |.
 Parts =: Build ELSE] WHEN Done NB. Parts calls Build
 Done =: 1 > #@[
 Build =: ButFirst Parts First Next] NB. Build calls Parts
 First =: {.@[
 ButFirst =: }.@[
 Next =: ;@New ;]
 New =: Ns@[Join EACH {.
 Join =: [,. Select #]
 Select =: >: {."1This	has	about	 the	same	speed	and	space	as	AP1	but	 is	 longer.	So,	 it	will	defer	 to
AP1.See	Peelle’s	Algorithms	later	for	more	efficient	recursive	programs.
AP2In	[8],	 I	described	a	variant	of	Boss’s	algorithm	that	computes	the	 leading	part	ateach	 iteration:	 the	 smaller	 of	 the	 number	 of	 accumulated	 boxed	 arrays	 and	nminus	that	number.	Renamed	and	edited	slightly:
AP2 =: ;@All NB. AP2 (n)
 All =: Ns ,.EACH Parts
 Ns =: >:@i.
 Parts =: Build^:N Start
 Start =: 1 0 <@$]
 N =: 0 >. <:@[
 Build =: <@;@Next ,]
 Next =: Lead Ps]
 Lead =: Min #

VECTOR Vol.26 No.2&3

119

 Min =: - <.]
 Ps =: Ns@[Join EACH {.
 Join =: [,. Select #]
 Select =: >: {."1

 (AP2 -: Boss) 6
1See	[8]	for	a	tutorial.	Example:
 AP2 6
1 1 1 1 1 1
2 1 1 1 1 0
2 2 1 1 0 0
2 2 2 0 0 0
3 1 1 1 0 0
3 2 1 0 0 0
3 3 0 0 0 0
4 1 1 0 0 0
4 2 0 0 0 0
5 1 0 0 0 0
6 0 0 0 0 0This	 program	 is	 about	 33%	 faster	 than	Boss	 at	 n	 =	65	 in	 about	 25%	 less	 space.Compared	to	AP1,	it	has	about	the	same	speed,	slightly	less	space,	and	less	length.EfEiciency	can	be	improved	slightly	further	by	separating	top	and	bottom	halves	ofthe	 partitions	 array,	 by	 deEining	 separate	 programs	 for	 odd	 and	 even	 input,	 orwith	other	programming	techniques	(not	shown	here	because	those	programs	aremuch	longer).
Kelleher’s	AlgorithmJerome	 Kelleher	 and	 Barry	 O’Sullivan	 published	 two	 algorithms	 in	[9]	 for	 allpartitions	 with	 ascending	 parts,	 superseding	 speed	 of	 existing	 programs	 fordescending	parts	by	Knuth	[3]	and	by	Zoghbi	&	Stojmenovic	[10].	Kelleher’s	mostefEicient	 algorithm	 generates	 lexicographic	 successors	 iteratively	with	 embeddedloops,	 notably	 a	 second	 loop	 to	 handle	 transitions	 involving	 only	 the	 last	 twoparts.	Coded	straightforwardly	in	J:
Kelleher =: 3 : 0 NB. Kelleher (n)
n =. y
a =. (n+1)#0
k =. 1
a =. (0) 0} a NB. redundant
y =. n-1
all =. i.0,n
while. k~:0 do.
 x =. ((k-1){a)+1
 k =. k-1
 while. (2*x)<:y do.
 a =. x k} a
 y =. y-x
 k =. k+1
 end.

VECTOR Vol.26 No.2&3

120

 l =. k+1
 while. x<:y do.
 a =. x k}a
 a =. y l}a
 all =. all , (i.k+2){a
 x =. x+1
 y =. y-1
 end.
 a =. (x+y) k}a
 y =. x + y - 1
 all =. all , (i.k+1){a
 end.
all
)Example:
 Kelleher 6
1 1 1 1 1 1
1 1 1 1 2 0
1 1 1 3 0 0
1 1 2 2 0 0
1 1 4 0 0 0
1 2 3 0 0 0
1 5 0 0 0 0
2 2 2 0 0 0
2 4 0 0 0 0
3 3 0 0 0 0
6 0 0 0 0 0

Kelleher	 is	 4	 times	 slower	 than	AP2	 at	 n	 =	 65	 but	 uses	 only	 about	 40%	 of	 thespace.	It	 is	 faster	than	Knuth	 in	about	the	same	space,	and	much	shorter.	An	evenfaster	and	shorter,	more	J-ish	version	Kelleherx	is	given	in	the	Appendix.
Peelle’s	AlgorithmsNow	look	at	how	well	some	new	recursive	algorithms	perform.
APPeelle	 presented	 a	 tidy	 ambivalent	 program	 in	[8]	 using	 a	 ‘1	 Plus’	 recursiveapproach	to	produce	all	partitions	of	n	or	partitions	of	n	with	up	to	p	parts:
AP =: ;@All NB. AP (n) or (n) AP (p)
 All =: Parts EACH >:@i.
 Parts =: Ones ELSE Plus1 WHEN >
 Ones =: = #] ,:@# 1:
 Plus1 =: 1 + - AP]The	main	 idea	 is	 to	add	1	 to	each	 sub-array	of	partitions	of	 (n-1	 to	p)	 for	 1	 to	pparts.	In	other	words,	for	a	given	number	of	parts,	partition	n-parts,	then	add	1	toeach	part	(including	0s).For	example,	assemble	1	plus	each	result	below	to	get	6 AP 3:

VECTOR Vol.26 No.2&3

121

 5 AP 1 6 AP 3
5 6 0 0
 4 AP 2 5 1 0
4 0 4 2 0
3 1 3 3 0
2 2 4 1 1
 3 AP 3 3 2 1
3 0 0 2 2 2
2 1 0
1 1 1See	[8]	 for	 a	 tutorial.	 Notice	 that	 the	 order	 of	 all	 partitions	 is	 the	 same	 as
Hindenburg:
 AP 6 NB. 6 AP 6
6 0 0 0 0 0
5 1 0 0 0 0
4 2 0 0 0 0
3 3 0 0 0 0
4 1 1 0 0 0
3 2 1 0 0 0
2 2 2 0 0 0
3 1 1 1 0 0
2 2 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1

AP	can	speed	up	greatly	by	exiting	when	either	input	is	0	or	1:
AP =: ;@All ELSE N WHEN Under2
Under2 =: 2 > <.
 N =: ,:@{.~This	 program	 runs	 three	 times	 faster	 than	Skiena	 but	needs	30%	more	 space	at
n=65.	Yet,	AP	can	do	n=70,	whereas	Skiena	runs	out	of	memory.
AP	can	be	improved	by	handling	0	and	1	parts	separately:
 AP =: N ;@, [All <.
 N =: <@,:@{.~
 All =: Parts EACH 2 }. i. ,]
 Parts =: 1 +] {."1 - AP]This	version	will	be	used	for	comparisons	and	is	listed	in	the	Appendix.	It	is	muchfaster	and	much	shorter	than	AP1	and	AP2	in	much	less	space	at	n=70	although	it	ismuch	slower	at	n=65.	Which	is	better?	See	Comparisons.Translation	into	explicit	definition	avoids	boxing:
APx =: 3 : 0
:
all =. ,:y{.x
for_p. 2 }. i.>:y do. all =. all , 1 + p {."1 n APx p<.n=.x-p end.
)

VECTOR Vol.26 No.2&3

122

This	needs	40%	less	space	than	AP	but	twice	the	time	and	is	longer.	So	it	will	dropout.
APrHere	is	a	simple	recursive	definition	for	two	inputs:	n	and	a	lead	part.	Explicitly:
APrx =: 3 : 0 NB. (n) APrx (lead)
:
all =. i.0,x
while. y>1
 do. all =. all , y ,. n APrx y <. n=.x-y
 y =. y-1
 end.
all,1
)Note	that	it	skips	the	loop	whenever	y	is	1	and	just	appends	the	last	row	of	1s.Example:	6 APrx 6	or	APrx~6	is	the	same	as	Knuth 6.This	program	is	much	slower	than	AP	yet	much	slimmer	in	space	until	n=70	whenit	exceeds	memory.	So,	forget	it.A	 tacit	 ambivalent	version	 is	 shorter,	40%	 faster	 in	75%	more	 space	and	can	do
n=70:
APr =: ;@All ELSE Ones WHEN Under2 NB. (n) APr (lead) or APr (n)
 Ones =: ,:@#
 Under2 =: 2 >]
 All =: Ns Parts EACH Leads@]
 Parts =:] ,. [APr <.
 Ns =: - Leads
 Leads =: - i.This	can	be	improved	further	by	generating	1s	separately:
APr =: <@Ones ;@, Allbut1s NB. (n) APr (lead) or APr (n)
 Ones =: ,:@# 1:
 Allbut1s =: Parts EACH Leads
 Parts =:] ,. - APr - <.]
 Leads =: 2 }. i. ,]Now	it	is	more	competitive	with	AP	in	speed,	but	much	fatter,	albeit	shorter.Indeed,	this	is	the	shortest	program	among	those	here	that	can	perform	high	n.
APmAnother	simple	recursive	definition	uses	previous	partitions	as	a	memo	to	producethe	next:
APm =: 3 : 0 NB. APm (n)
all =. i.0,n=.y
while. n>1

VECTOR Vol.26 No.2&3

123

 do. memo =: APm y-n
 leads =. {."1 memo
 drop =. leads i. n <. y-n
 all =. all , n ,. drop }. memo
 n =. n-1
 end.
all,1
)Note	that	global	memo	cuts	down	space	significantly.	Still,	it’s	way	too	slow.	J’s	built-in	Memo	adverb	M.	does	better.	See	APdb	later	in	Other	Programs.
APhThis	approach	produces	all	partitions	in	two	halves,	recursively,	in	an	ambivalentprogram.	For	the	bottom	half,	it	recurses	when	n	>	lead	part;	and	for	the	top	half,	itrecurses	with	n	as	both	inputs.
APh =: [;@Parts New NB. APh (n) or (n) APh (lead)
 New =: -@<. {. i.@[
 Parts =:] Part EACH -
 Part =:] ,. Recurse ELSE Empty WHEN Zero ELSE Ones WHEN One
 Recurse =: [APh [ELSE] WHEN >
 Empty =: ,:@i.@0:
 Zero =: = 0:
 Ones =: ,:@#
 One =: 1 =]Examples	of	its	subprogram	for	two	inputs:
 0 Part 6
6

 1 Part 5
5 1

 2 Part 4
4 2 0
4 1 1

 3 Part 3
3 3 0 0
3 2 1 0
3 1 1 1

 4 Part 2
2 2 2 0 0
2 2 1 1 0
2 1 1 1 1

 5 Part 1
1 1 1 1 1 1

APh 6	 assembles	 these	 results	 into	 one	 table	 of	 descending	 partitions	 (same	 as
|.APr 6).Include	an	exit	for	2	and	build	an	array	with	leading	2s	directly:

VECTOR Vol.26 No.2&3

124

Part=:] ,. Recurse ELSE Empty WHEN Zero ELSE Twos WHEN Two ELSE Ones WHEN One
 Two =: 2 =]
 Twos =: Build ^: Inputs
 Build =: 1 ,~ 2 ,.] ,. 0:
Inputs =: <.@% ` Start
 Start =: ,:@:>:@i.@|~This	program	is	now	much	faster	in	equal	space	but	quite	longer.
APnAnother	approach	constructs	a	table	of	partitions	horizontally	by	nesting	columnsrecursively:
APnx =: 3 : 0 NB. APnx (n)
is =. i.y
; is Nest EACH y-is
)Nest	=:	3	:	0	:	 if.	y=1	do.	1,x#1	return.	end.	 if.	x=0	do.	 ,:,y	else.	min	=.	–	x	<.	y	is	=.min	{.	i.x	y	,.	;	is	Nest	EACH	x-is	end.)A	tacit	version	is	shorter	and	much	faster:
APn =: [;@Parts <. NB. APn (n)
 Parts =: Is Nest EACH Ns@]
 Is =: i.@] + -
 Ns =: - i.
 Nest =: Join ELSE N WHEN Zero ELSE Ones WHEN One
 Join =:] ,. APn
 N =: ,:@,@]
 Zero =: =0:
 Ones =: 1,#
 One =: 1=]

APaprFinally,	consider	this:	halve	 input	n	 to	become	the	 largest	second	part,	subtract	 itfrom	n	 to	 get	 the	 Eirst	 part,	 iterate	 through	 decrements	 of	 Eirst	 and	 second	 partsrespectively,	 and	 call	APr	 (presented	 previously)	 to	 attach	 a	 sub-array	 ofpartitions	 for	 the	 remaining	new_n	with	the	 leading	part	as	 the	smaller	of	secondand	new_n:
APapr =: 3 : 0 NB. APapr (n)
all =. Ns1s y-i.y
for_second. 2 To <.-:y
 do. for_first. |.second To y-second
 do. all =. all,first,.second,.n APr second<.n=.y-first+second
 end.
 end.
)
 To =: }. i. ,]

VECTOR Vol.26 No.2&3

125

For	efEiciency,	all	partitions	with	a	second	part	0	and	1	are	done	at	once	separatelyin	a	table:
 Ns1s =: ,. (</ }:) NB. Ns1s (n-i.n)Example:
 APapr 6
6 0 0 0 0 0
5 1 0 0 0 0
4 1 1 0 0 0
3 1 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1
4 2 0 0 0 0
3 2 1 0 0 0
2 2 1 1 0 0
2 2 2 0 0 0
3 3 0 0 0 0Note	the	unorthodox	order:	by	increasing	second	part.This	 program	 is	 faster	 than	APr,	 and	 much	 shorter	 than	Kelleher,	 using	 only	 alittle	more	space.	(even	counting	APr).	Despite	relying	on	a	sub-program	that	itselfcan	compute	all	partitions,	it	competes	very	well	at	high	n.	Indeed,	it	is	the	fastesthere	at	n=70.
ComparisonsNow	 compare	 the	 most	 competitive	 programs	 here	 for	n=65	 by	 ratios	 of	 time,space,	 and	 length	 –	 where	 1.00	 is	 best.	 Finally,	 sum	 the	 ratios	 for	 a	 simplecomposite	of	overall	program	efficiency:
 Time Space Length Overall

Skiena 12.59 1.46 1.00 15.05

Knuth 5.15 1.00 7.94 14.09

Boss 1.38 3.00 3.00 7.38

Hui 24.31 5.41 2.38 32.11

AP1 1.01 2.34 2.79 6.14

AP2 1.00 2.34 2.44 5.78

Kelleher 4.49 1.00 6.35 11.85

AP 2.77 1.89 1.21 5.86

APr 3.53 2.34 1.15 7.02

APh 3.71 2.34 3.44 9.49

APn 4.85 2.34 1.85 9.04

VECTOR Vol.26 No.2&3

126

APapr 3.40 1.03 3.88 8.31So	AP2	is	the	winner,	with	AP	and	AP1	close	behind.For	n=70,	Skiena,	Boss	 and	Hui	 cannot	participate	on	my	computer	because	 theyrun	 out	 of	 memory.	 Timing	 results	 for	 most	 remaining	 programs	 have	 largevariance	 since	 they	 are	 pushing	 space	 limits.	Within	 this	 uncertain	 repeatability,
APapr	emerges	as	the	fastest	and	AP	becomes	the	new	winner	overall.	In	order,	thetop	six	are:	AP,	APr,	APapr,	AP2,	AP1,	Kelleherx.	Considering	only	 time	and	space,the	top	six	are:	APapr,	Kelleher,	AP,	Knuth,	AP2,	APr.No	 program	 above	 can	 do	n=75	 on	my	 laptop.	 Timing	 ratios	 on	 other	 computersdiffer	somewhat	but	indicate	that	AP1	and	AP2	are	the	fastest.Readers	 may	 be	 able	 to	 run	 higher	n,	 may	 want	 to	 weight	 the	 three	 criteriadifferently,	and	may	add	other	criteria,	such	as	a	measure	of	clarity.	See	Appendixfor	benchmark	details	and	copies	of	the	best	programs	for	convenient	use.
Number	of	PartitionsFor	 any	 program	 above,	 the	 number	 of	 partitions	 can	 be	 counted	 perfunctorilyfrom	the	resulting	table	of	partitions.	For	example:	#AP 6	 is	 11.	A	 list	of	partitionnumbers:
 #@AP"0 i.20
1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490There	is	an	issue	about	how	to	count	the	number	of	partitions	for	n=0:
 $Skiena~ 0
1 0

NB. Knuth 0 does not compute

 $Boss 0
0
 $Hui 0
1 0
 $AP1 0
1
 $AP2 0
0
 $Kelleher 0
1 1
 $AP 0
1 0
 $APr 0
1 0
 $APapr 0
0 1

VECTOR Vol.26 No.2&3

127

Since	the	shape	of	an	empty	list	is	0,	one	can	argue	that	there	are	zero	partitions	of0.	One	can	also	argue	that	there	is	one	partition	of	0:	the	empty	partition	(a	1	by	0table)	 or	 a	 1-item	 list	 (,0).	 In	 all	 cases,	 the	 sum	 is	 0.	 So,	 what	 should	 it	 be	 –	 anempty	list,	or	an	empty	table,	or	just	0?	See	oeis.org/wiki/Partition	function.Of	 course,	 the	 pertinent	 problem	 is	 how	 to	 compute	 number	 of	 partitionsefficiently	for	large	n	without	the	effort	of	generating	them.
PTo	begin	with,	here	is	a	clean	program	to	compute	number	of	partitions	of	integer
n	with	k	parts,	albeit	inefficiently	due	to	recursion:
P =: Recur ELSE = WHEN Done NB. (n) P (k)

 Recur =: P&<: + - P]
 Done =: <: +. 0 =]An	alternative	definition:
P =: Recur ELSE] WHEN (2>]) ELSE = WHEN <: NB. (n) P (k)For	example,	number	of	partitions	of	10	with	4	parts:
 10 P 4
9The	total	number	of	partitions	of	n	with	k	parts	is	+/n P"0 i.>:k	.A	table	of	P	for	both	n	and	k	from	0	to	10:
 P"0/~ i.11
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
0 1 2 1 1 0 0 0 0 0 0
0 1 2 2 1 1 0 0 0 0 0
0 1 3 3 2 1 1 0 0 0 0
0 1 3 4 3 2 1 1 0 0 0
0 1 4 5 5 3 2 1 1 0 0
0 1 4 7 6 5 3 2 1 1 0
0 1 5 8 9 7 5 3 2 1 1Notice	that	the	nth	row	sum	is	the	number	of	all	partitions	of	n.
PnkAn	efEicient	program	to	build	this	table	iteratively	adds	the	reverse	diagonal	to	theshifted	last	row:
TP =: One , 0 ,. Row ^: (Repeat`One) NB. TP (n)

VECTOR Vol.26 No.2&3

128

 Repeat =: 0 >. <:
 One =: ,:@,@1:
 Row =: , Last + Diag , 0:
 Last =: 0 , {:
 Diag =: (<0 1) |: |.Index	the	table	to	get	number	of	partitions	of	n	with	k	parts:
Pnk =: <@, { TP@[NB. (n) Pnk (k) or Pnk (n)Example:
 10 Pnk 4
9

NPSince	Pnk	 is	 ambivalent,	 Pnk(n)	 is	 the	 last	 row,	 and	 its	 sum	 is	 the	number	of	 allpartitions:
NP =: +/@Pnk NB. NP (n)Example:
 NP 10
42First	20	numbers	of	all	partitions:
 NP"0 i.20
1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490Larger	numbers:
 n ,: NP"0 n =. 5*i.15
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
1 7 42 176 627 1958 5604 14883 37338 89134 204226 451276 966467 2012558 4087968Growth	factors:
 Growth =: }. % }:

 5j2 ": Growth NP"0 i.15
1.00 2.00 1.50 1.67 1.40 1.57 1.36 1.47 1.36 1.40 1.33 1.38 1.31 1.34

 load 'plot'
 plot Growth NP"0 i.50

VECTOR Vol.26 No.2&3

129

 Growth NP"0 n=.1000+i.10
1.04035 1.04033 1.04031 1.04029 1.04027 1.04025 1.04023 1.04021 1.04019For	very	large	n,	use	Hui’s	efEicient	pnv	program	in	[7]	based	on	Euler’s	recurrencerelation	to	see	convergence	to	an	asymptote	approaching	1.
Other	ProgramsSeveral	 other	 programs	 that	 generate	 all	 integer	 partitions	 have	 not	 beenmentioned	 yet	 because	 they	 are	 not	 nearly	 competitive	 with	 those	 above.	 Withrespect	 for	 their	 role	 in	 research	 and	 development,	 they	 are	 summarized	 asfollows:
ReingoldReingold	 et	 al.	[11]	 described	 an	 algorithm	 for	 generating	 tuples	with	 ascendingparts.	Coded	explicitly	in	J:
Reingold =: 3 : 0 NB. Reingold (n)
n =. y
m =. 1
ps =. i.0 0
while. n>:m
do. ps =. ps , n Parts m
 m =. m + 1
end.
ps
)

VECTOR Vol.26 No.2&3

130

Parts =: 3 : 0 NB. (n) Parts (m)
:
n =. x
m =. y
ps =. ,: 1 + (-m) {. n-m
while. +./1<p-~{:p=.{:ps
do. ps =. ps , Next p
end.
)

Next =: 3 : 0 NB. Next (p)
p =. y
n =. +/p
m =. #p
i =. <: 0 i.~ 2 <: p-~{:p
p =. (1+i{p) (i }. i.m)} p
p =. (n-+/}:p) (m-1)} p
)For	example:
 Reingold 6
6 0 0 0 0 0
1 5 0 0 0 0
2 4 0 0 0 0
3 3 0 0 0 0
1 1 4 0 0 0
1 2 3 0 0 0
2 2 2 0 0 0
1 1 1 3 0 0
1 1 2 2 0 0
1 1 1 1 2 0
1 1 1 1 1 1The	program	 is	 lengthy,	 four	 times	slower	 than	Knuth	 at	n=65	 in	 twice	 the	space,and	runs	for	hours	at	n=70.	Tacit	translations	(for	both	ascending	and	descendingparts)	use	30%	less	space	but	are	ten	times	slower.
ReiterReiter	[12]	presented	 a	 recursive	program	 in	APL	 that	 uses	 three	 inputs	 (in	 onelist):	 integer	n,	 number	 of	 parts	p	 and	 smallest	 part	s.	 It	 splits	 the	 computationdepending	on	whether	there	are	partitions	 into	one,	two,	or	more	parts.	The	caseof	 two	 parts	 is	 not	 necessary	 to	 the	 correctness	 of	 the	 algorithm,	 but	 it	 doesimprove	 the	 efEiciency	 of	 the	 algorithm.	 When	 the	 number	 of	 parts	 is	 three	 ormore,	then	a	loop	catenates	blocks	of	partitions	of	smaller	(or	equal)	numbers	intoa	smaller	number	of	parts	with	the	smallest	number	allowed	being	the	index	of	theloop.	[11	page	8]	In	J:
Reiter =: ;@Blocks ELSE (,@N) WHEN (P < 2:) NB. Reiter (n,p,s)
 Blocks =: <@(S,.Reiter)"1 @ NPSs
 NPSs =: (N-Ss) ,. <:@P ,. Ss
 N =: {.
 P =: {.@}.
 S =: {:

VECTOR Vol.26 No.2&3

131

 Ss =: S To N Q P
 Q =: <.@%
 To =: [+ i.@>:@-~Example	of	partitions	of	10	with	4	parts,	starting	with	1:
 Reiter 10 4 1
1 1 1 7
1 1 2 6
1 1 3 5
1 1 4 4
1 2 2 5
1 2 3 4
1 3 3 3
2 2 2 4
2 2 3 3All	partitions	of	n	are	produced	by	inputs	(n,n,0).	For	example:	Reiter 6 6 0.This	 program	 runs	 slower	 than	Skiena	 but	 needs	 less	 space.	Unfortunately,	 it	 ismuch	longer.
PeelleHere	 is	 my	 doubly	 recursive	 program	 based	 on	 P	 (above)	 that	 uses	 twofundamental	functions	to	generate	all	partitions	–	appending	a	1	and	adding	1:
Peelle =: ;@All NB. Peelle (n)
 All =: Parts EACH >:@i.
 Parts =: Recurse ELSE Empty WHEN < ELSE N WHEN One ELSE Ones WHEN =
 Recurse =: Append1 , Plus1
 Append1 =: Parts&<: ,. 1:
 Plus1 =: 1 + - Parts]
 Empty =: 0 i.@,]
 Ones =: # 1:
 N =: ,:@,@[
 One =: 1 =]This	program	is	 twice	as	 fast	as	Skiena,	 in	 less	space	than	Reingold,	 and	shorterthan	Reiter.	It	can	be	improved	by	combining	exits:
 Parts =: Recurse ELSE N WHEN Under2 ELSE Ones WHEN >:
 Recurse =: Append1 , 1 + - Parts]
 N =: ,@[
 Under2 =: 2 >]
 Ones =: = # [,:@# 1:Now	it’s	quite	competitive	at	n=70	–	notably	faster,	slimmer,	and	shorter	than	 AP1and	AP2	and	even	faster	than	Kelleherx	(but	with	more	space).A	key	insight	here	led	to	the	development	of	AP	(in	[8]):	Appending	1	is	equivalentto	1+(n-p) Parts (p-1)	 with	 an	 appended	 column	 of	 0s	 so	 that	 the	 result	 of
Recurse	can	be	produced	by	Plus1	alone.	AP	is	superior	to	Peelle,	being	faster	inequal	space	and	shorter.

VECTOR Vol.26 No.2&3

132

Another	improvement	handles	0	and	1	parts	separately	and	exits	for	n=2:
Peelle2 =: ;@All2 NB. Peelle2 (n)
 All2 =: <@N01 , AllbutN01
 AllbutN01 =: Parts2 EACH 2 }. i. ,]
 Parts2 =: Recurse2 ELSE Pairs WHEN Two ELSE Ones WHEN <:
 Recurse2 =: Append2 , 1 + - Parts2]
 Append2 =: Parts2&<: ,. 1:
 N01 =: ,@[
 Ones =: = #] ,:@# 1:
 Pairs =: [By >:@i.@<.@%
 By =: - ,.]
 Two =: 2 =]This	program	is	very	fast	at	high	n	in	about	the	same	space.Using	an	explicit	master	program	saves	40%	space	but	is	longer:
Peellex =: 3 : 0
all =. i.0,y
for_p. <i.y do. all =. all , y Parts p end.
)Further,	an	Iterative	version	builds	a	table	of	boxes	to	index:
Peellei =: ;@Corner@T NB. Peellei (n)
 EACH =: &.>
 Corner =: Top,Right ,"1 EACH Ones
 Ones =: >:@i.@# #EACH 1:
 Right =: {:"1
 Inputs =: <:@<: ` Start
 Start =: One (<0 0)} ,~@Half $ Empty
 One =: 1 1 <@$ 1:
 Empty =: 0 0 <@$ 0:
 Half =: >.@-:
 Top =: First , Append1 EACH@}:@{. ,EACH Plus1 EACH@}.@Diagonal
 First =: Plus1 EACH@{.@Diagonal
 Diagonal =: (<0 1) |:]
 Append1 =: ,.&1
 Plus1 =: >:
 T =: Build ^: Inputs
 Build =: Top }:@,]
 NB. correct except for n=0 and 1This	 program	 is	 very	 fast	 (about	 same	 speed	 as	Boss)	 up	 to	n=65	 but	 very	 fat(fatter	than	Boss).Now,	here	are	several	unusual	(and	inefEicient)	approaches	that	may	be	of	interestto	the	curious:
APodAn	odometer	approach	entails	selecting	unique	lists	of	partitions	with	sorted	partsfrom	a	table	of	consecutive	integers	represented	as	lists	in	base	n+1.	The	programis	loopless	and	short,	but	indulgent:

VECTOR Vol.26 No.2&3

133

APod =: ~.@Select (Odometer >:)
 Odometer =: # #: i.@^~ NB. (n) Odometer (n+1)
 Select =: Sort"1@Parts
 Parts =: IsSum"1 #]
 Sort =: /:~
 IsSum =: = +/Lexical	order,	as	on	an	odometer:
 APod 6
0 0 0 0 0 6
0 0 0 0 1 5
0 0 0 0 2 4
0 0 0 0 3 3
0 0 0 1 1 4
0 0 0 1 2 3
0 0 0 2 2 2
0 0 1 1 1 3
0 0 1 1 2 2
0 1 1 1 1 2
1 1 1 1 1 1Revise	it	to	be	2.5	times	faster:
APod =: N , (~.@Select Odometer~)
 N =: - {.]Using	multiple	bases	is	64	times	faster	still:
APod =: ~.@Select Odometer
 Odometer =: Encode@Bases NB. Odometer (n)
 Encode =: #: i.@(*/)
 Bases =: 1 + Diagonal@i.
 Diagonal =: {"0 1 Copies@:>:
 Copies =: |. #"0 1]6	times	faster	again	(with	left-justified	result):
APod =: ;@(<@Parts"0 Ns)

 Parts =: 1 + - ~.@Select Odometer NB. (n) Parts (p)
 Odometer =: Encode@Bases NB. (n) Odometer (p)
 Encode =: #: i.@(*/)
 Bases =: (-i.) Q |.@Ns@]
 Q =: <.@%Even	 though	 this	 is	 hundreds	 times	 faster	 than	 the	 initial	 deEinition,	 it	 is	 soinefficient	that	it	runs	out	of	memory	at	about	n=30.
AP9sAnother	 approach	 encodes	 only	multiples	 of	 9	 (instead	 of	 a	 full	 odometer)	 intobase-10	digits,	selects	ascending	lists,	then	selects	lists	that	sum	to	n.	How	crude!
AP9s =: All ELSE i. WHEN (=0:)

VECTOR Vol.26 No.2&3

134

 All =: Parts Ascend@Encode10
 Encode10 =: #&10 #: (+ 9 Multiples <:)
 Multiples =: * i.@(10&^)
 Ascend =: #~ (-: Sort)"1
 Sort =: /:~
 Parts =: IsSum"1 #]
 IsSum =: = +/This	program	is	very	slow	and	space-consuming	–	only	able	to	do	up	to	n=8.
APidThis	next	approach	iterates	adding	an	identity	matrix	to	generate	all	possible	newpartitions:	 Start	with	 an	 empty	 1	 by	 0	 array.	 Iteratively	 join	 a	 left	 column	 of	 0sthen	a	 top	 row	of	1s	 to	 ascending	 (sorted)	 lists	 in	 tables	 created	by	adding	eachrow	 of	 an	 appropriate	 size	 identity	 matrix	 to	 each	 row	 in	 the	 previous	 array.Finally,	remove	duplicate	partitions	from	the	result.
APid =: ~.@All^:(]`Empty)
 Empty =: ,:@i.@0:
 All =: 1 , 0 ,. Parts
 Parts =: Sort"1@(,/)@:(Plus"1)
 Sort =: /:~
 Plus =: +"1 Id
 Id =: =@i.@#

 APid 6
1 1 1 1 1 1 NB. Reverse lexical order
0 1 1 1 1 2
0 0 1 1 2 2
0 0 1 1 1 3
0 0 0 2 2 2
0 0 0 1 2 3
0 0 0 1 1 4
0 0 0 0 3 3
0 0 0 0 2 4
0 0 0 0 1 5
0 0 0 0 0 6This	program	runs	out	of	memory	at	n=45.Alternative:	 Use	 boxes	 and	 trim	 the	 identity	 matrix	 to	 add	 1s	 only	 to	 the	 lastunique	part,	so	there	is	no	need	to	sort.
APid =: ~.@All^:(]`Empty)
 Empty =: ,:@i.@0:
 All =: 1 , 0 ,. ;@:Parts
 Parts =: <@Plus"1
 Plus =: +"1 Id
 Id =: (i: ~. -. 0:) =/ i.@#This	 is	 almost	 10	 times	 faster	 and	 uses	 less	 than	 10%	 space,	 but	 runs	 out	 ofmemory	at	n=60.
APpnk

VECTOR Vol.26 No.2&3

135

Here	is	an	approach	that	computes	the	number	of	partitions	in	advance	for	a	given
n	 and	k	in	order	to	generate	partitions	iteratively	in	k-tuples.	It	uses	program	Pnk(from	Number	of	Partitions	earlier)	to	determine	how	many	times	to	iterate.
APpnk =: ;@All NB. APpnk (n)
 All =: Parts EACH Ns
 Ns =: >:@i.
 Parts =: Next^:(Pnks`Start) NB. (n) Parts (k)
 Pnks =: i.@Pnk NB. (n) Pnk (k)
 Start =: 1 +] {. -
 Next =: Front To Body]
 To =: Tos i. 1:
 Tos =: 1 < (- ~{.)
 Body =: Copies , Back
 Back =: >:@[}.]
 Copies =: [# >:@{
 Front =: (- +/) ,]

 (APpnk -: AP) 6
1This	program	is	shorter	and	faster	than	Knuth	and	Kelleher	 at	n=65,	but	requiresmore	space.	It	is	even	more	competitive	at	n=70,	although	it	seems	like	cheating.
APdbAnother	 approach	 updates	 a	 database	 every	 time	 the	 program	 is	 used	 anew.	 Aglobal	variable	contains	previously	executed	results	for	smaller	n	and	k	that	can	belooked	up	directly	instead	of	re-computed.First,	initialize	a	global	boxed	matrix:
parts =: 1 1 $ <i.1 0DeEine	 the	program	 to	 immediately	 extend	 the	matrix	with	 empty	boxes	 if	 eitherinput	n	or	k	is	larger	than	its	shape.	Then	look	up	the	nth	row	and	kth	column.	If	itis	 empty,	 compute	 the	 result	 and	update	 the	 global	matrix;	 otherwise,	 open	 it	 asthe	result.
APdb =: 3 : 0 NB. (n) APdb (k) or APdb~ (n)
:
nk =. x,y
if. +./ nk >: $parts do. parts =: (nk+1) {. parts end. NB. extend
 p =. (<nk) { parts NB. look up
 if. p=a: do. p =. < x APrdb y NB. compute
 parts =: p (<nk)} parts NB. update
end.
>p
)The	 following	 co-program	 used	 above	 is	 a	modiEication	 of	APr	 that	 computes	 allpartitions	 of	n	 in	k	parts	recursively	but	calls	APdb	 (instead	of	 itself)	to	 look	up	a

VECTOR Vol.26 No.2&3

136

sub-result	if	it	is	already	known.
APrdb =: ;@All ELSE Ones WHEN Under2 NB. (n) APrdb (lead)
 Ones =: ,:@#
 Under2 =: 2 >]
 All =: Leads@] <@Parts"0 Ns
 Parts =: [,.] APdb <. NB. APdb instead of APrdb
 Leads =: - i.
 Ns =: - LeadsUsing	a	database	 is	advantageous	whenever	partitions	below	n	 and	k	must	be	re-computed	quickly.	APdb	is	also	quite	speedy	for	new	n	and	k	up	to	about	n=60.	Forinstance,	APdb~60	 is	 about	 4	 times	 faster	 than	APr 60.	 However,	 by	n=65,	 itbecomes	 sluggish	 and	 demands	 about	 50%	more	 space	 even	 though	 only	 about
1r6	of	the	database	is	filled	up.It	is	easier	to	use	J’s	built-in	Memo	adverb	M.	to	gain	about	the	same	advantage.For	example:	NB. APr =: ;@All M. ELSE Ones WHEN Under2Then	APr 60	would	be	4	times	faster,	but	still	more	than	4	times	slower	for	n=65.
Other	RepresentationsSo	 far,	 a	 natural	 representation	 has	 been	 used	 for	 a	 partition	 –	 that	 is,	 a	 list	 ofpositive	integers	(without	interspersed	+	symbols).	For	example,	a	partition	of	15:5	3	3	1	1	1	1	or	1	1	1	1	3	3	5.	Other	 possible	 representations	 include:	base	 (or
standard),	frequency	(and	multiplicity),	and	Ferrers	dot	diagram.
BaseThe	numerals	 of	 a	 partition	 can	be	 compressed	 into	 digits	 of	 a	 single	 number	 inbase	 10,	 as	 in	 5331111	 or	 1111335.	 This	 might	 be	 advantageous	 for	 certainalgorithms,	such	as	selecting	multiples	of	9	(see	AP9s	above).	However,	if	any	partexceeds	9,	 this	 representation	becomes	 awkward,	 necessitating	pairs	 of	 digits,	 ortriples	for	n>99,	etc.To	 convert	 from	natural	 to	 base	 representation,	 use	 J’s	 Decode	with	 base	 10	 forpartitions	such	as:
 10 #. 5 3 3 1 1 1 1 10 #. 1 1 1 1 3 3 5
5331111 1111335To	convert	from	base	 to	natural,	use	its	inverse	Encode	with	the	appropriate	basefor	each	digit:
 (7#10) #: 5331111
5 3 3 1 1 1 1Or	use	J’s	Power	to	find	the	inverse:

VECTOR Vol.26 No.2&3

137

 10&#. ^:_1] 5331111
5 3 3 1 1 1 1

FrequencyA	partition	can	be	represented	as	a	list	of	frequencies	of	parts	from	1	to	the	largest.To	convert	from	natural	to	frequency	representation,	use	this	program:
 Freq =: +/@(=/) >:@i.@(>./)Example:
 Freq 5 3 3 1 1 1 1 Freq 1 1 1 1 3 3 5
4 0 2 0 1 4 0 2 0 1To	convert	from	frequency	to	natural:
 FreqInv =: # >:@i.@#

 FreqInv 4 0 2 0 1
1 1 1 1 3 3 5Or	include	its	inverse	in	the	definition:
 Freqs =: Freq :. FreqInv

 Freqs^:_1] 4 0 2 0 1
1 1 1 1 3 3 5For	any	partition	of	n	(in	any	order),	n	equals	the	sum	of	frequencies	times	integers1	to	the	largest	part,	respectively:
 p =. >:?10#10
 n =. +/p
 fs =. Freq p NB. fs =. Freqs p
 n = +/fs*>:i.>./p
1

MultiplicityAlternatively,	 a	 partition	 can	 be	 represented	 simply	 by	 multiples	 of	 its	 uniqueparts.	For	example,	4	2	1	multiples	of	unique	parts	1	3	5	represents	1	1	1	1	3	3	5.Convert	from	natural	to	multiplicity:
 +/"1 =1 1 1 1 3 3 5
4 2 1Convert	from	multiplicity	to	natural	representation:
 1 3 5 #~ 4 2 1
1 1 1 1 3 3 5

VECTOR Vol.26 No.2&3

138

1 1 1 1 3 3 5Define	a	program	with	its	inverse:
 Multi =: +/"1@= :. (#~)Both	conversions:
 Multi 1 1 1 1 3 3 5
4 2 1

 1 3 5 Multi^:_1] 4 2 1
1 1 1 1 3 3 5Any	sorted	partition	p	is	identical	to	the	inverse	conversion	of	its	conversion:
 p -: (~. Multi^:_1 Multi) p =. /:~ >:?10#10
1

Ferrers	diagramAnother	representation	devised	by	Norman	M.	Ferrers	provides	visualization	of	apartition	 via	 rows	 of	 dots	 (or	 any	 symbol)	 for	 each	 part.	 See	[3]	 or	 [13].	 Forexample,	5	3	3	1	1	1	1	would	be:
 * * * * *
 * * *
 * * *
 *
 *
 *
 *A	program	to	produce	Boolean	indices	for	such	a	diagram:
 Ferrers =: #"0 1: NB. Ferrers =: >/ i.@(>./)Example:
 Ferrers 5 3 3 1 1 1 1 ‘ *’ {~ Ferrers 5 3 3 1 1 1 1
1 1 1 1 1 *****
1 1 1 0 0 ***
1 1 1 0 0 ***
1 0 0 0 0 *
1 0 0 0 0 *
1 0 0 0 0 *
1 0 0 0 0 *Include	its	inverse:
 Ferrers =: (# 1:)"0 :. (+/"1)To	produce	a	conjugate	partition,	simply	sum	the	rows	(vertically):

VECTOR Vol.26 No.2&3

139

 +/ Ferrers 5 3 3 1 1 1 1
7 3 3 1 1

Fractal	PatternsDue	to	the	recursive	structure	of	partitions,	it	 is	not	surprising	to	Eind	fractal-likepatterns.	See	[14].
 load 'graph'
 viewmat 1 = Knuth 10 NB. white 1s

 viewmat 1 = AP 20

VECTOR Vol.26 No.2&3

140

Similarly,	 view	 other	 parts,	 such	 as	viewmat 2=AP 20	 or	 all	 parts	 in	 colors:
viewmat AP 10

SummaryJ	programs	for	generating	all	 integer	partitions	were	presented	and	compared	forthe	 Eirst	 time.	Most	 programs	 and	 some	 algorithms	 are	 new.	 The	 best	 programswere	determined	(within	my	computing	constraints)	for	equally	weighted	criteriathat	 included	 program	 length	 as	 well	 as	 speed	 and	 space.	 Translations	 betweentacit	 and	 explicit	 deEinitions	 were	 often	 supplied	 and	 contrasted	 without	 dueexplication.	To	follow	up,	see	References.
AcknowledgementsThanks	 to	Professor	Emeritus	Murray	Eisenberg	 (UMass	Mathematics	&	StatisticsDepartment)	 for	 his	 helpful	 critique	 and	 for	 obtaining	 benchmarks	 on	 his	 iMacwith	 J7.01.	 Thanks	 also	 to	 Boyko	 Bantchev	 for	 valuable	 feedback	 and	 generouscontributions,	to	Devon	McCormick	(ACM,	New	York)	for	checking	performance	ofprograms,	 and	 to	 Professor	 Cliff	 Reiter	 (LaFayette	 College	 MathematicsDepartment)	for	continuing	attention.
References1.	 http://www.Jsoftware.com2.	 	S.	Skiena,	Implementing	Discrete	Mathematics	…	with	Mathematica,	Addison-Wesley,19903.	 	D.	E.	Knuth,	The	Art	of	Computer	Programming	Vol.4A	7.2.1.4,	Addison-Wesley,2005-20114.	 	C.	F.	Hindenburg,	Infinitomii	Dignitatum	Exponentis	Indeterminati	(Göttingen)pp.	73-91,	17795.	 	R.K.W.	Hui,	http://www.jsoftware.com/pipermail/general/2005-June/023191.html6.	 	R.E.Boss,	“Partitions	of	numbers:	An	efficient	algorithm	in	J”,	Vector	23.4	pp.121-131,	2008	http://archive.vector.org.uk/art100120807.	 	R.	Hui,	http://www.jsoftware.com/Jwiki/Essays/Partitions	,	2008-20118.	 	H.	A.	Peelle,	http://www.jsoftware.com/jwiki/Essays/AllPartitions	,	20119.	 	J.	Kelleher	&	B.	O’Sullivan,	“Generating	All	Partitions:	A	Comparison	of	TwoEncodings”,	arxiv.org	>	cs	>	arxiv:	0909.2331	[cs.D5],	200910.	 	A.	Zoghbi	&	I.	Stojmenovic,	“Fast	Algorithms	for	Generating	Integer	Partitions”,Int.	J.	Computer	Math.,	Vol.	70	pp.	319-332,	199811.	 	E.	Reingold,	J.	Nievergelt,	&	N.	Deo,	Combinatorial	Algorithms,	Prentice-Hall,

VECTOR Vol.26 No.2&3

141

http://www.jsoftware.com
http://www.jsoftware.com/pipermail/general/2005-June/023191.html
http://archive.vector.org.uk/art10012080
http://www.jsoftware.com/jwiki/Essays/Partitions
http://www.jsoftware.com/jwiki/Essays/AllPartitions

197712.	 	C.	Reiter,	“Random	Markov	Matrices	and	Partitions	of	Integers”,	APL	Quote-Quad,	Vol.	22,	No.	3,	pp.	7-8,	March	199213.	 	E.	W.	Weisstein,	http://www.Mathworld.wolfram.com/PartitionFunctionP.html14.	 	A.	Salerno,	“Partition	Numbers	Unveiled	as	Fractal”,	MAA	Focus,	April-May2011	maa.org/focus.html
AppendixBenchmarks	 for	 time	 and	 space	 were	 obtained	 on	 a	 Dell	 Latitude	 E6410	 laptop(64-bit	OS	M620	at	2.67	GHz	with	4GB	RAM)	running	J6.02	under	Windows	7.Length	 (Spread)	 =	 total	 number	 of	 characters	 in	 a	 program	 deEinition	 body,ignoring	spaces,	and	counting	only	1	for	each	name.For	 a	 table	 t	 of	 benchmarks,	 the	 table	 of	 ratios	 (in	 Comparisons)	 is:
(,. +/"1) t %"1 <./tUtility	programs:
Time =: 6 !: 2
Space =: 7 !: 2

Test =: (-: ~.)@:Sort *. +/"1 *./ . = {:@$ NB. all unique and all rows sum = n
 Sort =: /:~"1Example	tests:
 *./Test@Knuth"0 }.i.66
1
 *./Test@Boss"0 i.66
1
 *./Test@Hui"0 i.66
1
 *./Test@AP"0 i.66
1Example	plots	of	Time	and	Space:

VECTOR Vol.26 No.2&3

142

http://www.mathworld.wolfram.com/PartitionFunctionP.html

 load 'plot'
 plot n ; Time"1 'AP2 ' ,"1 ":,.n=.5*i.14

 plot n ; Space"1 'AP2 ' ,"1 ":,.n=.5*i.14

Program	Definitions:DeEinitions	of	the	best	programs	in	Comparisons	are	shown	below	for	convenientcopying	and	pasting.	Note:	Use	separate	scripts:
AP1 =: ;@All ` Ns @. (< 2:) NB. AP1 (n)
 All =: Ns ,.&.> Parts/@Mins
 Ns =: >:@i.
 Mins =: Smaller@}.@i. , 0:
 Smaller =: <. |.
 Parts =: Next ` Start @. Zero
 Zero =: 0 e.]
 Start =: 1 ; ,@0:
 Next =: ;@New ;]
 New =: Ns@[Join&.> {.
 Join =: [,. Select #]
 Select =: >: {."1

AP2 =: ;@All NB. AP2 (n)
 All =: Ns ,.&.> Parts
 Ns =: >:@i.
 Parts =: Build^:N Start
 Start =: 1 0 <@$]
 N =: 0 >. <:@[
 Build =: <@;@Next ,]
 Next =: Lead Ps]
 Lead =: Min #
 Min =: - <.]
 Ps =: Ns@[Join&.> {.
 Join =: [,. Select #]
 Select =: >: {."1

AP =: N ;@, [All <. NB. AP (n) or (n) AP (p)
 N =: <@,:@{.~
 All =: Parts &.> 2 }. i. ,]
 Parts =: 1 +] {."1 - AP]

VECTOR Vol.26 No.2&3

143

APr =: <@Ones ;@, Allbut1s NB. APr (n) or (n) APr (lead)
 Ones =: ,:@# 1:
 Allbut1s =: Parts &.> Leads
 Parts =:] ,. - APr - <.]
 Leads =: 2 }. i. ,]

Kelleherx =: 3 : 0 NB. Kelleherx (n)
a =. 0,y#0
k =. 1
y =. y-1
all =. i.0 0
while. k do.
 k =. k-1
 x =. 1+k{a
 while. y>:2*x do.
 a =. x k}a
 y =. y-x
 k =. k+1
 end.
 l =. k+1
 while. x<:y do.
 a =. x k}a
 a =. y l}a
 all =. all,a{.~k+2
 x =. x+1
 y =. y-1
 end.
 a =. a k}~x+y
 y =. x+y-1
 all =. all,a{.~k+1
 end.
)

APapr =: 3 : 0 NB. APapr (n)
all =. Ns1s -i.y
for_second. 2 To <.-:y
 do. for_first. |. second To y-second
 do. all =. all,first,.second,.n APr second<.n=.y-first+second
 end.
 end.
)

 Ns1s =: ,. (</ }:)
To =: }. i.@>:

NB. uses APr (above)

VECTOR Vol.26 No.2&3

144

	Contents
	News
	General
	APL
	J

	Editorial
	BAA: Chairman’s Report 2014
	BAA AGM Minutes 2014
	Dyalog Ltd
	Version 14.0
	New Platforms, and the Remote IDE
	New Web Site and Social Media Channels
	Another successful Annual Programming Contest
	Come to the Dyalog User Meeting!

	Optima Systems Ltd – Industry News August 2014
	4xtra Alliance - News
	APL2000 User Conference 2014
	APL2000 Welcomed Attendees in Fort Lauderdale, Florida
	Conference Session Descriptions
	Catching Up on APL+Win (John Walker)
	Multi‐threading in APL+Win (Jairo Lopez, Joe Blaze, Pik Ng)
	Windows Event Log and APL+Win (Brian Chizever)
	Using APL to Manage Google Earth (John Magill)
	APL+Win ⎕CSE System Function Interface to the APLNext C# Script Engine ‐ Part 1 (Jairo Lopez, Frank Yang, Joe Blaze)
	APL+Win ⎕CSE System Function Interface to the APLNext C# Script Engine ‐ Part 2 (Jairo Lopez, Frank Yang, Joe Blaze)
	APL+Win as a Web Server (Jairo Lopez, Joe Blaze, Pik Ng)
	Thor ‐ An APL Expert System to Assess Corporate Health (Eric Baelen)
	Workspace Recovery (Brain Chizever)
	Using .Net with ⎕CSE Made Easy ‐ Part 1 (Eric Lescasse)
	Using .Net with ⎕CSE Made Easy ‐ Part 2 (Eric Lescasse)
	APL+Win Interfaces: R statistical package (Ajay Askoolum, Joe Blaze)
	APL+Win Development Roadmap (APL2000 Team)
	Accessing a Remote APL+Win COM Server from Excel (Joe Blaze, Pik Ng, Tesa Carlson)
	APL+Win Implementation and Comparison of Error Correcting Algorithm Performance (Olga Shukina)
	Tags: APL and .NET Access to Your Personal Metadata Cloud (Jeremy Main)
	APL2000 – A Full‐Service Software Development Company (Sonia Beekman)
	Driving MS Office (Eric Baelen)
	APL+Win Interfaces (Joe Blaze, Frank Yang, Melissa Farmer)
	Computing Automorphism Groups of Projective Planes (Jessie Adamski)
	Sunday Seminar (Jairo Lopez, Frank Yang, Tesa Carlson, Joe Blaze)
	Group Social Events at the Conference

	SwedAPL April 2014
	The meeting
	Not one iota
	RIDE vs Dyalog+
	Aplensia
	Ways of working
	News from Dyalog
	Cosmos and big data
	Group photo
	Others present
	Next meeting
	LinkedIn

	Minnowbrook conference review: September 14–18, 2013
	Steve Mansour
	Impending kOS
	by Stephen Taylor (sjt@5jt.com)
	References

	Searching for the state in which Wonderful Things are inevitable
	by Gianfranco Alongi (gianfranco.alongi@gmail.com)
	References

	APL
	One reason that APL is so cool
	Notation as a tool of proof
	Robert Pullman (rpullman@gmail.com)
	1. A Primer On Magic Squares
	2. Symmetries of magic squares
	3. Definitions & Lemmas
	4. Symmetric transforms
	4.1. T1 of a magic square A
	4.2 T2 of a magic square A
	4.3 T1 and T2 are disjoint
	4.4 Closure Under T1 and T2
	4.5 T3: Reflections
	4.6 T4: Transpose

	5. Footnote: Associative Magic Squares
	References

	A tool of thought
	Dan Baronet (danb@dyalog.com)
	The problem
	Attempt #1

	Attempt #2
	Attempt #3
	Conclusion

	References

	Table Diff
	Step 1: Tabulate all row matches
	Step 2: Generate and select candidate solutions to evaluate
	Step 3: Find best solution
	Step 4: Align matching rows
	Listing
	Scope for improvement
	Acknowledgements
	References

	A letter from Dijkstra on APL
	Roger K.W. Hui
	Example 1: Ackermann’s Function
	Example 2: Inverted Table Index-Of
	Summary of Notation
	References

	Legacy code, survival strategies and Fire
	Kai Jaeger (kai@aplteam.com)
	Case study I.
	Case study II.
	References

	Writing a simple Japanese dentist office system in APL2
	Kyosuke Saigusa, APL Consultants of Japan Ltd.
	Introduction
	System Outline
	Client information module
	Reservation information module
	CARTE information module
	RECEPT information module (currently being built)
	Why APL2 is suitable to write small systems

	J-ottings 57 Heavens above!
	Plotting star movements
	Transits
	Plotting star positions
	Spherical Trigonometry
	The case of the sun

	Squares, neighbours, probability, and J
	John C. McInturff
	Method 1
	Method 2
	Generalization and Simplification

	References

	All integer partitions: J programs compared
	Introduction
	Skiena’s Algorithm
	Knuth’s Algorithms
	Knuth
	Hindenburg

	Hui’s Algorithm
	part

	Boss’s Algorithm
	Boss
	AP0
	Hui
	AP1
	AP2

	Kelleher’s Algorithm
	Peelle’s Algorithms
	AP
	APr
	APm
	APh
	APn
	APapr

	Comparisons
	Number of Partitions
	P
	Pnk
	NP

	Other Programs
	Reingold

	Reiter
	Peelle
	APod
	AP9s
	APid
	APpnk
	APdb

	Other Representations
	Base
	Frequency
	Multiplicity
	Ferrers diagram

	Fractal Patterns
	Summary
	Acknowledgements
	References

	Appendix
	Program Definitions:

