VECTOR Vol.26 No.2&3

VECTOR Vol.26 No.2&3

Contents
Editorial John Jacob 3
News
BAA Chairman’s report 2014 Paul Grosvenor 5
BAA AGM Minutes 2014 John Jacob
Dyalog Morten Kromberg 9
Optima Systems Ltd Paul Grosvenor 12
4xTra Alliance Chris Hogan 13
APL2000 User Conference 2014 15
General
SwedAPL April 2014 Gilgamesh Athoraya 22
Minnowbrook conference review: Steve Mansour 26
September 14-18,2013
Impending kOS Stephen Taylor 31
Searching for the state in which Wonderful Gianfranco Alongi 35
Things are inevitable
APL
One reason that APL is so cool Brian Becker 41
Notation as a tool of proof Robert Pullman 45
A tool of thought Dan Baronet 50
Table Diff Dhrusham Patel 61
A letter from Dijkstra on APL Roger KW. Hui 69
Legacy code, survival strategies and Fire Kai Jaeger 76
Writing a simple Japanese dentist office Kyosuke Saigusa 92
system in APL2
J
J-ottings 57, Heavens above! Norman Thomson 99
Squares, neighbours, probability, and | John C. McInturff 106
All integer partitions:] programs compared Howard A. Peelle 110

VECTOR Vol.26 No.2&3

Editorial

Mankind only sets itself such problems as it can solve; since, looking at
the matter more closely, it will always be found that the task itself arises
only when the material conditions for its solution already exist or are at
least in the process of formation.

Karl Marx, A Contribution to the Critique of Political Economy(1859)

OK so I stole the above quote form the preface to David Lewis-Williams - The Mind
in the Cave(2002). In this book the author seeks a methodology for analysing
palaeolithic art.

In putting together this issue the quotation seemed to be appropriate where the
material conditions exist for Robert Pullman to employ “Notation as a tool for
proof”; Dan Baronet to use APL as “A tool for thought”; and Brian Becker to give us
“One reason APL is cool” in their respective articles.

Then for material conditions in the process of formation there is Stephen Taylor’s
article “Impending kOS” in which he recounts Arthur Whitney and his team's
progress towards kOS.

Later, at the August meeting of BAA London, Stephen Taylor remarked that his
current apprentice Dhrusham Patel, had in his debut article “Table Diff” found
himself modifying his examples to clarify his thoughts for the reader.

This year is the thirtieth since the first publication of Vector and I should like to
mark this in some way in the next issue. To this end I would welcome any
suggestions, anecdotes, photographs or whatever.

Earlier this year at the AGM in May there was a suggestion that Vector should
publish a section of useful links to resources and material of general interest to the
APL community. Here again [would like to invite suggestions.

John Jacob

VECTOR Vol.26 No.2&3

News

VECTOR Vol.26 No.2&3

BAA: Chairman’s Report 2014

Paul Grosvenor (paul@optima-systems.co.uk)

Once again our production team has been
working to produce this edition which for
the second time comes with some pages
in colour. We would very much like your
input and views as to whether or not this
adds or subtracts from our journal. There
is a small increase in costs as a result but
significantly less than if we printed the
whole thing in colour. I think it adds, but
what about you, please let us know?

This year our AGM was held on Friday BAA Chairman - Paul Gosvenor

23rd May, for the first we also ran it as a

webinar to allow even more of you to attend, especially those outside the UK.
Those of you who elected to come to our meeting in person attended the group
meeting held at the same time in the Albion in London as we have done in the past.

I hope that you will have received our new BAA Newsletter. We aim to send out a
regular bulletin to keep all of our members up to date with what is going on and
we can include any news or links that are appropriate from you. Please let us know
if there is anything that you would like including and we will do our best to
distribute. If you have not seen the Newsletter please check your spam filter in
case it has gone in there. We hope you enjoy!

[hope you are pleased with our journal and look forward to seeing some of you at
the forthcoming conferences and just to finish off, a comment from Roger;

“I started in 1966 on an APL machine that weighed 15,000 tons, when I
travelled from Hong Kong to San Francisco on the S.S. President Wilson of
the American President Lines.”

— Roger Hui

Thank goodness for the microchip

VECTOR Vol.26 No.2&3

BAA AGM Minutes 2014

John Jacob (editor@vector.org.uk)

Minutes of the British APL Association AGM 2014 held on-line by webinar and at
The Albion, 3 New Bridge Street, London EC4 on Friday 23 May 2014

1. The Minutes of the 2013 AGM (as published in Vector 26:1) were accepted by
general consensus of those present.

2. Report from the Chairman

With apologies from Paul Grosvenor, Peter Merrit (Acting Chair) presented the
Chairman’s report on his behalf.

We continue to see some colour added into Vector, | hope everyone finds that a
good thing to see. The first BAPLA newsletter went out in December 2013 and
are planning to send a further two throughout the year so if anyone has
anything to announce then we are willing to include that as a service free to
members.

BAA London continues to meet regularly and my thanks to their team for
allowing us to piggy back this AGM on their meeting.

We have started to broadcast our meetings as webinars where appropriate and
for those of you listening in today a special welcome. Its early days but the
production team are trying and make this as easy as possible for everyone. We
are hoping to publish some of the talks that are captured. Jake is in the process
of editing those at the moment.

This year sees the thirtieth aniversary of the first publication of Vector which is
quite an achievement. Later in the year we would like to publish a bumper
edition and we would like as many BAPLA members as can to contribute. These
contributions can take any form you like, one-liners; doodles; embarassing
photographs; or old articles. It really does not matter this is your chance to get
involved in making this quite an issue.

Asked what were the deadlines for submission to Vector. John Jacob(Jake)
confirmed that there wasn't a deadline as such rather that an issue of Vector
depended on accumulating sufficient copy to send for print.

VECTOR Vol.26 No.2&3

Asked if Vector were available in PDF form. John Jacob confirmed that PDF
version was made available to sustaining members at print time, with plans to
make it publicly available at a later stage.

3. Report from the Treasurer & Membership Secretary (Nicholas Small)

Very little change in our financial situation with total receipts just under
£3,000 and payments just under £3,000. Cost of posting Vector overseas being
the most significant part. Chris Hogan (Auditor) confirmed the accounts.

Number of Vectors subscribed for is down by thirty-five. Five of these
accounted for by Soliton ceasing subscription. The overall circulation of Vector
was around 325 with about ten copies to libraries.

Nicholas Small confirmed that dues for BAPLA membership fell due when at the
end of a volume of Vector.

Peter Merit confirmed that a large package had been included in the Dyalog
conference pack.

British APL Association - summary of annual accounts

Summary of income and expenditure/receipts and payments:

2013/14 2012/13 2011/12

Income/Receipts
(R&P) (R&P) (R&P)
Subscriptions 2,964.42 7,142.75 3,793.00
Other 0.00 217.00 0.00
Total receipts 2,964.42 7,359.75 3,793.00
Expenditure/Payments

Meetings 0.00 0.00 0.00
Administration 17.25 0.00 36.00
Vector production and despatch 2,639.01 2,265.85 3,882.00
Conferences and seminars 113.92 0.00 0.00
Other 157.13 104.40 69.00
Total payments 2,927.31 2,370.25 3,987.00

Assets summary:
Bank and other balances 12,246.10 12,195.61 7,049.00
Debtors 1,197.50 3,527.50 3,183.00
Creditors -6,425.00 -7,955.00 -3,165.00
Net assets 7,018.60 7,768.11 7,066.00

VECTOR Vol.26 No.2&3

BAPLA membership at May 2014 (after Vector 26:1)
(volume 25 figures in parentheses)

UK FOREIGN TOTAL
Number Vectors Number Vectors Number Vectors
Sustaining* 5(5) 23(23) 5(5) 42(42) 10(10) 65(65)
Corporate* 0(1) 0(5) 2(2) 15(15) 2(3) 15(20)
Corp. Ind* 5(5) 5(5) 2(2) 2(2) 7(7) 7(7)
Individual 48(56) 47(55) 129(147) 129(147) 177(203) 176(202)
Non-voting 14(16) 14(16) 0(0) 0(0) 14(16) 14(16)
Life 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Library 1(1) 1(1) 2(4) 2(4) 3(5) 3(5)
Russians 11(11) 11(11) 11(11) 11(11)
APL Groups 12(12) 34(34) 12(12) 34(34)
325(360)

*Add the Vector numbers in these rows to get the total subscribed for by
corporate and sustaining members

4. Committee for 2014/2015: It was suggested that as no applicants for posts
had been received that the existing committee be returned, proposed Paul
Grosvenor seconded by Ronny Simon.

5. Appointment of Auditor: The current auditor (Chris Hogan) was proposed by
John Jacob and seconded Ronny Simon. Accepted by those present.

6. General Questions

There was a discussion as to whether Vector should be encouraging vendors to
share more of their material as a way to encourage a much more a holistic
community for APL rather than the different vendors encouraging their own
communities. There was general agreement that a section in Vector with useful
links to sites or other material and some initial candidates were identified:

o LinkedIn group: APL- A Programming Language
https://www.linkedin.com/groups/APL-Programming-Language-1805002

o [kx] Technology Network
https://www.linkedin.com/groups?home=&gid=773547

o [versonians
https://www.linkedin.com/groups/Iversonians-44369?home=&gid=44369

o APLWIKi - http://aplwiki.com
o comp.lang.apl - http://groups.google.com/forum/#!forum/comp.lang.apl
o BAA London - http://groups.google.com/forum/#!forum/baa-london

https://www.linkedin.com/groups/APL-Programming-Language-1805002
https://www.linkedin.com/groups?home=&gid=773547
https://www.linkedin.com/groups/Iversonians-44369?home=&gid=44369
http://aplwiki.com/
https://groups.google.com/forum/#!forum/comp.lang.apl
https://groups.google.com/forum/#!forum/baa-london

VECTOR Vol.26 No.2&3

Dyalog Ltd

Morten Kromberg

2014 has been another year of increasing activity for everyone at Dyalog Ltd! One
of the encouraging trends that we have noticed is that array language user
meetings seem to be on the rise. In addition to the monthly BAA London meetings,
which we try to attend regularly, members of the team have participated in three
APL User Meetings in Europe this spring: SwedAPL in Stockholm and the FinnAPL
Forest Seminar in April, and APL Germany in Stuttgart in May (all of these groups
meeting twice a year). July was incredibly hectic - in addition to hosting our own
seminar for Dyalog users in New York, we dispatched delegations to Iverson
College in Cambridge, UK, and the] Conference in Toronto, Canada.

Many of our presentations at these meetings have focused on one of the most
exciting new language features of version 14.0, futures and isolates. These aim to
put the power of parallel hardware at the fingertips of both expert and novice
users by making it easy to make asynchronous function calls.

Version 14.0

Version 14.0 is the most significant new release since v11.0 added support for
object-oriented programming. It has been available on all supported platforms
(Microsoft Windows, IBM AIX, Intel and ARM Linux) since June 30th. Highlights of
version 14.0 include:

e Performance enhancements in the language engine; early adopters have
reported speed-ups of 10-30% without application code changes.

e File system speed-ups and functional enhancements, including the ability to
automatically compress file components and read several components in a
single operation.

e Several new primitive language features, including the operators rank and key,
the function tally, and function trains (similar to those in the] language). Many
of these enhancements have the potential to further enhance application
throughput (and simplify your code)!

e New APL language constructs designed to make it straightforward to use
distribute computation across multiple processors without relying on locks or
semaphores for synchronisation (futures and isolates).

VECTOR Vol.26 No.2&3

e An experimental compiler that can reduce interpreter overhead of small utility
functions.

e Syncfusion libraries for Windows Presentation Foundation and Javascript are
bundled with Dyalog version 14.0, making it significantly easier to build state-
of-the-art applications for desktop and web deployment.

e Data Binding with Microsoft .NET components allows APL applications to share
data in real time with WPF GUI components and other tools that support data
binding,

e An interface to the R framework for statistical computing.

New Platforms, and the Remote IDE

It is our intention to add support for several new platforms. If all goes according to
plan, then version 14.1 will add official support for MAC OSX in Q1 of 2015
(contact us if you would like to help us test the new platform in Q4). Android is
probably next, and we are also looking at i0S and “Windows Modern”. A key
component of the plan is to provide a new graphical development environment,
the Remote Integrated Development Environment (RIDE), that will provide
consistent functionality on all platforms. One of the main features of the RIDE is
that you can run the RIDE and your APL engine on different machines. For
example, you will be able to use a Windows-based RIDE to develop and maintain
applications running under AIX and Linux - or on remote or inaccessible Windows
Servers.

New Web Site and Social Media Channels

On the same day that v14.0 was released, we launched a completely reworked
website. If you want to read more about version 14.0 and download the 500+
pages of related documentation and tutorials, then please visit
http://www.dyalog.com. The site includes a blog, which will have frequent
contributions from members of our development team, many of them involving
Raspberry Pi-driven robots. We also launched active presences on Twitter,
Facebook and Linkedln, in addition to our own forums at
http://forums.dyalog.com. We hope that these new initiatives will make it much
easier to stay informed about our activities and both new and old functionality of
our products. Please follow Dyalog on one or more of these channels to receive
regular updates from us - none of the resources require you to have a licence for
any of our products.

10

VECTOR Vol.26 No.2&3

Another successful Annual Programming Contest

This year, http://studentcompetitions.com hosted and ran the contest for us, and
this definitely extended our reach. About 40 students submitted Phase I solutions,
and nearly 20 made it all the way through both phases of the contest. This year’s
winner of the $2,500 grand prize is Emil Bremer Orloff from the University of
Aarhus, Denmark, who also wins a trip to the Dyalog User Meeting in Eastbourne.
The winner of the new category for non-students, where the prize is free
conference attendance, is Iryna Pashenkovska from SimCorp Ukraine. We hope to
see them both next month!

Come to the Dyalog User Meeting!

For the first time in the last decade, the Dyalog User Meeting 2014 returns to the
UK; it will be held on the south coast of England in Eastbourne on 21st-25th
September . With a month to go we already have over 100 registered participants,
so we are on track to set a new all-time record! By the time this goes to press, hotel
rooms at the conference hotel will almost certainly be sold out; fortunately there
are many alternatives nearby.

Last year we recorded about 25 of the main conference sessions - for a total of
nearly 16 hours of viewing. If you were not fortunate enough to attend the meeting
at Deerfield Beach in Florida, make sure to visit http://video.dyalog.com and watch
the recordings from this and several earlier conferences. Highlights of the 2013
meeting include:

e The Stormwind Simulator - by Tomas Gustafsson, winner of the main category
in Apps4Finland competition (more at
https://www.facebook.com/Apps4Finland)

e Computer Science Outreach and Education with APL - by Aaron Hsu of the
University of Indiana

e Social Skills for Programmers - by our own John Scholes

We'll be recording as many sessions as we can in Eastbourne. However, if you want
to network with other array language users in addition to watching presentations
on both new and mature applications of Dyalog APL, or attend tutorials and
workshops on version 14.0 features and associated tools, Eastbourne will be the
place to be in the penultimate week of September!

1

VECTOR Vol.26 No.2&3

Optima Systems Ltd - Industry News
August 2014

Paul Grosvenor - Managing Director

First off let me welcome Mike Mingard to the team. Mike has just joined us as our
Graphics Designer and Ul expert. Since joining us he has already had a huge impact
on many of our developments. They are now looking good and behaving better!

Talking of behaving better our three trainees (aka “The Three Blind Mice”) are
coming on very well and now getting involved with many of our clients. We have
even had a few come back to say how impressed they were. Now I don’t know how
much they paid them but that does not happen very often !

We also welcome our new Apprentice, Callum, who joins us after completing his
“A” level qualifications. We hope that Callum will be a great addition to the team
overall. He has completed his APL course at Dyalog; next stop will be the user
conference in Eastbourne. Callum has a blog for anyone to see how he gets on.

On the subject of user conferences we sent a group of five staff members to the
Dyalog conference in Miami last year which was very enjoyable and uplifting. Our
three trainees showed off their robots which rather surprisingly made it across the
Atlantic without too much damage. Follow their progress on their blog.

Our COSMOS™ data visualisation product continues to move from strength to
strength with a number of contracts now starting. Most of the product activity has
been in America through our partner company Galileo Analytics but we hope to
start a sales pipeline in Europe and UK shortly.

Our Swedish subsidiary Data Analytics Sweden AB from which much of our R&D
work will be performed is now up and running. It is from here that the COSMOS™
product and other technologies will get built, tested and distributed.

We can now offer a large, multi-disciplined APL team plus all the back-up and
ancillary services to be expected of a larger software development company. With
the addition of Mike we now also have a fully-fledged graphic design facility to
complete our design package.

We expect the next twelve months to be even more exciting than the last !

12

VECTOR Vol.26 No.2&3

4xtra Alliance - News

by Chris Hogan (chris.hogan @4xtra.com)

For those of you who have started reading this issue of Vector by turning to the
back cover (I will resist the temptation to make some joke about "isn't that what all
APLers do?" - ah I've gone and done it), you might notice the apparent
disappearance of HMW Computing as a sustaining member and a "new" one
appearing in its place - the 4xtra Alliance. So time for a little explanation.

Firstly, HMW hasn't vanished, but the new arrangement reflects what has actually
been happening for several years.

HMW Computing started over 30 years ago, with the somewhat more long winded
name of "HMW Programming Consultants". We changed our name to HMW
Computing back in the late 80s to show we were (and really always had been)
doing more than "mere" programming and that by that time we were primarily
supplying 4xtra - a foreign exchange trading system 4X- Tra - rather than being a
team of freelance consultants.

Indeed 4xtra continued to be our primary focus for over seventeen years. During
that time HMW's personnel line-up changed significantly and the use of 4xtra
seemed to go into decline. I'm afraid that although we were pioneers in the field of
electronic trading systems, we simply weren't a large enough organization to
compete (we thought) when the bigger players moved into the field.

So we were a little surprised when a client came back to us because our APL
system could still out perform a new platform written in C++ using a Sybase
database. The problem was then to support this client at short notice. So we turned
to two former employees of HMW, John Jacob and Phil Last, who by then were
running their own companies. The solution was a joint venture between HMW,
John Butler Associates and Phil Last Limited to support the client.

This arrangement has adapted to changes so well it has survived the client being
taken over, Phil converting to a sole trader and Jake becoming an employee of
Optima systems.

Now of course Jake is the editor of Vector, Phil the events officer and I (Chris
Hogan) am, for my sins the auditor of the British APL Association, although I do try
to help out elsewhere too, if not on the committee.

13

VECTOR Vol.26 No.2&3

We have decided that it is finally about time the sustaining membership of the BAA
reflects the reality of the way we've been working for the past 14 years. So from
now on the membership will be in the name of the 4xtra Alliance, rather than
selfishly showing only HMW.

You might also have noticed that 4xtra has a different address than HMW - we
thought we had better update our details with another change which happened
almost three years ago. Hamilton House, our offices since 1987 was an excellent
location when most of our clients were in the City of London and we had anything
up to 14 people in the office at once, but proved less so when our clients have
become more scattered geographically and most of our work is now done
remotely. So in 2011 faced with increasing costs and changes to the terms and
conditions of our lease, we sadly vacated the offices which had been our base for
25 years.

Beyond these formalities nothing has changed. Jake, Phil and I still operate as three
separate entities, but we assist each other with our APL activities and band
together as 4xtra whenever we need more resources and it suits the needs of our
clients. So you should be able to see all three of us if you come along to the next
BAA London meeting.

14

VECTOR Vol.26 No.2&3

APL2000 User Conference 2014

APL2000 Welcomed Attendees in Fort Lauderdale, Florida

On March 23-25, 2014, APL enthusiasts gathered at the Gallery One Fort
Lauderdale- A Doubletree Suites by Hilton, for the APL2000 User Conference
2014. The hotel was beautifully situated along the scenic Intracostal Waterway, 8
miles from the Fort Lauderdale/Hollywood International Airport (FLL) and 3
blocks from the beach.

Conference attendees reflected the
diversity among users of APL2000
software. They are diverse both in the
broad span of industries in which they
work as well as the size of their
businesses. APL2000 customers are
industry leaders in the fields of finance,
insurance, healthcare, aerospace g
engineering, employee benefits, airline

and travel and many others both in the US and abroad.

The conference had a full agenda focusing on new developments in APL2000
products and various topics of interest to APL programmers including multi-
threading options to increase processing performance, using the C# Script Engine
to access the .NET framework directly from APL+Win and techniques to
incorporate APL+Win applications in cross-platform solutions.

A comprehensive, 3-day “Introduction to APL’ class, taught by Kevin Weaver, was
held simultaneously with the APL2000 User Conference.

At the APL2000 Conference two years ago Professor Spyros Magliveras, a noted
cryptology expert from the Center for Cryptology and Information Security at
Florida Atlantic University gave a very interesting presentation on his use of APL
in cryptology. For the past several years, under APL2000’s Education Program,
APL2000 has provided Florida Atlantic University with APL+Win licenses at no-
cost to Professor Magliveras’ students. APL2000 was pleased to welcome two of his
students, Olga Shukina and Jessie Adamski, who gave presentations about how
they used APL+Win to complete their Master’s theses.

15

VECTOR Vol.26 No.2&3

Conference Session Descriptions
Catching Up on APL+Win (John Walker)

This presentation highlighted the new enhancements in APL+Win version 12, 13
and 14 since the APL2000 User Conference 2012.

Performance improvement for repetitive catenation; Improved support for
Windows visual styles in APL+Win; APL+Win ActiveX engine Unicode execution
methods; Improved APL Session Logging; [ICSE - Interface to the APLNext C#
Script Engine; : FOREACH control structure.

Multi-threading in APL+Win (Jairo Lopez, Joe Blaze, Pik Ng)

An overview of multi-threading topics (including operation grouping and
independence, data marshalling, asynchronous execution and performance
monitoring) were presented.

e APLNext Application Server for multi-machine processing
e APLNext Supervisor for multi-cpu processing

e APLNext C# Script Engine for multi-core processing
Windows Event Log and APL+Win (Brian Chizever)

What is the Windows Event Log? Why would you want to use it? Techniques and
sample APL+Win code to use the Windows Event Log were provided.

Using APL to Manage Google Earth (John Magill)

Google Earth is a readily available tool with many useful features and potential.
However, the syntax is rather cumbersome and not particularly dynamic. APL+Win
provides an easy way to produce Google Earth maps and use them dynamically for
strategic decision making. John Magill demonstrated the PATMIR III program he
developed in APL+Win with funding from the World Bank and the Government of
Mexico.

APL+Win [ICSE System Function Interface to the APLNext C# Script Engine -
Part 1 (Jairo Lopez, Frank Yang, Joe Blaze)

The [ICSE system function empowers the APL+Win developer with direct access to
100% of the .Net Framework 4.5 without the need for Visual Studio. The CSE
implementation rationale, features, object model and documentation were
presented.

16

VECTOR Vol.26 No.2&3

APL+Win [ICSE System Function Interface to the APLNext C# Script Engine -
Part 2 (Jairo Lopez, Frank Yang, Joe Blaze)

Advanced CSE features (e.g. defining .Net classes, GUI tools in .Net, consuming .Net
events) were presented including detailed CSE examples for symmetric encryption,
variable precision arithmetic, Linq queries, XML serialization, Windows event log
and Windows Active Directory.

APL+Win as a Web Server (Jairo Lopez, Joe Blaze, Pik Ng)

APL+Win is a terrific tool to implement complex algorithms. Deploying an
algorithm to browser- or mobile-based users is easy when APL+Win is exposed as
a web service. Depending on the expected deployment scope, APL+Win functions
in workspaces on a server can be exposed as a web service using Windows
Communication Foundation (WCF) or APLNext Application Server technologies.
The APLNext Application Server is now available in the traditional APL+Win web-
server-based version and the new APL+Win module integrated with Microsoft IIS.

Thor - An APL Expert System to Assess Corporate Health (Eric Baelen)

Originally written in the 1980's for Touche Ross Audits to help assess non-
financial risk, Eric was recently asked to update it. Eric answered questions like
“What's it like to take an APL system written for the Intel 8086 processor and
move it to APL+Win, the Internet and a javascript GUI?”. While making this
presentation, Eric took attendees down memory lane as he shared with us his 40
year relationship with APL.

Workspace Recovery (Brain Chizever)

Once you release your application to a user, what do you do when they say "it
won't even start"! Learn how to use the Crash Recovery Mechanism to handle
these problems.

Using .Net with [ICSE Made Easy - Part 1 (Eric Lescasse)

How about if you could use the new [JCSE feature (almost) without having to learn
.Net, Visual Studio and C#?

The presentation showed you how to create Objects in APL+Win which support
multi-level inheritance, visual inheritance and multi-cast events, etc. It showed
how you can easily document these objects and use them with Owi. It showed how
you can programmatically convert .Net Framework C# objects with all their
properties, methods, events and documentation into such APL+Win Objects and
start using them with the good old Owi that we all know how to use! This new

17

VECTOR Vol.26 No.2&3

APL+Win Object technology is called APL+Win zObjects.
Using .Net with [ICSE Made Easy - Part 2 (Eric Lescasse)

After the theory, the practice: This presentation showed practical applications
using APL+Win zObjects. Various APL+Win examples were shown as well as
applications that would not be possible to write with just APL+Win. Among other
things, attendees saw a number of very impressive .Net controls embedded in
simple APL+Win forms and how easy it is to use them. The benefits and limitations
of this new APL+Win zObjects approach were discussed. Eric Lescasse provided a
copy of this workspace to conference attendees.

APL+Win Interfaces: R statistical package (Ajay Askoolum, Joe Blaze)

Using work originally developed by Ajay Askoolum, Joe Blaze has extended the
interface between APL+Win and the R statistical and graphics package to use the
R.Net SDK and the new APL+Win C# Script Engine. Adding R functionality to
APL+Win, such as R-based calculations and charts, were illustrated and a sample
workspace was provided.

APL+Win Development Roadmap (APL2000 Team)

This session included a discussion of APL2000 priorities and development
possibilities. An overview of current trends in the IT world was presented. The
session provided an open forum for an audience Q&A session with APL2000
developers.

Accessing a Remote APL+Win COM Server from Excel (Joe Blaze, Pik Ng, Tesa
Carlson)

Using ‘service moniker’ support in Excel 2003+, an Excel workbook can transmit
requests to and receive responses from a remote APL+Win COM server via a
simple WCF web service which exposes a ‘metadata exchange’ endpoint.

APL+Win Implementation and Comparison of Error Correcting Algorithm
Performance (Olga Shukina)

This APL+Win-based project performed data transmission across noisy channels
with recovery of the message first by using the Golay code, and then by using the
first-order Reed-Muller code. The main objective of this thesis is to determine
which code among the above two is more efficient for text message transmission by
applying the two codes to exactly the same data with the same channel error bit
probabilities. Comparison of the error-correcting capability and the practical
speed of the Golay code and the first-order Reed-Muller code was documented.

18

VECTOR Vol.26 No.2&3

Tags: APL and .NET Access to Your Personal Metadata Cloud (Jeremy Main)

Use the APL+Win [CSE system function and other utilities to access ALL the
metadata in ALL your files including documents, pictures, music and video. Using
Microsoft Powershell via the APL C# Script Engine and other .NET assemblies were
discussed as they pertain to metadata.

APL2000 - A Full-Service Software Development Company (Sonia Beekman)

Although you are most familiar with APL+Win, APL2000’s flagship product,
APL2000 is a full-service software company providing comprehensive consulting
and training. An overview of APL2000 Products and Services was presented.

Driving MS Office (Eric Baelen)

APL+Win does a great job driving Microsoft Office (Word, Powerpoint and Excel).
This presentation was an overview of several MS Office toolkit workspaces
distributed to APL2000 customers.

APL+Win Interfaces (Joe Blaze, Frank Yang, Melissa Farmer)

APL+Win[NFE System Function: Accessing Encoded Text Files A character
encoding is a ‘1 to 1’ mapping of abstract glyphs (characters) to values that
represent those glyphs. The values resulting from the encoding of glyphs can be
persisted and transmitted without ambiguity. The new [INFE system function
supports reading and writing of native files encoded as ASCII, UTF-8, UTF-16 and
UTF-32. APL+Win server used by RDBMS Stored Procedures Relational databases
can support pre-compiled methods called stored procedures. The technology for
calling APL+Win functions from such a stored procedure using the Microsoft SQL
server was presented and a sample project and workspace was provided to
attendees. This technology can be used to embed APL+Win functions in database
structures such as an XMLA server, column-oriented configurations or distributed
big data deployments (e.g. Hadoop). APL+Win [JEDITEX System Function: Editor for
Heterogeneous Data A prototype of a new APL+Win editor for heterogeneous and
nested data was illustrated which uses the latest WPF GUI technology and directly
interfaces with APL+Win to perform all array operations. Attendees received a
working copy of the new editor.

Computing Automorphism Groups of Projective Planes (Jessie Adamski)

APL+Win was utilized to generate the full automorphism group of finite
Desarguesian projective planes. This was done using homologies and the
Frobenius automorphism, which was found by using the planar ternary ring
derived from a coordinatization of the plane.

19

VECTOR Vol.26 No.2&3

Sunday Seminar (Jairo Lopez, Frank Yang, Tesa Carlson, Joe Blaze)

The Sunday Seminar portion of the conference has traditionally explored a few
topics in greater detail. Frank and Jairo discussed the power and simplicity of the
new APL+Win C# Script Engine providing several sample workspaces. Tesa and Joe
presented a prototype application system which uses HTML5 and javascript for
the GUI, Microsoft ASPNet for the middleware and APL+Win as a web service to
support the server-side algorithms and data persistence.

Group Social Events at the Conference

In addition to all the interesting sessions,
the APL2000 User Conference provided
an opportunity to enjoy the camaraderie
of other APLers. Attendees were treated
to a special evening at the Ft. Lauderdale
Antique Car Museum. The museum owns
39 Packard motor cars from the 1900's to
the 1940's. A delicious dinner was served
in the middle of the 18,000 square foot
building surrounded by the beautiful
cars and the thousands of pieces of

automotive memorabilia.

This unique venue was the perfect place for a scavenger hunt. Everyone had fun
searching for the answers.

Doug Masto, APL2000’s Business
Manager and car buff gave an interesting
PowerPoint presentation with historical
photos showing the early attempts to
traverse the United States by Packard
automobiles.

This quote from a conference attendee
summed it up best:

The Scavenger Hunt Winning Team

“I thoroughly enjoyed the

conference. Everything about it was excellent. Kevin was a wonderful
instructor, the sessions I attended were very informative, the materials
and flash drive are great resources, the venue and location provided an
exciting but relaxing atmosphere, and everyone in the APL community
was very pleasant and a joy to be around.”

20

VECTOR Vol.26 No.2&3

General

21

VECTOR Vol.26 No.2&3

SwedAPL April 2014

Gilgamesh Athoraya (gil@optima-systems.co.uk)

The Swedish APLers are perhaps not very numerous, but after probing and
prodding a little bit, we managed to find each other. A first meeting was planned
and executed on the first week of April and was attended by representatives from
seven companies. This is our story.

The meeting

The meeting was held in CGM’s office in Stockholm and by 10am the meeting room
was full of anticipation and every seat was occupied. All eyes turned on me as I
was stalling while waiting for the last couple of attendees to find their way in. A
few minutes later we got started and after welcomes and greetings, Joakim
Harsman (CGM) launched his presentation.

Not one iota

Joakim started off by talking about how a seemingly simple and innocent fix to a
bugin the APL interpreter can have unexpected, widespread knock-on effects in
applications. The case in point is a fix to the result of 18 in Dyalog APL. Where
previously the following statement was true 1=18 it was corrected and is now
(c8)=18.

This can and has caused issues in many applications that rely on the incorrect
behaviour and Joakim told us of a tool they have developed to help in identifying
candidates in the code that could suffer from this.

RIDE vs Dyalog+

Joakim continued to show us an alternative to the standard Dyalog IDE. He has
developed an Emacs mode that he calls Dyalog+. By using sockets to communicate
between Emacs and Dyalog, he demonstrated how to use either IDE to edit and fix
functions. This is particularly interesting for those who are familiar with Emacs
and/or often program in many different languages as Emacs can be used as a single
IDE for all/most development work.

Dyalog+ doesn’t currently offer the same features as the official RIDE (Remote IDE)
from Dyalog, but Morten Kromberg (Dyalog) said the protocol for RIDE may be
available once it is released and would enable users to create their own IDE to

22

VECTOR Vol.26 No.2&3

hook into sessions remotely.
Aplensia

After a brief break, Lars Wentzel took over and presented Aplensia. The consulting
firm is formed of seven APLers, most of whom have been working with APL since
the early 90s. They are now managing four major systems, one for Swedbank and
three for Volvo, all of which have been migrated from APL2 mainframe to Dyalog
APL on Windows servers.

Aplensia was the launch customer of the Dyalog File Server (DFS) which they have
used successfully to replace a DB2 file server. They were also the ones to request
Integrated Windows Authentication (IWA) via Conga (Dyalog's communication
tool), which is now available to all (introduced in Conga v2.3).

Peter Simonsson talked about migrating from APL2 to Dyalog APL. He mentioned
dialectal variations that required some attention, such as different interpretation
of indexing:

A B[X] ? (A B)[X] or A (B[X])

A tool was developed to semi-automate the translation of code (about 890k LOC)
to the Dyalog APL dialect.

They used WPF to emulate the original screens (about 400 screens) to make the
transition as unobtrusive as possible for the users.

Ways of working

After lunch break Gianfranco Alongi (Ericsson) gave a talk about how he
confronted managers’ traditional views on efficiency of developers. His story of
how they grudgingly gave in to pair-programming only to face the concept of mob-
programming was both inspiring and hilarious at the same time. You can read
more about this in his article in this same issue of Vector.

News from Dyalog

Next up was Morten Kromberg with a summary of new features and tools. He
talked about the upcoming RIDE which will make it much easier to debug remote
sessions as well as dynamically start/stop and monitor remote sessions. They have
added support for .NET data-binding which will make it easier to share data
between APL and .NET components. He mentioned the Syncfusion GUI package
which is going to be bundled with Dyalog APL v14.0, offering WPF and]S
components. There are improvements and speed-ups to Dyalog Component Files
(DCF) as well as a release of DFS v2.0.

23

VECTOR Vol.26 No.2&3

He concluded his presentation with a demonstration of Futures and Isolates, the
new features that will make it easier to harness the power of your hardware by
parallelising the execution of operations in separate, external processes.

Cosmos and big data

Finally, Paul Grosvenor (Optima Systems) talked about Cosmos: a graphical,
analytical tool that doesn't give you the answers, but helps you find the questions.
The system is using MiServer in the back end and a flash UI on the client side. It is
a system designed to be easy to use and without requiring deep technical
knowledge, but powerful enough to let the user explore data in an intuitive way. [
demonstrated the system briefly and talked about the difficulties of taming data
quantities that grow bigger faster than you can say analytics.

~Gaomat

Group photo

Back row: Stefan Lindén, Peter Simonsson, Ylva Ljungdell, Lars Wentzel, Mikael Blomgren,
Joakim Hdrsman, Ronnie Sommer
Middle row: Tina Leijding, Alvin Mattson, Gitte Christensen, Gianfranco Alongi, Paul Grosvenor
Front row: Sargon Athoraya, Gilgamesh Athoraya, Morten Kromberg, Gunnar Jértsé

Others present

In addition to the presentations we also had representatives from Sandvik. Tina
Leijding presented the company briefly. Their system was built back in 1984, runs
on APL2 and is hosted by IBM. They have a small team of APLers (five plus one
consultant) and are looking to expand over the year.

A big group of APLers from CGM took the opportunity to pop in and out during the
day, most of whom were wearing Rosetta stone t-shirts with javascript on one side

24

VECTOR Vol.26 No.2&3

and APL on the other.

My brother, Sargon Athoraya, attended the meeting to learn more about what I do
for a living and claims to have been able to follow most of the presentations
without nodding off.

Next meeting

The meeting was greatly appreciated and after a conversation about content and
frequency of meetings it was agreed that we will aim at half-yearly meetings with
the next one planned for beginning of October (preliminary date is 9 Oct 2014). It
will be hosted by Aplensia in Gothenburg and open to the general public. More
information will follow closer to the date.

LinkedIn

SwedAPL is a group on LinkedIn. Feel free to join the group to stay in touch with
Swedish APLers.

25

VECTOR Vol.26 No.2&3

Minnowbrook conference review:
September 14-18, 2013

Steve Mansour

I was honored to be invited to the 2013 APL Implementers Conference at
Minnowbrook this year. I had been busy teaching statistics at the University of
Scranton in addition to working on my doctorate in industrial engineering at
Lehigh University and was unable to attend APL conferences for several years. I
was privileged to have this opportunity to share my presentation, “Taming
Statistics with Defined Operators” with such an esteemed group.

Minnowbrook Moonset

It was good to see everyone again. It was surprising how many APLers in the group
began in 1969, including Roy Sykes, Ron Murray and Bob Smith. Jim Brown was
not included in this group because he started using APL in 1967! There was a little
sad news: we were told that Phil Benkard had died on July 24, 2010. [shared an
office with Phil briefly during my tenure at IBM and I learned a lot from him.

The meals at the Minnowbrook Lodge were phenomenal and the bar was well-
stocked for the ‘evening seminars’, which lasted well into the night. Although it
rained on one day, the weather was perfect on the last two days of the conference.
We were graced by the presence of Tess and Grace, two black-and-white Border
Collies belonging to Roy Sykes. We had a free afternoon on Tuesday, September
17th. Many of the attendees took a two-hour boat ride on the lake while several of

26

VECTOR Vol.26 No.2&3

us hiked up to Castle Rock.

We owe Garth Foster a debt of gratitude for his connection with Syracuse
University and the Minnowbrook Conference Center. He said the FORTRAN people
could get rid of APL by blowing up Minnowbrook since there was almost as much
programming expertise there as when Ken Iverson was in a room by himself. Why
do we have meetings in such a remote place? Garth said the remoteness allows us
to brainstorm and reflect without distraction. Special thanks to Roy Sykes for
organizing the conference.

Jim Brown spoke about the early years of APL2 as trying to improve perfection. He
used the analogy of extending a circle to a sphere. He spoke of the debates with
Iverson about nested arrays and how two versions of APL emerged with boxed
and enclosed arrays. It appears that APL took a ‘fork’ in the road although many
feared a ‘train’ wreck. Dijkstra referred to APL as “a mistake carried through to
perfection.”

David Liebtag demonstrated new enhancements to his nested array editor, which
is now a part of Dyalog APL. Bob Smith spoke about “Progress on NARS2000”
where he discussed factoring and number-theoretic primitive functions, the where
and array lookup primitive functions and the variant primitive operator. Later he
gave a separate talk entitled, “2-by-2 Syntax Analyzer.”

Bob Bernecky discussed performance problems with various sizes of arrays.
Treating scalars, small arrays and large arrays differently versus a one-size-fits-all
approach leads to significant performance improvements. The current
optimization status shows that scalars can be improved by as much as 1300x,
small arrays by 20x and large arrays by 10x.

Jacob Brickman gave us a lesson in constructing the real numbers starting from set
theory, and he discussed extending the number system beyond the complex field,
to quaternions and octonions. There was a heated discussion of using the notation
0J1 to representinstead of 0I1 and extending this notation to quaternions and
octonions. I guess some APLers don’t like this form of ‘]’ notation. IBM saw valid
reasons for using either ‘I’ or ‘]’ to denote irrational numbers; the reason that IBM
chose ‘' was that there was less ambiguity than ‘I’ when it was written on a board
in a classroom.

Bob Smith and I moderated an open discussion of expanding the domain of iota.
The index generator function could be expanded to ‘sequence’ with an optional
step. Although John Scholes was not there, some mention was made of his a..b
notation to accomplish this. Dyadic iota could be extended to allow a matrix left
argument; the result would be the index pairs which correspond to each element
of the right argument. Another possibility would be to indicate the row which

27

VECTOR Vol.26 No.2&3

corresponds to the vector on the right. The variant operator would allow a
comparison method, e.g, trailing blanks or handling special cases.

Morten Kromberg from Dyalog discussed the Version 14 language features. New
operators include rank and key as well as trains, forks and atop. In Dyalog APL,
function trains of length two are equivalent to the atop operator: a(fg)w is
equivalent to fogw. One significant benefit of this is that an expression like ?1E6p6
can be written 1e6(?p)6, making it easy for the implementer to special-case the
operation and avoid creating the million-element intermediate result. An extended
version of dyadic iota is in the works as well as a new function, tally (monadic #),
which counts the number of items or rows in a matrix and produces a scalar result.
While he was explaining the tally function, he stopped and looked at the screen for
a moment, and commented that he didn’t know who would actually write a tally
like that, with three lines instead of four. Someone (Bob Smith, I think)
immediately replied that “that’s the way that cartoon characters write a tally” Well
done.

The new constructs isolates and futures, which let programs run on different
processors, were also discussed. Morten also demonstrated the new parallel
operator by executing code containing [JdL 3 three times in four seconds by assign
each to a different isolate.

Ray Polivka and Mike Van Der Meulen
held an open discussion about APL on
alternative platforms, Raspberry Pij,
Robots, natural language interfaces and
mobile platforms. The Raspberry Pi is an
inexpensive processor that can be
programmed in APL as well as Python.
Morten Kromberg demonstrated _ :
Raspberry Pi by giving commands to a Dog & Pi

robot using APL. This got the attention of

the dogs, Tess and Grace, who were both amused and a little scared. Later we saw a
demonstration on the web of helicopters flying in formation with no central
authority; their motions were affected by the position and motion of the
neighboring helicopters. (Kind of like the free market!)

Ray Polivka and Bob Bernecky discussed education and getting more people into
array-oriented languages. This was followed by the usual lament that the average
age of APLers was going up by one year every year. Ray Polivka has been teaching
high school and college students for three years using a classroom in a rent-free
model house. He found that the language bar was a tremendous help and that
because students are generally open-minded, they had no problem with the

28

VECTOR Vol.26 No.2&3

symbols or scanning rules. Students are less concerned with how APL is used than
who uses it.

This was followed by a discussion of how APL was used in industry. This included
finding deadbeats in the utility industry, product reliability, mortgage finance,
insurance, actuarial, medical imaging data management, petrochemical analysis,
travel reservation systems, process control and ticket sales. Even Bill Gates’
investment management was done in APL.

Shannon Bailey of Native Cloud Systems brought back memories of the early 80’s
with visuals of the old IBM 3279 terminal and the original IBM PC when she
presented “APL— A Love Story” She was introduced to APL at Marist College
where everyone had to use APL for Computer Science 101. In that class she was
able to rewrite a multi-player game from scratch in STSC APL*PLUS PC in eight
weeks. Her current work includes a cloud-based system that supports an APL-like
programming language and transaction-based Native Cloud Objects for distributed
arrays.

Mike Van Der Meulen wowed us with a demo of his experimental APL application
using voice recognition software. He asked the computer about the weather, had
the computer translate “When is the next train” into Chinese, had the computer
play “Hey Jude” and asked it to show a picture of Ken Iverson. There was one
glitch. When he asked it the question “Who invented FORTRAN?”, the computer
showed a picture of the Roman god Bacchus!

Ron Murray revealed that although dead men tell no tales, dead processes talk! In
distributed systems the failure of a computer you didn’t know existed may cause
your system to fail. To get to the heart of the matter one must be able to change the
system without stopping it.

Adrian Smith from across the pond showed how to embed a matrix into a database
by inserting vectors as items into columns. His son Richard showed how just-in-
time compiling in the parse table step improved performance in “Adventures in JIT
computing APL.”

Paul Grosvenor demonstrated COSMOS, a data visualization tool largely written in
APL. COSMOS is a top-down, drill-down system used to analyse medical data. The
system talks to statistical language R and has often been referred to as a ‘thesis
generator’.

Bob Armstrong got CoSy with FORTH and showed us how to go FORTH and
multiply. He also challenged the global warming community with a hot topic: “How
to Calculate the Temperature of the Earth for a Libertarian Society.”

29

VECTOR Vol.26 No.2&3

On the last night of the conference, the highlight was jazz guitarist Stanley Jordan,
who presented us with “Music and APL” He used APL and the circle of fifths to
measure distance between various musical scales. He demonstrated sonification by
showing us how to generate music from stock charts and listen to patterns. Finally,
he did a MIDI edit using APL to generate music and rhythm on several tracks.
Afterwards he entertained us on the guitar with several original compositions. His
final comment was: “You don’t speed-read poetry. APL is like poetry; everything
has meaning. You may have to read it several times to understand it.”

2013 APL Implementers Worksﬁop

Minnowbrook 2013

30

VECTOR Vol.26 No.2&3

Impending kOS

by Stephen Taylor (sjt@5jt.com)

[t began badly. We were walking along the South Downs Way in early summer, the
sun glittering on the English Channel on our right, the Weald of Sussex stretching
away to our left. “How big,” asked Arthur, “should a text editor be?”

I've known Whitney most of my life. [know what he does. I know his stupid
questions. And still I can't resist trying to give helpful answers. “I don’t know. One
could find out, surely? What do Emacs and Vim weigh - tens of megabytes?”

“I've got a text editor in four lines of K. Just need to add Copy and Paste.”

Ah, we're back to that. Of course. K is the language part of kdb+, Arthur’s
frighteningly fast column-store database, used by trading rooms to handle huge
real-time data flows from financial exchanges. It started off at Morgan Stanley in
the 1980s as an APL stripped for speed and became A+[1], and for two decades the
bank’s development environment for trading applications. For the last twenty
years it has evolved as kdb+, trading as Kx Systems, Inc.[2] It's a two-orders-of-
magnitude sort of thing: two orders of magnitude faster than industry-standard
database, two orders of magnitude smaller code volume. Four lines of K equate to
about four hundred lines of C.

The kdb+ interpreter is tiny: about 100Kb. (And yes, kdb+ programs are
interpreted, not compiled.) As the code base improved, kdb+ releases became
faster - and smaller. Kdb+ has sharp elbows. Impatient with the speed of
Windows, kdb+ wins a x3 performance improvement by managing memory itself.

Whitney is no respecter of rules. One of the scariest things I ever did as a young
man was following him through central Toronto on a bicycle.

An apocryphal story. At the first of the three universities he claims to have been
thrown out of, Whitney’s class was given an assignment: write a program that will
print the most successive prime numbers possible with limited CPU time and
limited green-striped paper. (Yes, that long ago.) His solution won by a handsome
margin and was disqualified on two counts. In the first place he had ignored
everything the class had been taught about modularisation and code re-use. He
just wrote code optimised to solve one problem spectacularly fast. He had also
noticed the problem did not specify printing spaces between the primes. The
printouts were a sea of ink. And his code looked like woodgrain.

31

VECTOR Vol.26 No.2&3

As arule, it was the fittest who perished; the misfits,
Forced by failure to emigrate into unsettled niches,
Who altered their structure and prospered.

— WH Auden

Kdb+ is a testament to the rewards available from finding the right abstractions. K
programs routinely outperform hand-coded C. This is of course, impossible, as The
Hitchhiker’s Guide to the Galaxy likes to say. K programs are interpreted into C. For
every K program there is a C program with exactly the same performance. So how
do K programs beat hand-coded C? As Whitney explained at the Royal Society in
2004, “It is a lot easier to find your errors in four lines of code than in four
hundred.”

What would computing be like if it were all done this way? The decades-long
sleigh-ride of Moore’s Law[3] has ended. What if we could get another two orders
of magnitude of performance out of the hardware?

This question has been asked before, notably by Alan Kay at the Viewpoints
Research Institute.[4]

Whitney means to find out. The first phase of the project is to escape the bloated
embrace of the operating systems and run kdb+ on the bare metal.

“If you keep on chipping at that rust, eventually you’ll reach flat, bright
metal.” - Herman Wouk, The Caine Mutiny

Whitney started replacing calls to Linux, working, alone as always, in his garage
office. Characteristically, it's a simple workplace: a pool table, a desk, a chair and a
PC with a single monitor. When I saw it in 2007 it was running Windows XP and
had five windows open: two MS-DOS and three Notepad. Brutally simple IDE.
Doubtless things have improved since.

Oleg and Pierre had heard of Whitney and kdb+. They study computer science in
St Petersburg. (Russia, not Florida.) With a great deal of trepidation and some
support from a teacher they wrote asking Whitney what he was doing. He replied
with some C code he was working on.

Everyone knows how C programs look: tall and skinny. Whitney’s don’t. I first
encountered them in the 1980s. I was working for I.P. Sharp Associates in Sydney.
My boss wanted to port the SHARP APL interpreter onto the fast new Hewlett-
Packard HP1000 minicomputer. I recommended Whitney, then the youngest
member of the IPSA systems-programming team, for the job. (Probably the best
thing I've done in my professional life.)

32

VECTOR Vol.26 No.2&3

There was, of course, a catch. The interpreter was a 500Kb program developed
over 15 years and supported by an 11-man team. The original language had been
considerably extended - most recently with ‘general’ or ‘nested’ arrays - and all
the extensions had to be ported too. Although the target machine was attractively
fast, most of the speed disappeared for programs larger than 80Kb. The interpreter
had not just to be ported, but also made six times smaller. Game over?

Whitney’s strategy was to implement a core of the language - including the bits
everyone thought most difficult, the operators and nested arrays - and use that to
implement the rest of the language. The core was to be written in self-expanding C.
As far as | know, the kdb+ interpreter is built the same way.

Unlike the tall skinny C programs in the textbooks, the code for this interpreter
spills sideways across the page. It certainly doesn’t look like C.

In Sydney we assigned Whitney two coding assistants. Not that he needed or
wanted help, but when he eventually left we’d need some idea how it all worked.
His assistants had a very hard time. They would struggle through the week, get
their assignments half finished, then on Monday discover Whitney had dropped in
over the weekend, rewritten most of the interpreter, and included their
assignments. (The interpreter got finished. A decade later I saw one of the HP
machines still running on Westpac’'s trading floor. Not long after that, Whitney
started work at Morgan Stanley on what became A+.)

Whitney sent Oleg and Pierre some of the C code he was working on, and notes on
a problem he didn’t know how to solve. They emailed back a solution, coded in his
style. A partnership was born: a garage in California, a school in Russia.

Whitney demonstrated his “research K interpreter” at the Iverson College
meeting[5] in Cambridge in 2011. We had visitors from Microsoft Research. The
performance was impressive as always. The tiny language, mostly familiar-looking
to the APL,] and q programmers participating, must have impressed the visitors.
Perhaps conscious that with the occasional wrong result from an expression, the
interpreter could be mistaken for a post-doctoral project, Whitney commented
brightly, “Well, we sold ten million dollars of K3 and a hundred million of K4, so |
guess we'll sell a billion dollars worth of this.”

Someone asked about the code base. “Currently it's 247 lines of C” Some
expressions of incredulity. Whitney displayed the source, divided between five
text files so each would fit entirely on his monitor. “Hate scrolling,” he mumbled.

At Iverson College in 2013 he demonstrated the new graphics layer, z - 9Kb of
code to replace the X Windows system. For the first time we saw the kOS desktop,
solid black with a Tolkienesque legend top left: one system/all devices. Arrayed on

33

VECTOR Vol.26 No.2&3

the right edge, the icons of five kOS apps. He launched the text editor app and then
wrote a new one, working out the key callbacks in front of us and explaining them
as he worked. As he defined each callback the new app acquired it: no compile,
load, install cycle. In eight lines of K he had replicated the core function of Notepad.
At this point, with the new z layer in place, kOS weighed 62Kb.

Last autumn the kOS team recruited a fourth member, Geo, and in November
announced it had removed the last connection to Linux. kKOS was running on bare
metal. Whitney announced the project would now go dark and return, perhaps in
the summer of 2014, with a platform on which apps can be built.

kOS is coming.[6] Nothing will be the same afterwards.
References

. http://www.aplusdev.org

. http://www.kx.com
http://www.en.wikipedia.org/wiki/Moore's_law
http://www.vpri.org/pdf/tr2007008_steps.pdf
http://www.sites.google.com/site/iversoncollege

http://www.kparc.com

o vA W e

34

http://www.aplusdev.org
http://www.kx.com
http://www.en.wikipedia.org/wiki/Moore's_law
http://www.vpri.org/pdf/tr2007008_steps.pdf
http://www.sites.google.com/site/iversoncollege
http://www.kparc.com

VECTOR Vol.26 No.2&3

Searching for the state in which
Wonderful Things are inevitable

by Gianfranco Alongi (gianfranco.alongi@gmail.com)

“Fear leads to anger, anger leads to hate, hate leads to suffering.”
- Master Yoda

I love this quote, fear is the mind killer; our minds are like parachutes, they don’t
work unless they are open. If we feel threatened, we get defensive, we stop
listening, we stop thinking clearly, and will make emotionally tainted decisions
which sub optimize the value for the company/customer. In short - we will take
decisions which protect our ego, instead of solving the problem we get paid to
work on.

As programmers working with APL ‘The Tool Of Thought’ - it should be top
priority to keep our thoughts unclouded by fear, so we can focus on writing
suspiciously powerful and yet alarmingly beautiful APL code.

My team at Ericsson has been through a lot (God bless them) since I joined in the
late summer of 2011. By now, I guess there is nothing they can fear any more.
More or less forcefully subjected to all kinds of things like TDD, Pair Programming,
Crush Sessions, Hero Avoidance, endless Code Dojos and now the latest addition
which is Mob Programming - the learning is endless.

[am on the never ending quest of continuously improving everyone around me, so
that they will get better than me. Why? Because the best way to get better is by
working with those who are better. You can observe, ask, and mimic. Instead of
trying to figure everything out yourself, you can leverage the fact that someone can
give you distilled knowledge mixed with wisdom, this is accelerated learning,

If we all continuously strive to improve those who we work with, someone is
always trying to improve you in return as you are trying to improve them. It is but
a matter of time before this little select group is the best of the best.

What I describe is undeniably sensible, although it does require a lot of courage
and trust. What [will describe now, is the different practices I have used with my
team and other teams in order to nudge the team dynamics in the right direction.

Pair Programming (PP) was the first thing I introduced; two developers working

35

VECTOR Vol.26 No.2&3

on the same problem, on the same machine. There is much written about PP
already, but let me mention the interesting discussions and what I observed. A
common misconception that needs to be buried when it comes to PP, is that
supposedly productivity would be halved.

This is only true if the productivity bottle neck is the typing speed.

If two developers have a 1:1 relation between their productivity and typing speed,
then yes: removing a keyboard would put your productivity at 50%. However, this
is definitely not the case.

Studies by Microsoft and IBM have shown multiple times that the so called
Read/Write Ratio (R/W Ratio) is our main concern when it comes to working in
large software systems. In short, the R/W Ratio in large software systems is ~10-
15. This means that on average, a developer needs to spend 10-15 times more time
reading than writing code.

Clearly, the main problem is the time needed in understanding.

Two minds will reduce the comprehension time dramatically, there is so much
synergy when working in a pair. Just to mention a few things that happen

i. We stop following the wrong chain of thought very early.
ii. We do not get stuck. There is always an alternative idea to try.
iii. We teach each other tips/tricks related to how we work.
iv. We have fun.
v. We share system knowledge and knowledge about the ongoing work.

vi. We expose ourselves.

The sixth point (vi) We expose ourselves) is the most valuable and also the
toughest one. Exposing ourselves to our colleagues can be scary. A lot of negative
thoughts based on fear can pop up. The ego can get hurt, suddenly all our
weaknesses which we have learnt to live with become a very apparent and very
real issue. Typing speed, system specific knowledge, tool proficiency, coding skills,
thinking speed, work habits, every aspect of work will be exposed to your PP
partner.

If we do not expose ourselves to others, how can they help us improve?

In order to do this, we must be capable of facing our own fears, we must vanquish
them, for they prevent us from growing.

Master Yoda - “That place... is strong with the dark side of the Force. A
domain of evil it is. In you must go.”

36

VECTOR Vol.26 No.2&3

Luke - “What's in there?”
Master Yoda - “Only what you take with you.”

Much like Master Yoda told Luke to face his innermost demons, we must do so.
Whenever we feel unease, a fear of exposing something related to our way of
working or technical expertise - we must take this demon, and put it into our ‘Book
Of Demons’. By systematically putting all your technical weaknesses into this list,
you not only admit that you have a problem, but you also build a very practical
checklist of things to improve.

So, when do we have time to improve? There is no time like the present!

One thing I have found profoundly successful is to practice weaknesses in a Code
Dojo setting. Our team has 2 hours weekly, dedicated to deliberate practice. That
is; my whole team gets paid two hours per week to practice, so they can perform
better. Combine the Demon books from every team member into one huge list,
next, take the first item - and whoever is the most proficient in that item prepares a
lecture with some exercises for the team to improve on the next Code Dojo.

This works well when the team is motivated or guided by a team member taking
point, but what if the team does not have this motivation?

As part of coaching another team in another part of Ericsson, [wanted to nudge the
team into doing Pair Programming. At first the team was reluctant, but once I had
tapped into the primitive parts of our psyches - they were doing PP.

We are animals, and we have all been living in tribes and clans for quite some time;
physical tokens, recognition and rituals mean a lot to us. If we wish to change a
behaviour then we can leverage these facts and utilize them. I gave the team I was
coaching a challenge:

‘For every time someone does PP in the team, the team gets one Golden
Star from me. If you manage to get 10 golden stars within a 2 week period,
you get a certificate from me.’

The next time we met, they had done some PP and I held my word, a golden star
was put on their whiteboard. The first collective recognition of the team, one of
many to come. This does not only bond the team together, making the members
appreciate that they are working towards the same goal, it also turns the greatest
fear of exposure into a game.

Over time, the team managed to collect 10 stars for PP, and so I ceremoniously
produced a diploma, which was given to the team during very formal

37

VECTOR Vol.26 No.2&3

circumstances with music and a short speech.

Ceremonies matter, strong emotions and psychological mechanisms are at play
here, and it was very obvious that the team were happy to have exposed
themselves to each other so much.

Another team I coached could not even get started with PP, there was an obvious
fear of exposure to each other. The team consisted mainly of older developers who
had been in their comfort zone for quite a while now. No one immediately
expressed concerns for being exposed, but all the reasons for not doing PP were
just blatant excuses. Master Yoda comes to mind again;

“You must unlearn what you have learned”
- Master Yoda

This quote is also a golden nugget I carry with me. Traditionally, people were
taught to be subject experts, with a lot of gravitas and a fat nice paycheck to go
with it. We learn to crave to be the best, we like being the best, our egos require it.
We have learned to be heroes - and will protect this position and feeling that goes
with it. Unfortunately, this is actually a counter productive thing.

What this team needed, was to unlearn being heroes. Because the hero does not
wish to be perceived as weak. The team got a challenge:

‘For every technical area of improvement you practice together as a team,
you get a Brain (brain printed on a magnet) from me. If you manage to get
seven brains within the time I am coaching you, 1 will give you a
certificate for your outstanding performance.’

Suddenly, the personal weaknesses become a positive driving force for the team.
The team practices the ‘area of improvement’ (a more eloquent way of saying
weakness), and gets a Brain token. Soon enough, the team members were ‘sharing
ideas’ (admitting problems) they had for improvements, so they could get those
Brains. Exposing their weaknesses was now a good thing, a game. The team fulfilled
the challenge, and as promised, a ‘Tiger Challenge’ certificate was printed and
delivered with music and a speech.

Today Pair Programming is a given in the team, no one sees this as anything but a
positive force. In November 2013, I had Woody Zuill[1] stay at my place for a
week. Woody told me about Mob Programming and how his team practiced it, I
immediately wanted to try this out. Mob programming is PP taken to the next level.

The whole team, working on the same thing, on the same computer.

38

VECTOR Vol.26 No.2&3

Surely this is crazy? It is crazy alright, crazy good.

In crisis mode, when you need to get something done quickly, you always gather
the best people into the same physical location and give them a lot of space and
freedom (with added pressure of course). Why don’t we do like this all the time
instead?

My team has practiced this for a substantial period, and it works extremely well for
Trouble Reports (error corrections). For normal development we still do a lot of
PP, but we pull together into the Mob when the pressure and complexity starts
mounting.

When working as a mob, no task will ever halt until it's done, no team member
burns out due to stress as everyone shares the load. We all know what we are
doing, and we all know what has been done. No meetings are necessary as we are
all there, we all take decisions together, this also means that we can quickly undo a
decision. The most important thing is not to keep everyone busy by being stuck
and working overtime. The most important thing is to get the most valuable
solution out the door as quickly as possible. Every good thing from Pair
Programming is magnified tenfold in the Mob.

But, what comes next? Evolution never stops, progress is inevitable. From what
['ve heard, Dyalog Ltd and Optima Systems Ltd practice something they call 'Swing
programming’ where one developer from each company is traded for a while! I just
hope they will write an article on this and share their findings, it sounds really
interesting!

Pair-/Mob-/and Swing-programming aside, the search for better should never
stop, so let me leave you with this last quote:

“All the right people and expertise,
in the right place,
at the right time.”

- Woody Zuill on Mob Programming.

References

1. Zuill, Woody http://zuill.us/WoodyZuill/

39

http://zuill.us/WoodyZuill/

VECTOR Vol.26 No.2&3

APL

40

VECTOR Vol.26 No.2&3

One reason that APL is so cool

Brian Becker

The code shown in this article was not intended to be the most elegant or
efficient means to solve the problem presented, but rather to demonstrate
that APL's suitability for quick, ad hoc, data analysis and problem solving.

I had the good fortune to learn APL when I was but a freshman in high school. I
found APL to be a great tool to solve problems. The phrase “APL as a Tool of
Thought” has been around for quite some time and it still holds true. I've never
viewed myself as a programmer, but as a problem solver. APL enables me to take a
solution I conceive in my mind and translate it into a form executable by a
computer with the least effort. Over the years, I've been lucky enough to work on
some rather interesting problems, but in my spare time, I've also found APL to be
fun for recreational computing. I'll leave it to the gentle reader to assess just how
much of a geek this makes me.

One such opportunity presented itself recently. Our local newspaper, the
Rochester Democrat and Chronicle, along with other entities in the Rochester area,
including the Rochester Institute of Technology (RIT), had been conducting a
contest for several weeks called “Picture The Impossible”. It consisted of 7 weeks
of challenges and puzzles all relating to aspects of the Rochester area and its
history. Monday through Friday there featured puzzles on the web. There were
weekly excursions or challenges that one could participate in around the local area
and on Sunday there was a crossword puzzle and another challenge or puzzle. The
puzzle of October 25, 2009 is the subject of this article.

This puzzle consisted of sets of scales and weights to be assigned to various points
on the scales. For instance, given the scale:

A
B cC D
And weights of: 2 3 7 and 12

Each point will be assigned a weight and the force that point applies is its weight
times the distance from the fulcrum. The example above gives the following:

A
B

B+C+D
C+ (2 x D)

41

VECTOR Vol.26 No.2&3

So, it’s pretty easy to work out that A=12, B=7, C=3, and D=4.

The challenge in the newspaper consisted of 6 such puzzles with up to 9 points.
Because of some scheduling constraints, I had less than an hour to solve all the
problems. While I'm a pretty good puzzle solver, I decided that the quickest way
was to use APL.I figured that I could easily represent the algebra as a set of
assertions and then run every combination of weights through those assertions
until I found a set that worked. The first part was to build something that would
generate all the combinations of weights.] remember that the number of
combinations is the factorial of the number of elements, so nine elements would
result in 362,880 possible combinations.

Now, had I paid more attention in school those many years ago, I'd probably have
the “create all combinations” algorithm committed to memory. But, the way I
thought of the problem is that combinations of set of nine weights is each of those
weights concatenated with all the combinations of the other eight weights, then the
combinations of a set of eight weights is each of those weights concatenated with
all the combinations of the other seven weights, then the combinations of a set of
seven weights... wait a minute... this is recursive! So, the terminal case is when you
get down to a single item, and the only combination is the item itself. That's easy
enough to code.

V r«allcombinations v

[1] >(1=pv)l1 0 rev o =0

[2] l1:rev cat”allcombinations ™ (ev)~"v
v

V r«a cat b

[1] >(1==b)4l1 ¢ r«a,b o -0
[2] li:r<a cat’b

v

«n

Why did I write “cat”? Well, I started out with using APL concatenation, the
function. But that resulted in a nested result that wasn’t quite what I was looking
for, as shown below. DISPLAY is a wonderful utility that displays an array with its
structure. The result below is using the APL concatenate primitive function instead
of “cat”.

DISPLAY allcombinations 1 3 5 7 A using ,

1 3
3 |57 IIII 5137 Iili 7135 !ili 11|57 (7

€ € -€

Using cat, I got...

42

VECTOR Vol.26 No.2&3

DISPLAY allcombinations 1 3 5 7 A using cat

|1 35 7| |1 37 5| ’1 53 7‘ ’1 57 3‘ |1 73 5| |1 75 3|

€ € €

Which is a lot closer to what [wanted...

However, 1 was still stuck with a nested array that had as many levels as the
number of elements.
V r<n chunk a

[1] r<ea
[2] r<((pr)pntl)er
v

DISPLAY 4 chunk allcombinations 1 3 5 7

‘1 35 7‘ ‘1 37 5‘ |1 53 7‘ |1 57 3‘ |1 73 5| |1 75 3| |3 15 7| |3 17

€

Perfect! So, I've got the “all combinations” part of the problem solved. Now;, let’s
build the rest... The problem for this example is:

Weightsare: 2458101317 18 23

This gives the following relations:

3A = 2B+3C+u4D

YE+F = A+B+C+D

3I = L4LG+H

A+B+C+D+E+F = 2(G+H+I)

This turns into the following APL function. I won’t go into all the aspects of APL's
right to left execution, etc. If you know APL, it would be redundant, if you don’t
know APL, there are plenty of resources to learn it. But basically, it tests each
assertion. If an assertion fails, the function exits returning a result of 0.If all
assertions pass, the set of weights is displayed and a 1 is returned.

43

VECTOR Vol.26 No.2&3

V r<p5 arg;a;b;c;dse;figshsi

[1] (abcdefgh i)earg

[2] >(r«<(3xa)=2 3 4+.xb c d)40
[3] >(r<(f+4xe)=a+b+c+d)40

[4] >(r<(3xi)=h+l4xg) {0

[5] >(r<(2xg+h+i)=a+b+c+d+e+f)40
[6] O<arg

v

So, now we have something to generate all combinations, and something to solve
for a single combination. It would be easy to use the APL each operator (") to run
the solution against all combinations, but I wanted to have it stop as soon as it
found a solution and not evaluate all the combinations. So, [wrote a simple “solve”
program...

vV solve z;cnt

[1] cnt<«0

[2] lp:>((pz)<cnt+cnt+1)p0
[3] >(p5 cntaz)ilp

v

This will check the assertions against all the combinations until either all
combinations have been checked, or a solution is found. The solution, if found, is
displayed and the program exits.

Putting it all together:

solve 9 chunk allcombinations 2 4 5 8 10 13 17 18 22
22 17 4+ 5 10 8 13 2 18

So, A=22, B=17, C=4, D=5, E=10, F=8, G=13, H=2, [=18.I'll leave it to the reader to
verify the result.

I was able to solve all 6 problems in the paper in less than 30 minutes, about 28 of
which were spent thinking about the problem and coding the solution. Well, in
truth, I didn’t solve them, APL solved them, but I got the results I needed in
probably less time than it would have taken me to do manually. Besides, it was
fun!

The goal of this paper is to demonstrate that APL is a terrific tool for solving
problems quickly. There are no doubt better ways to code this in APL, but elegance
wasn’t my goal. I had a problem to solve and limited time to do it within. This has
always been one of APL's strengths and whether for recreational or commercial
purposes, APL remains a tool of thought.

44

VECTOR Vol.26 No.2&3

Notation as a tool of proof

Robert Pullman (rpullman@gmail.com)

APL is used to analyze the symmetries of magic squares. [JIO of 1 used throughout.

1. A Primer On Magic Squares

The classic magic square of order N is an arrangement of 1N*2 into an N by N
matrix A such that the sum of each of the N rows, N columns, and both diagonals
equals the same value - (Nx1+Nx2)+2. There is no solution for N=2 so presume N>2.

2000 years ago the Chinese knew of magic squares of order 3. There are 8 magic
squares out of 9! (362880) possible 3 by 3 squares.

In the 17th century Bernard de Bessy determined that there are 7040 magic
squares of order 4.

There are many techniques for constructing magic square but no simple way of
counting the number of magic squares of order N.In 1973 an MIT grad student,
Richard Schoeppel, solved for N=5, 2202441792 solutions. Schoeppel wrote an
Assembler program which took a week to determine the answer. In a private
communication he wrote:

“... The approach was straightforward, filling in the cells in a particular
order and backtracking. There was a little bit of hardware advantage: The
DEC10 had multi-level indexed indirect addressing, making it easy to add
a few numbers in a single instruction. Another hack was the instruction
for reversing the bits in a register. This made it fast to determine quickly
the possible solutions to X+Y=K, using bit masks of the remaining
available numbers.

Two other people independently confirmed the count, using different
strategies. One Japanese gentleman sent me his thesis, with a long table of
pieces of squares that he then assembled. My counting program would
probably run in a few minutes today if converted to C.”

For N>5 the number of solutions is unknown. There are estimates of the values, for
example 10x19 for N=6. If this is accurate [wonder how long it would take that C
program to solve for N=6.

45

VECTOR Vol.26 No.2&3

2. Symmetries of magic squares

There is a common definition of * distinct" magic squares, e.g. from “Solving Magic
Squares”[1]

“..there are exactly 880 distinct 4x4 magic squares, not counting
rotations and reflections...”

There are 7040 magic squares of order 4. The above claims that for a magic square
A there are 8 rotations and reflections, which reduces 7040 to 880 solutions. This
factor of 8 is attributed to de Bessy, but de Bessy's paper was published
posthumously in 1693.

If A is a magic square then so are the reflections ¢A,eA,and edA. Since ¢ and e are
commutative there are just the 4 distinct magic squares. & applied to each of the 4
doubles the result to 8. 90 degree rotation of A is §eA, 180 is edA, and 270 is &PA.

Actually there are 32 magic squares which can be derived from a magic square of
order 4. There are 220 basic solutions from which all 7040 can be derived.

More generally, for a magic square A of order N (>2) one can derive
(!LN+2)x2*2+|N+2 magic squares. This formula has been known for some time by
mathematicians, Schoeppel for one, also Benson and Jacoby. In the following
sections a reasonable, if not rigorous, proof of this is offered. APL provides a
convenient notation for this proof.

3. Definitions & Lemmas
Isomorphic vectors. V and W are isomorphic if and only if V[AVI=W[AW].

Lemma 3.1: If V and W are isomorphic integer vectors, (+/V)=+/W by the
associative property of addition.

Isomorphic squares. A and B are isomorphic if and only if each row of A
isomorphic to a row of B, each column of A to some column of B,1 18A (main
diagonal) with 1 18B,and 1 18¢A (opposite diagonal) with 1 1&¢B.

Lemma 3.2: If A is a magic square and A and B are isomorphic, then B is a magic
square. Follows from 3.1 applied to each row, column, and diagonal of B.

Lemma 3.3: If A and B are isomorphic and A[I;K]eB[J;] then row I of A is
isomorphic with row] of B. Proof: A[I;K] can only be in one row of B, so since A
and B are isomorphic that row must be isomorphic with A[I;].

Corollary: A[K;I]eB[;J] then column I of A if isomorphic with column] of B.

46

VECTOR Vol.26 No.2&3

4. Symmetric transforms

4.1. T1 of a magic square A
For any pair [,] such that I<J<[N+2, apply these row switches:
A[I,J,(N+1-I),(N+1-J);]«A[J,I,(N+1-J),(N+1-I);]

Rows and columns of the result are isomorphic with rows and columns of A but
the diagonals are not.

Then switch columns in the same way:
A[3I,3,(N+1-I),(N+1-J)]«A[5J,I,(N+1-J),(N+1-I)]
Rows and columns of the result are again isomorphic.

The diagonals of the result are also isomorphic with the same diagonals of A since
we have switched 4 pairs of diagonal items on the upper left (A[I;I] & A[J;J]),
upper right (A[I;N+1-I] & A[J;N+1-J]), lower left (A[N+1-J;I] & A[N+1-I;J])
and lower right (A[N+1-I;I] & A[N+1-J;J]). So the result is also a magic square.

Through a series of switches any permutation of the first [N+2 items on the upper
left diagonal can be accomplished.

So ! [N+2 distinct magic squares can be derived from A via T1.
4.2 T2 of a magic square A

For any I<|N+2, switch row [with row N+1-I:

AL, (N+1-I);]«A[(N+1-I),I;]

Rows and columns of the result are isomorphic with A, diagonals are not, since two
items of each diagonal are no longer on the same diagonal.

Then switch column I with column N+1-1.
A[T, (N+1-I)]«A[; (N+1-I),I]
Rows and columns are again isomorphic.

Diagonals are isomorphic to the same diagonals since the only change is A[I;I]
has switched with ALN+1-I;N+1-I] and A[N+1-I;I] has switched with
A[I;N+1-I].So the result is a magic square.

Each of first [N+2 rows can be switched, so there are 2x| N+2 distinct magic squares

47

VECTOR Vol.26 No.2&3

which can be derived from A via T2.
4.3 T1 and T2 are disjoint

Since (N+1-I)>[N+2 no T2 can satisfy I<J<|[N+2. So there are (![N+2)x2x[N+2
distinct magic squares which can be derived from A via T1 and T2.

4.4 Closure Under T1 and T2
If A and B are isomorphic magic squares, B can be derived from A.

IfA[I;3]=B[I;J] then (by lemma 3.3) row I of A is isomorphic with row I of B,
and column] of A with column] of B.

Since the main diagonals are isomorphic we can apply T1 and T2 to obtain C such
that C[I;I]=B[I;I] forall I<|[N+2.

So row I of C are isomorphic with row I of B and column I of C with column I of B.

Since the diagonals are isomorphic it follows that C[I;N+1-I]=B[I;N+1-I] and
C[N+1-I;I]=B[N+1-I;I].

So row N+1-I of C is isomorphic with row N+1-I of B and column N+1-TI of C with
column N+1-I of B.

If N is even this shows that C[I;J]=B[I;J] for all] so C=B.

If N is odd there is exception of the middle row and middle column. For
I#(N+1)+2, N-1 items in row [and column I match, which forces
C[I;(N+1)+2]=B[I;(N+1)+2] and C[(N+1)+2;I]=B[(N+1)+2;I]. Thatleaves just
the central item [(N+1)+2, (N+1)+2] which is also forced to match and so C=B.

4.5 T3: Reflections

If A is a magic square and B«¢A or B<eA then B is a magic square.
Under e, B[;I]is isomorphic with A[;1] and B[N+1-I;]=A[I;].
Under ¢, B[I;] is isomorphic with A[I;]and B[;N+1-I]=A[;I].

In each 1 1&B is isomorphic with 1 1&bA and 1 18$B with 1 18A, so B is a magic
square.

However B is not isomorhpic to A since 1 18B is not isomorphic with 1 18A.

On the other hand if both are applied, say B<$eA then B is isomorphic with A.

48

VECTOR Vol.26 No.2&3

It follows that eA or ¢A cannot be arrived at by T1 and T2 so reflection doubles the
number of solutions obtained by T1 and T2.

So the number of solutions via T1, T2, and T3 is (! [N+2)x2%1+[N+2
4.6 T4: Transpose
For any magic square A, B<®A is also a magic square with (1 18A)=1 1§8B.

The rows of A are isomorphic with the columns of B, and the columns of B with the
rows of A. So B is certainly not isomorphic with A and, by transitivity, not with any
isomorphism of A.

Suppose C is isomorphic with A.Since (1 18A)=1 18B by transitivity 1 1&B is
isomorphic with 1 1&C, so 1 1&B cannot be isomorphic with 1 18&C or 1 1&eC. So
B#$C and B#eC.

This completes the proof that (! [N+2)x2%2+[N+2 distinct magic squares which can
be derived from any one solution.

5. Footnote: Associative Magic Squares

An associative magic square has the property that the sum of any item and its
diametric opposite is 1+Nx2. This property is preserved under any of the four
transforms.

There are no associative magic squares of order N if 2=4|N. This was shown by
AH. Frost in 1878. The proof is too detailed to present here. See “Associative magic
square”[2]

References

1. “Solving Magic Squares” http://mathpages.com/home/kmath295.htm

2. “Associative magic square”
http://en.wikipedia.org/wiki/Associative_magic_square

49

http://mathpages.com/home/kmath295.htm
http://en.wikipedia.org/wiki/Associative_magic_square

VECTOR Vol.26 No.2&3

A tool of thought

Dan Baronet (danb@dyalog.com)

[am often asked “what is APL good for”? I reply that APL is good for almost
anything but that it is also very good at prototyping. With it you can experiment
and use it as a tool for thinking about the problem at hand. It is easy in APL to
manipulate data and build tools to get a better view of the problem and come up
with solutions. In the following text we will use APL to think of a solution to a
problem involving calculations to solve a mathematical problem. The problem
originates from Kakuro[1], a popular puzzle found in newspapers, where you need
to know the sets of numbers making up a solution.

The problem

In this problem we need to come up with all the sets of N unique positive single
digit numbers (1..9) making up a particular sum S. N and S are the key numbers
here, they will be the input to our problem. The output is all the possible sets. The
format is unimportant; it could be e.g. a list of sets or a square matrix, N wide.

Most of the code should work in any modern APL. However, the examples were
created with Dyalog Version 14. When features are used which are available in
Dyalog APL only this is mentioned. [JI0+1 is assumed.

For example, there are only 2 sets of 4 unique digits 1 to 9 addingup to 12: (12 3
6)and (12 4 5).

Attempt #1

The first thought is the easiest: brute force. Can we generate all the possibilities
and screen out unwanted ones?

We need to form sequences of N numbers, each from 1 to 9. For example, pairs are
(1,1) (1,2) (1,3)...(2,1) (2,2)... (9,9), 81 combinations in all. We can use catenate
(,) to put numbers together:

i3 « 13 @ define a vector of the numbers 1, 2 and 3

i3 , i3
123123

Not quite what we want, we want to catenate each number to each other:
i3 ,7 i3

50

VECTOR Vol.26 No.2&3

11 22 33

In Dyalog APL V14 there is a new user command that allows us to box enclosed
arrays automatically to better see their nature:

Again this is not what we want, what we want is to do the catenation for each
element in 13 to each other element in i3, like this:

1,743

2,7 i3
2 1f22[z o
3

2223

, i3

APL allows us to do this nicely, distributing the function , without looping, using
jot-dot (.):

That's better. This will work is all modern APLs. In Dyalog we can use commute (~)
to avoid repeating the argument. Commute normally swaps (commutes) the
arguments of a function so ae~b becomes bea, but when used monadically it
repeats the argument so +~a becomes a+a:

°o., = i3

51

VECTOR Vol.26 No.2&3

Let's do it for the numbers 1 to 9:

Let's keep this list in a variable and find the sum of each and let's find those that
add up to, say, 6:

ve , °.,% 19 A turn the table into a list with ravel (,)
sume +/7 v A sum each set

six« 6=sum A find the 6s

six/v A extract them

’1 5|2 4

3 3‘4 2|5 1

Let's write a function to find pairs adding up to a specific number. Here we’ll use
Dyalog’s dynamic functions:

pairs«<{ok«w=+/"all«, o., = 19 o ok/all}
pairs 6

‘1 5|2 4|3 3|4 2|5 1

There are 2 problems with this code:

#1, the rule says digits must be unique, so let's add code to only keep the numbers
that are different:

pairs<{ok«w=+/"all«, o.,~ 19 ¢ ok«ok A #/"all o ok/all}
pairs 6

EXEm

That's better, but we still need to solve problem #2: some are duplicates, e.g. (1 5)
and (5 1) are the same. We should remove them. Let's create a sorting function to

52

VECTOR Vol.26 No.2&3

reorder the sets:

Sort«{w[Aw]}

and use it in our function to reorder each set and use unique (v) to extract the
unique ones:

pairs<{ok<w=+/"alle,e.,%19 o ok«okaz/"all ¢ u Sort™ ok/all}

pairs 6 A pairs that add up to 6
i
pairs 9 A pairs that add up to 9

R

Looks good. What about triples? We can use ©. , twice:

i3 o., i3 o., i3 A generate a 3 x 3 x 3 of 1, 2 and 3s

111112113

121122123

321(322|323

331332333

triples<{ (w=+/"all)/ all«, i o., i o., i«19 }
triples 6

‘1 14

12 3|1 3 2|1 4 1|2 1 3|2 2 2|2 3 1|3 1 2|3 2 1|4 1 4

Some doubles are still there - we can't use # this time. #/ on more than 2 numbers
is meaningless:

z/4 11 A same as 4# (1#1) or 4=#FALSE!!!

We'll use the nub (unique) of each set to see if it is valid with function {w=vw}: if
the digits are unique we’ll keep the set. We'll then sort each set and keep the
unique ones:

53

VECTOR Vol.26 No.2&3

clean<{ vSort™ ({w=vw} w)/w }
triples«{all«(w=+/"all)/all«,i o., i o., i«*19 o clean all}
triples 6

123

That's better; we now need to write a function that will do it for any number of
digits. The left argument will be the number of digits required. That means looping
over o., until we have the proper number of iterations. In Dyalog the power
operator (*) will help with this, it will do the looping for us:

(i3 o., i3 o., i3) = (i3 (e., ¥ 2) i3)

So we can write (for N digits we need to run o., N-1 times)
NCat«{w (°., ¥(a-1)) w}
Or, since the argument is the same on both sides, we can use ~:

NCat«{ o., ¥(a-1)= w}
ntuple<{ok«w=+/"all«, o NCat 19 ¢ all«ok/all ¢ clean all }

Let’s find how many ways we can make twelve with four different numbers:

4 ntuple 12

1236(1245

pt ntuple 12
2

Just two. There should also be only one way for 9 digits to add up to 45 (all the
numbers 1 to 9):

p9 ntuple 45
WS FULL
NCat[0] NCat«{o.,*(a-1)~w}

A

Oops! Looks like we have a problem Houston. We're trying to generate

9 x 9x9
3486784401

more than 3 billion numbers! This is too big on my machine, even with
Owa=64039748.

54

VECTOR Vol.26 No.2&3

6 ntuple 35

1 46789(236789|245789|345¢6189

7 ntuple 39
WS FULL
NCat[0] NCat<«{o.,¥(a-1)=w}

A

Looking at

i3 o., i3 o., i3

111112113

121122123

13113 2133

we can see that the numbers in the boxes are the indices of each box. APL has a
primitive to produce the indices of any structure: iota (1) :

(i3 0., i3 ©., i3) =1 3 3 3

This primitive should take less space to generate and is a lot faster than looping
over:

ntupleB«{ok«w=+/"all«,1 ap9 ¢ all«ok/all ¢ clean all}

Let’s see how much faster it is. There is a user command in Dyalog that allows us
compare timings:
Jruntime "6 ntuple 35" "6 ntupleB 35" -compare

6 ntuple 35 -~ 2.4E71 | 0% OO0000000000000000O0O0CO0COO00OO00CO000
6 ntupleB 35 -~ 1.4E71 | -43% OO00000000COOO000CCO

But it still suffers from space problems:

7 ntupleB 39
WS FULL
ntuple2[0] ntupleB«{ok«w=+/"all+,1ap9 ¢ all«ok/all ¢ clean all}

A

But wait, maybe we can do it another way. How about using encode? Here are the
81 pairs again:

55

VECTOR Vol.26 No.2&3

1+ 9 9 1 71+ 19%2
111111222
456789123

-
N -
w
FoN
[N
o N
~N
© N
O N
- w
N w
w w
Fw
o w
o w
~w
0 w
O w
- F
N £
w F
£ F
o F
o F
- F
o F
O F
o
N o

3456
555555

~
o]

912
566

w o
£ o
Ul o
oo
—~o
® o
v o
-
N~
W~
£
SN
o~
-
o~
O~
- o
N
w o
+
U1 ©
o ©
-
© 0o
O
~ 0

99
23

9
5

9
8

£ o
[Vo)
<o
O O

Again, that would also require too many numbers when N is greater than 6. This
brute force method fails for large N, let's see if we can modify it.

Attempt #2
Maybe we can refine the process. Let’s have a look at pairs again:

pairs
{ok«w=+/"all«,o.,%19 ¢ ok«oka #/"all ¢ uSort ok/all}

We don'’t really need Sort nor the unique (v) after. We can eliminate a lot of cases
by reordering the checks and taking into account that the numbers in the sets
must be in increasing order:

pairs2« {all«(</"all)/all«, i9 o., 19«19 ¢ (w=+/"all)/all}
pairs2 9

o o

Triples are similar. We cannot use </ on 3 numbers but since the last ones are
already ordered we can use </ on the first 2. We could write

triples2«{
all«(</"247all) /all«, i9 o., (</"all)/all+,i9 o., i9«19
(w=+/"all)/all
}
triples2 19

‘2 8 9|3 79

4 6 9|4 7 8|5 6 8‘

Seems to work. Quadruples would work similarly. We should use a function, like
Ncat, to generate the combinations, something like

Gen«<{ ((</72t"all)/ all«,(19) ., w}

We can use the user command JROWS (newly introduced in Version 14.0 of Dyalog)
to cut the output to the width of the window (paper here):

Jrows -style=cut
Was -style=long
Gen 19

56

VECTOR Vol.26 No.2&3

‘1 2|1 3

1y

1 5|1 6‘1 7|1 8]1 9|2 3|2 4|2 5|2 6‘2 7|2 8]2 9|3 4|3

Gen Gen 19

‘1 2 3|1 2 41 25

12 6|1 2 7|1 2 B|1 2 9|1 3 4|1 3 5|1 3 6|1 3 7|o

Gen Gen Gen 19

|1 234

1235

123 6|1 23 7|1 23 8|1 23 9|1 2 4 5]1 2 4 6|1 .

Let's try it:

ntuple2«{ ok<w=+/"all+ Gen¥(a-1) 19 ¢ ok/all}
3 ntuple2 19

’2 8 9|3 7 9‘4 6 9|4 7 8|5 6 8‘

The ultimate test: can it find the only solution to a 9 digits sequence adding up to
45 +/19?

9 ntuple2 45

123456789

It works! We now have a solution. Mission accomplished. Let’s see how much space
is needed to run it; the user command]spaceneeded will provide that
information:

IJspace "9 ntuple2 45"
85824

Not bad. How much CPU does it take?

Jruntime "9 ntuple2 45" -repeat=1s

*x Benchmarking "9 ntuple2 45", repeat=1s

Exp
CPU (avg): 2.835227273
Elapsed: 2.866477273

3 ms. That's good enough.
Out of curiosity, could we have done better?
Attempt #3

Looking carefully at pairs we see that the first number can be 1 to 9 and that the
second number can be whatever remains (as long as it is in the range 1 to 9) but
not the same, i.e. for pairs adding up to a specific Sum e.g. 10, we have 1 and (10-
1), 2 and (10-2), 3 and (10-3), etc. In APL [:

57

VECTOR Vol.26 No.2&3

(19) ,” 10-19

‘1 9|2 8|3 7‘4 6|5 5‘6 h|7 3]8 2|9 1

The sets should be ordered in increasing order so we can limit the numbers 1 to 4
as first number because the largest combination we will have will be n followed by
n+1,i.e. 10=n+n+1 or n=4.5, or 4 since we only deal with integers.

pairs3« {i,” w-i< 1|l (w-1)%2 }
pairs3 9

o Tefe

pairs3
ETm

Fine. How about triples? Using the same idea we find that the largest set will be
n,(n+1),(n+2) so we can use the numbers from 1 to | (Sum-3)+3 followed by all the
pairs of Sum minus that number. For example

Sum«10

(Sum-3) + 3 A we start with the numbers 1 and 2
2.333333333

1,” pairs3 Sum-1

‘1 18|12 7’1 3 6|1 4 5|

2,” pairs3 Sum-2

‘2 1.7)2 ’2 3 5|

Not quite. We should ignore any pair starting with a number smaller or equal to
our first number.

Let’s modify pairs3 to accept a (optional) left argument specifying the starting
numbers to skip:

pairs3« {o«0 ¢ i,” w-iv a¢ 1| (w-1)+2 }
pairs3 9

R s

1 pairs3 9
XY
1, 1 pairs3 Sum-2

i

58

VECTOR Vol.26 No.2&3

2,” 2 pairs3 Sum-2

235

Triples?

triples3«{i« 1l (w-3)+3 ¢ i,” i pairs3” w-i }
triples3 9

|1|2 6’3 5| |2‘3 4|

Not quite, we need to use each () twice:

triples3«{i« 1| (w-3)+3 o i,”" i pairs3” w-i }
triples3 9

|1 2 6‘1 3 5| ’2 3 4|

That's better but this enclosing business is getting out of hand. Let's work with
matrices:

pairs3B«{a+«0 ¢ i,sw-i«att| (w-1)+2}

pairs38 9
18
27
36
45
2 pairs3B 9
3
45
triples3B« {i+ il (w-3)+3 o t5/i,” i pairs3B™ w-i }
triples38 9
126
1365
234

Seems to work. But there is a pattern here. It looks like a recursive definition.

e If we want a single digit set then the set is the sum if it is below 10.

e Ifwe want a N digit set then it is all the digits from 1 to [(Sum-+/1N-1)+N
followed by the N-1 digit set of Sum minus that number.

We’ll need to adjust the starting number and remove any number smaller or equal
to the first digit. We need to supply that number as argument, something like:

59

VECTOR Vol.26 No.2&3

ntuple3« {
A Generate all monotonic combinations of o numbers adding to w
(nn sn)<«2to A # of numbers needed, numbers to skip

nn=1 : (w<9)# sw A solution for 1 number is w if <9
A More than 1 #, drop any number < sn
ni«sn418L0fL(w- +/ 1 nn-1)#nn A all possible starting #
Oepnl : 0 nnp0 A no solution?
A ALl are starting # followed by the new combination
t5/ nt ,” ((nn-1),"n1) v" w-ni
}

This solution returns a matrix instead of a list of vectors. Let’s try it:

4 ntuple3 12
1236
1245

9 ntuple3 45
123456789

How does it compare with the previous solution?

Jruntime "9 ntuple2 45 " "9 ntuple3 45" -compare

9 ntuple2 45 =~ 2.9e73 | 0% OOOOOOOCOOCOOCOOOOOOOOOOO00000000000
*x 9 ntuple3 45 - 5.3E75 | -99% 0O
IJspace "9 ntuple3 45"
3620

Quite a difference. With just a little more effort we improved our original solution
a lot. And there are even faster solutions.

Conclusion

APL provides us with an environment where we can experiment “hands on” to
study situations, verify results and make better decisions. With it we can even
come up with prototypes that we can use to make further forays into our problem.
There is a lot of thinking that could have been done mentally but being able to use
the computer really is a bonus.

If you want, there is a video accompanying this article you can have a look at. Go to
YouTube and look for “Brute force method to finding all the sets in a row of
Kakuro”. You can also try this link: http://youtu.be/bJssWsdXjmY

Have fun!

References

1. Kakuro

60

http://www.youtube.com/
http://youtu.be/bJssWsdXjmY/
http://en.wikipedia.org/wiki/Kakuro

VECTOR Vol.26 No.2&3

Table Diff

Dhrusham Patel (dhrusham.patel@equiniti.com)

The objective of tablediff is to compare two tables: an old table and a new table,
where the new table is assumed to have been derived from the old table by way of
row-edits, insertions and deletions. The result should therefore identify and
distinguish between these types of modification. To achieve this, the function
compares two tables and returns a pair of aligned tables. In addition to aligning
the matched rows, the aligned tables contain empty rows corresponding to
insertions and deletions. The process of matching rows is based on solving the
Longest Common Subsequence (LCS) problem[1] for rows of the tables.

Here is an example of the function in operation:

old new2 (old tablediff new)

A A A vV VvV v A A A
B B B W oW W vV Vv v
c C C - B B W W W
D D D c - C B B B - B B
E E E - b - c Cc C cC - C
F F F X X X D D D = D =

G G G y y vy E E E

H H H H H H F F F

I I I D I D G G G
J J 3J M MM X X X
K K K z z z Yy vy Yy
L L L H H H H H H
M MM I I I D I D

N N N J J 3

0O 0 O K K K

L L L
MMM MMM

N N N

0O 0 O
z z z

As can be seen above: rows align according to where there is a match, exact or
partial. Empty rows in the old and new tables represent row insertions and row
deletions respectively. Note that partial matches have also been aligned;
representing where rows have been edited. In particular, notice the instances
where partial matches have been aligned despite better matches being available, as
doing so would yields a better alignment for the tables as a whole.

The cells contain strings, i.e. character vectors. In this example all the strings have
length 1, merely for convenience in presentation.

61

VECTOR Vol.26 No.2&3

The key variation in this function from the standard LCS problemis that it
tolerates partial matches, thereby allowing the function to trace minor row edits.
By calculating degree of match in the range 0 - 1, we find the highest-scoring
common subsequence.

The strategy is to match rows in new to their originals in old; then expand the two
tables to align them.

The function has four steps:

1. Find row matches: both partial and exact.
2. Generate and select candidate solutions to evaluate.
3. Find the best match: i.e. the highest-scoring common subsequence.

4. Align matching rows by creating a pair of boolean expansion vectors.

Step 1: Tabulate all row matches

matches«(4old)o.=¢new

Split the tables and use an outer-product match to find which rows in new match
which rows in old. But we want to honour partial matches, where a row has been
edited.

matches«<(told)e.(=7)Inew

Now each cell of the result is a 3-element boolean. Sum each cell and divide by the
number of columns to get a score for each match in the range 0 - 1.

rnew cnew<pnew
ms<(+/"(Yold)e.(=")¥new)+cnew A match scores

But this can be written more simply[2]:
ms<(old+.=8new)+cnew A match scores

The resulting table of row match scores ms represents the likeness of each row
from the old table compared with each row of the new table.

62

VECTOR Vol.26 No.2&3

Step 2: Generate and select candidate solutions to evaluate

N > Ne »
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 10
o o
I o|ofofo|ofo]ofo|lo|o]ofo I o|ofofo|lo|ofjofo|lo]|o|ofo
d
1] oo |o67 olofofo|o]|o]o ;| ofofoszlojofo|o|ofofo]|o
=
,|ofofofoggo|ofofo|o]|o]o ;lo0]o|ofoszlo|o|oflofo|o]fo
v v L
5/ 0|0o|o|olo3fo|o]|olo67|o0]o0 5] 0fo|o|olo3fo|o]|oTos7|o]|o
;| oflofofo]o ojlofofo]|o ;| olofo|ofofofo]o 3\ ofo
s|ofofoflo|lojo\ofo|o]|o]o s|ofjofjoflo|o|o|ofo o\ oo
6 o 0 0 o o 0 0 N 0 0 0) 6 0 0 0 0 0 0 0 o D\ o 0
;loflolofjojofo|o[1]oflo]|o0 ;lolofjojoflo|of|of1|ofo]o
N
g|0]ofojojojo]ojoTo3so]o g|of|ofoflo|lo|o]ofofo3|o]o
g/l ofofoflo|of|ofofo|o)o]o g|lofjofoflo|lo|ojofo|ofo]o
w|of|ofofo|lofofofo|ofo]o w|lo|ojoflo|of|ofofo]|o \u 0
nlofjofjofo|ofoflofo]o \o 0 nlojojofo|ofofofo]o \u 0
N N
n|lofjofjofo|lofofjofo|o]|1]o p|lojojofoflo|ofjofo|lo|1]o
3|ofofofo|lofofofo|lo]|o]o 3|o|ofjofoflo|ofjofo|lo|o]o
w|of|ofofo|lo|of|ofo|lo]|o]o w|o|ojofoflo|o|ofo|lo|o]o

Figure 1: Two solution paths through the match scores table.

The above two figures show two possible match paths. Origin 0, the first matches
rows 234789 ofnewtorows 1237812 of old. The second matches rows 2 3 7
8ofnewto1 2312 ofold.

Because rows are not moved (only inserted, deleted or edited) a match path must
specify progressively rising indexes of old and new.

The challenge is to identify all possible match paths and find the highest-scoring.

We start by tabulating all possible selections of rows of new. In the figures above,
the selections from new correspond to columns with matches: in both cases the
selectionis00111001110.

The expression (rnew/2)T12*rnew gives all possible selections from new:

disp<{'.0'[w]}
disp 60t[1] (rnew/2)Ti2xrnew A first 60 of 2048 cols

............................... O0000000000000000000000000000
............... Oo00o0oooooooooo.« 0000000000000
....... 0ooooooo.00000000. @00000000.00000

-00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00.
0.

63

VECTOR Vol.26 No.2&3

We can eliminate selections that select rows of new that have no matches at all.

disp {w/=a#~(~v#xms)tw} (rnew/2)Ti2*rnew

................................ [0000000000000000000000000000000
................ 0000000ooooooooo. »« @ .. 0000000000000000
0oooooooo. 0oooooag. 00000000

a00 .0000. . . .0000. . . .0000. . . .0000. . . .0000. . . .0000. . . .0000
.00..00..00. .00 .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00. .00
.0

That reduces the number of selections to test from 2048 to 64.

The more matches the better. So we'll try the most promising selections first.

disp sstte{wl;V+fwl} {w/=a#~(~v#xms)#w} (rnew/2)Ti2*rnew

0.00000. 0oooooooog. 0ooooooocoa.o.. ... ooooa. 0.
00.0000.0000. . . .000000. . . .000000. oooo. ... 0oooo. .. .0....0..
000.0000.000.000. .« .000.000. . .000. . .000. . .0...000. . .0. . .0....0. ...

0000.0000.000.00.00. .00.00.00. .0.00. .0. .0. .00. .0. .0. . .0....0......
00000 . 0000.000.00.0.0.00.00.0.0.0.0.0. .0. .0.0.0. .0. . .0. .. .0... . ..
000000 . 0o00.000.00.0. .000.00.0. .00.0. .0. . .00.0. .0...0. .. .0.... ...

From 2048 possible selections of rows of new, we've found 64 to evaluate, and
sorted the most promising to the left.

Step 3: Find best solution

A candidate solution is a selection of rows from new, all of which match rows from
old. Because table rows have not been reordered, the solution must pick out
successive rows of old.

Each selection of new will produce zero or more match paths. The criterion that
row matches are monotonically rising (i.e. terms of solution must be consecutive,
but not necessarily contiguous, terms of the original sequences) means that it is
possible for there to be zero match paths. The longest match path corresponds to
the longest common subsequence.

Scoring the matches introduces an additional variable for consideration: we now
want the highest-scoring common subsequence. Note that if there are partial row
matches the longest common subsequence is not necessarily the highest-scoring
common subsequence.

64

VECTOR Vol.26 No.2&3

Each selection of rows of new gives a corresponding selection of the match-scores
table, in which to look for match paths. The soln function returns the highest-
scoring match path, and its score.

soln<{

A best solution (origin-0) and score for match scores w (matrix)
Q10«0
where<{w/1pw}

cmbn<«{t,30.,/w,cc8} A combine Llists
rr<{a/t>/1 T14[1] cw} A rising rows
mrr<{w=(rr w)ar/w=[\w} A monotonically rising rows
rows+mrr cmbn where " {[0]xw A solns are sequences of rows
Oeprows:8 0 A no solution, zero score
nc<>$pw A count cols in w

A

scores«+/(,w)[(rowsxnc)+[1]inc]
(scoresti[/scores)e>"(4rows)(scores)

score by soln

}

To find the highest-scoring match path we apply soln to the selections in turn,
starting with the most promising. But we don’t need to evaluate every selection.
We can stop when the next selection could not produce a higher-scoring match
path. We don’t need to apply soln to see that. If the next selection has only four
flags and the highest score so far is 4.66, then we need look no further, because the
maximum score for a selection with four flags is 4.

i<0 ¢ end«tdpsstt ¢ (sc mo mn)«0 & & A score maskold masknew
:while sc<+/sstt[;i] A scope to improve?
A«<(soln A/ms),cA+sstt[;i] A evaluate next

(sc mo mn)«(sc<tA) ¢ (sc mo mn) A
tuntil end=i«i+l

After the loop, mo and mn contain a pair of boolean vectors which represent the
positions of matching row numbers for each of the old and new tables.

mo mn A match booleans

01110001100010 0| |0 0111001110

€

Step 4: Align matching rows

Once the best solution is found, our final step is to create two boolean expansion
vectors that will align the two tables.

Three ways to do this:
Looping function

This function recognises patterns in thetwo booleansmo andmn and
assembles (column-wise) a 2-row table representing apair of expansion

65

VECTOR Vol.26 No.2&3

vectors.

7«2 0p6
:Repeat
:Select 2"mo mn

:Case 0 0 ¢ x«1 0O A Row deleted
:Case 0 1 ¢ x«1 0 A Row deleted
:Case 1 0 ¢ x«0 1 A Row inserted
:Case 1 1 0 x«1 1 A match
:EndSelect
Z,+x

(mo mn)$="«x

:Until v/>"0=p" mo mn
Z,«<t~ mo mn
expansion<i{Z

The select structure above represents a mapping that can be expressed as a
short D function:

x<{0 0=w:1 0 ¢ ¢w}>" mo mn
Recursive function
The loop can be rewritten concisely as a D function with tail recursion.

stephen«{
Oe# w: t~w
x<(0 1)(1 1)(1 0)>=(1 0)(1 1)1c>"w A inserted, preserved, deleted
(5x),V x¥" w

expansion<istephen mo mn

Morten’s non-looping function

morten<«{
rn< # "w
ord<A(2xe+\"w)-(ew)
0 m«(ccord)]”(rn/0 1) (ew)
{((~mAO#w) /0=w)}"0 1
}

expansion<morten mo mn

This function takes the booleans as its right argument. It “orders the enlisted
booleans so matching rows are adjacent.” Morten has discussed his function in
more detail over on a blog post [3].

66

VECTOR Vol.26 No.2&3

Finally, the resulting expansion vectors are used to align the tables.

,"/expansion (expansion\ old new)

1 A A A O
0 1 v v v
0 1 w w w
1 B B B 1 - B B
1 ¢ cCcC 1 CcC - C
1 obbD 1 - D -
1 E E E 0
1 F F F 0
1 G G G O
0 1 x x x
0 1y vy vy
1 H H H 1 H H H
1 I I I 1 DI D
1 J J J O
1 K K K 0
1 L L L 0
1 MMM 1T MMM
1 NN N O
1 0 0 0 O
0 1 z z z
Listing

Putting the four steps together:

V Z+old tablediff new;[0IO;rnew;cnew;ms;aps;wps;sstt;isendsscsmosmn;A
(10«0
rnew cnew<pnew

A 1. Tabulate match scores
ms+cnewi~old+.=&new

A 2. Generate subsequences to test

aps«<{(w/2)T12*w} A all possible selections
wps+{w/=af~(~v#xms)Fw} A with possible solutions
sstt<{w[;¥+#w]} wps aps rnew A subsequences to test

A 3. Select subsequence with highest score
i«0 ¢ end«<t¢psstt ¢ (sc mo mn)«0 & & A score, maskold, masknew
:while sc<+/sstt[;i] A scope to improve?
A+(soln A/ms),cA+sstt[;i] evaluate next
(sc mo mn)<«(sc<tA) ¢ (sc mo mn) A
tuntil end=i«i+l

o]

A 4. Align the tables vertically
Z«old new\~"morten mo mn
v

Scope for improvement
1. The problem is symmetrical. That is:

old tablediff new <> ¢ new tablediff old

The longest common subsequence cannot be longer than [/>"p"old new. So

67

VECTOR Vol.26 No.2&3

only the shorter table should be searched for subsequences. In this example
nev is the shorter table. tablediff can be improved by switching old and new
if the latter is longer then correspondingly reversing the 2-element result.

. cmbn«{t,20.,/w,cc8} is space hungry and inefficient for large tables. Instead,

Morten recommends a depth-first search.[4].

3. The match scores might be calculated faster if the strings were first hashed to

integers. Or, if there are many repeated elements, to indexes to a list of the
unique elements.

Acknowledgements

[am indebted to Morten Kromberg of Dyalog, my colleague Stephen Taylor, Mike
Thomas of Bedarra and Arthur Whitney of Kx for help with this work. Any errors
are of course mine.

References

1.

Longest Common Subsequence
en.wikipedia.org/wiki/Longest_common_subsequence_problem

. T have Morten Kromberg to thank for spotting this equivalence. Watch out: this

inner product returns wrong results in both APL+Win 12.0 and APLX 4.1.6. In
these interpreters use the longer outer-product expression, which returns a
correct result.

. Morten’s blog post:

dyalog.com/blog/2014/07 /aligning-diff-output-2/

. John Scholes on Depth-first searching in D

youtube.com/watch?v=DsZdfnlh_d0

68

http://en.wikipedia.org/wiki/Longest_common_subsequence_problem
http://www.dyalog.com/blog/2014/07/aligning-diff-output-2/
https://www.youtube.com/watch?v=DsZdfnlh_d0

VECTOR Vol.26 No.2&3

A letter from Dijkstra on APL

Roger KW. Hui

Acknowledgments. [would like to thank Bob Bernecky, Nicolas Delcros, Jay Foad,
and Eric Iverson for comments on the manuscript.

Nick Nickolov brought to my attention comments by Dijkstra on APL [1] that [had
not seen before. I contacted the author of the website and obtained a copy of
Dijkstra’s letter, transcribed below:

Burroughs
PROF DR EDSGER W DIJKSTRA PLATAANSTRAAT 5
RESEARCH FELLOW 5671 AL NUENEN THE NETHERLANDS

Dr A.Caplin
[street address]
CROYDON, Surrey
United Kingdom
Tuesday 12 January 1982

Dear Dr Caplin,

thank [sic] you for your letter dated 31 May (?) 1981. You were right in
your reference to an APL “cult”: some adore it and others abhor it with very
few in between. Allow me to offer you another explanation for that
phenomenon.

I think that most people (be it subconsciously) realize that “ease of use”
is not the most significant aspect. Experience has show that, provided
people are sufficiently thrilled by a gadget, they are willing to put up with
the most terrible interfaces. Much more important is that the tool shapes the
one who trains himself in its usage, just as the words we use shape our
thoughts and the instrument forms the violinist. I think that a major reason
for shunning APL is that many people are repelled by the influence APL has
on its devotees. They implement the prayer “Dear Lord, don’t let me
become like them” by ignoring it.

A typical characteristic of the APL devotee is, for instance, his closeness
to an implementation of it. I know of a visiting professor at an American
University [sic] who, trying to teach APL, bitterly complained about the
absence of APL terminals. He was clearly unable to teach it without them.

And you, too, write to me that you would like to meet me in your part of the
world, so that you can “demonstrate APL” to me. This is in sharp contrast to
people who prefer programming languages that can be adadequately [sic]
“demonstrated”—i.e. shown, taught and discussed—with pencil and paper.

The fact that the printed or written word is apparently not the proper
medium for the propagation of APL may offer a further explanation for its
relative isolation; at the same time that fact may be viewed as one of its
major shortcomings.

Your writings made me wonder in which discipline you got your
doctor’s degree.

69

VECTOR Vol.26 No.2&3

With my greetings and best wishes,
yours ever,
(signed) Edsger W. Dijkstra

PS. I apologize for the quality of my signature; having broken my right arm
I have to sign with my left hand.
EWD

I find Dijkstra’'s comments deeply ironic, because Ken Iverson invented his
notation as a means of communications among people [2], and it was only years
later that the notation was implemented on a computer at which time it became
APL. Moreover, Dijkstra encountered “Iverson notation” no later than August 1963
before there was an implementation [3]. Even with APL, perhaps especially with
APL, one can reasonably do non-trivial things without ever executing it on a
computer.

I have read at least one of Dijkstra’'s EWDs in which he wrote programs using
formal methods, at the end of which is derived a provably correct program. As |
read it/them, [thought to myself, “APL should have been natural for Dijkstra”. One
can argue what “provably correct program” means. To me, it means what a typical
mathematician means when he/she says a theorem has been proven. I know it is
far from saying that the program will produce a correct result in all circumstances
(compiler/interpreter has a bug, somebody pulled the plug, cosmic ray strikes a
transistor, etc.), but I believe I am using “prove” in the same sense that Dijkstra
did.

Like Dijkstra’s “visiting professor at an American university”, I would be
distressed if I had to teach a course on APL without an APL machine. Were it a
course on formal methods, one can get by without a machine; but even in a course
on formal methods executability would be an asset, because executability keeps
you honest, a faithful servant that can be used to check the steps of a proof. Were it
a general programming course, it seems extreme to eschew the use of a machine in
showing, teaching, and discussing. It would be like trying to learn a natural
language without ever conversing with a speaker of that language.

Herewith, two examples of using APL in formal manipulations. Further such
examples can be found in Iverson’s Turing Award Lecture [4]. A proof is here
presented as in [4], a sequence of expressions each identical to its predecessor,
annotated with the reasoning.

A Summary of Notation is provided at the end.
Example 1: Ackermann’s Function

The derivation first appeared in 1992 [5] in] and is transcribed here in Dyalog
APL.

70

VECTOR Vol.26 No.2&3

Ackermann’s function is defined on non-negative integers as follows:

ack<+{
O=a: 1+w
O=w: (a-1) Vv 1
(a-1) V o V w-1

2 ack 3
9

3 ack 2
29

Lemma: If oo ack w <> f¥(30+) w,then (a+1)ack w < f¥x(1+w)V(30+) 1.

Proof: By induction on w.

(a+1) ack O basis
o ack 1 definition of ack
fV(30+) 1 antecedent of lemma
F¥(1+0)¥(30+) 1 %
(a+1) ack w induction
o ack (a+l) ack w-1 definition of ack
f¥(30+) (a+l) ack w-1 antecedent of lemma
fV(3e0+) f¥(1+w-1)¥(30+) 1 inductive hypothesis
T30+ f 3o+ "3o0+ f¥(l+w-1) 3o+ 1 ¥
T30+ f fX(1+w-1) 3o+ 1 +
T30+ f¥(1+w) 3o+ 1 *
fx(1+w)V(30+) 1 ¥

QED

Using the lemma (or otherwise), it can be shown that:

Ocack = 10+¥(30+)

loack = 20+¥(30+)

20ack = 20xV(30+)

3eack = 20x¥(30+)

Ltoack = x/o(po2)¥(30+)

Soack = {x/o(po2)¥*(1+w)¥(30+) 1}

Example 2: Inverted Table Index-Of
Presented at the 2013 Dyalog Conference [6].

A table is a set of values organized into rows and columns. The rows are records.
Values in a column have the same type and shape. A table has a specified number
of columns but can have any number of rows. The extended index-of on tables
finds record indices.

71

VECTOR Vol.26 No.2&3

tx ty tx 1 ty
315255
John |M|USA|26 Min FICN [17
tx 1 tx
Mary FIUK |24 Mary FIUK |24 012314
Monika|F|DE |31 John M|UK |26 ty v ty
0123414
Min FICN (17 Monika|F|DE |31
Max M[IT |29 Mesut |M[DE |24
Mesut |M|DE |24

An inverted table is a table with the values of a column collected together. Comma-
bar each (5") applied to an inverted table makes it look more like a table. And of
course the columns have the same tally (#). A table can be readily inverted and
vice versa.

X

John |MFFFM|USA|26 24 31 17 29
Mary UK
Monika DE
Min CN
Max IT
P 27y
5555
John |M|USA|26
Mary FIUK |24
Monika|F|DE |31
Min FICN (17
Max M| IT |29

invert « {1 48w}
vert <« {§tcs 1w}

X = invert tx

tx = vert x

A table has array overhead per element. An inverted table has array overhead per
column. The difference that this makes becomes apparent when you have a
sufficiently large number of rows. The other advantage of an inverted table is that
column access is much faster.

An important computation isx index-of y wherex andy are compatible
inverted tables. Obviously, it can not be just xty . The computation obtains by first
verting the arguments (un-inverting the tables) and then applying ¢ , but often
there is not enough space for that.

72

VECTOR Vol.26 No.2&3

oy e
John |M|USA|26 Min FICN |17
Mary FIUK |24 Mary FIUK |24
Monika|F|DE |31 John [MJUK |26
Min FICN |17 Monika|F|DE |31
Max M[IT |29 Mesut |M|DE |24

Mesut |M|DE |24
X 1y
b4y

(vert x) 1 (vert y)
315255

We derive a more efficient computation of index-of on inverted tables:

(vert x) 1 (vert y) (a)
({8tcs71"w}x) 1 ({®1<571"w}y) (b)
(8tes717x) 1 ({tcs717y) (c)
(8tx17"x) 1 ({tx17y) (d)

(a) The indices obtain by first uninverting the tables, that is, by first applying vert

(b) Replace vert by its definition.

(c) Replace the D-fn by its definition. We see that <s~1 plays a major role. cs~1
encloses, or alternatively computes a scalar representation.

(d) For purposes of index-of x1"'x and x1"'y have the same information as €71 'x

itself).
Point (d) illustrated on column 0:

€87 1+-x0+05x

John Mary Monika|Min

Max ‘

x0 1 x0
01234

€87 1+y0«0oy

Mary John Monika|Mesut |[Mesut |

lMin

That is, the function {(®tot1 o)1 (®ta1 "w)} computes index-of on inverted
tables.

73

VECTOR Vol.26 No.2&3

I believe that in another language a derivation such as the one above would be
very long (in part because the program would be very long), possibly impractically
long.

Summary of Notation

The following table lists the APL notation used in the paper. A complete language
reference can be found in [7]. D-fns are described in [7, pp. 112-127] and [8].

> equivalent (extralingual)

« assignment

o left argument

w right argument

x times

* exponentiation

P reshape; nps makes n copies of s

] transpose

t index-of

c enclose

> pick

t mix (disclose)

4 split (enclose rows)

H table, ravel the major cells

= match

£ tally, the length of the leading dimension

- right (identity function)

feg function composition

aof currying (fix left argument)

foa currying (fix right argument)

for rank operator; f on rank r subarrays

f¥n power operator; n applications of f ; the n-th iterate of f
(f*~1 is the inverse of f)

f¥g dual operator; g¥~1ofeog (notyetimplemented in Dyalog APL)

f/ reduce (fold)

£ each (map)

{o. .. w} D-function

v D-function: recursion
D-function: guard

References

1. Daylight, Edgar Graham, A Letter about APL, 2012-04-05.
http://www.dijkstrascry.com/node/90

2. Iverson, Kenneth E., A Personal View of APL, IBM Systems Journal, Volume 30,
Number 4, 1991-12. http://www.jsoftware.com/papers/APLPersonalView.htm

3. Iverson, Kenneth E., Formalism in Programming Languages, Communications of

74

http://www.dijkstrascry.com/node/90
http://www.jsoftware.com/papers/APLPersonalView.htm

VECTOR Vol.26 No.2&3

the ACM, Volume 7, Number 2, 1964-02. See the last question in the discussion.
http://www.jsoftware.com/papers/FPL.htm

4. lverson, Kenneth E., Notation as a Tool of Thought, Communications of the
ACM, Volume 23, Number 8, 1980-08.
http://www.jsoftware.com/papers/tothtm

5. Hui, Roger KW.,, Three Combinatoric Puzzles, Vector, Volume 9, Number 2,
1992-10; also in Ackermann’s Function,] Wiki Essay, 2005-10-14.
http://www jsoftware.com/jwiki/Essays/Ackermann%27s%20Function

6. Hui, Roger KW, Rank & Friends, 2013 Dyalog Conference, 2013-10-22.
http: //www.dyalog.com/dyalog 13 /presentations/D08_Rank_and_Friends/
friendsscript.htm

7. Dyalog Limited, Dyalog APL Programmer’s Guide & Language Reference,
Version 13.1,2012.
http://docs.dyalog.com/13.1/Dyalog%20APL%20Programmer%27s%20
Guide%20&%?20Language%?20Reference.pdf

8. Scholes, John, D: A Functional Subset of Dyalog APL, Vector, Volume 17,
Number 4, 2001-04. http://archive.vector.org.uk/art10007770

Written in honor of Ken Iverson’s 93rd birthday.

75

http://www.jsoftware.com/papers/FPL.htm
http://www.jsoftware.com/papers/tot.htm
http://www.jsoftware.com/jwiki/Essays/Ackermann%27s Function
http://www.dyalog.com/dyalog_13/presentations/D08_Rank_and_Friends/friendsscript.htm
http://docs.dyalog.com/13.1/Dyalog APL Programmer%27s Guide & Language Reference.pdf
http://archive.vector.org.uk/art10007770

VECTOR Vol.26 No.2&3

Legacy code, survival strategies and Fire

Kai Jaeger (kai@aplteam.com)

This article explains why Fire for Dyalog APL came into existence at all, and why [
spent about 5 - unpaid - month of work on this project over the last three years.
The name “Fire” points to the two main features: FInd and REplace. Fire is
specifically designed to support programmers who have to deal with legacy code:
code that is typically quite old, with little or outdated documentation if any,
without test cases, no clear structure and/or design and more often than not
without any kind of reasonable modularisation, often with none of the original
authors being around anymore.

Maintaining and enhancing a legacy system is a big challenge in any case, in
particular because rewriting it seems to be the only reasonable thing to do but
that’s not an option because either the client (or management) is not prepared to
accept this or it’s too complex or has too many interfaces to other systems to allow
this.

Rewriting an application can also pose a threat to APL because it might be used as
an excuse to get rid of APL altogether, although clearly the problems causing the
headache are not an intrinsic feature of APL at all, they are caused by bad
decisions made by ordinary humans. In most if not all cases the client is part of the
problem, not the solution. When asked to pay for improving the situation you are
very likely to get an answer along the lines of “How many new features are you are
going to add? None?! Forget it!”

The only way to survive in a situation like that in the long run is to add test cases
and to improve design, modularisation and documentation step by step whenever
you touch the code. In the beginning this will look like a simple waste of resources
without gaining anything, but it will improve the situation, leading to better and
more stable code.

In particular adding test cases will make it easier to carry out changes because you
will become more and more confident that those changes will not break the
application in many different ways, a typical problem with legacy code.

For that reason spending time on improving the code base is also in the interest of
the client/management, although they would probably be incapable of realising
this if told, so you better keep your mouth shut and hide behind feature

76

VECTOR

Vol.26 No.2&3

enhancements and bug fixes.

Improving a code base often requires changes on a large scale like renaming plenty
of objects etc., something that one would prefer to carry out automatically, at least
to some extent. Fire is designed to support a programmer in this respect. Let's
discuss some typical problems and how they can be solved with Fire.

Case study L.

Imagine a workspace where you started developing quite a number of classes
dedicated to solve a certain problem (GUI utilities in this case), with all these
classes situated in the root together with a couple of general classes addressing
common problems and used by the GUI-related classes, and a namespace called
“Demo” which holds quite a number of functions designed to demonstrate certain

aspects of the GUI-related classes.

This is how the namespaces in the root might look:

v T:\APL-Libs\APLGuI\ Development - Dyalog

Fie w Windows Sesson Log

Ws DOl 3] [ooet FE'TS VDL 2 @12

Action Options Took

Threads

Favorites APLTeam Help

[Tool) G [3 || Bt BB (B w2 o | |Sesson &

=lolx|

Language Bar

B FEFFERERT] (TREFEF FEERRREY FREFE [EEFRR CEFFEH [RRER FEFS

P 1=TE

JListObjects =
[ONC Name Type
9.4 MAPLGuiHalpers Class
9.4 WPLGuiParms Class
9.1 WAPLGuiUtils Namespace
9.1 APLTreeltils Namespace
9.4 ButtonsEnum Class
9.4 CompareSimple Class
9.1 Demo Namespace
9.4 |DialogTypesEnum Class
9.4 |Dialogs Class
9.4 |[FormRefNamespace | Class
9.4 IniFiles Class
9.4 [KeyCodes Class
9.4 |Menubar Class
9.4 |Notepad Class
9.4 |(OptionsStyles Class
9.4 |OptionsTool Class
9.4 |Request Class
3.1 |Reset Traditional Function
3.1 (Run Traditional Function
9.4 |[SelectionStyles Class
9.4 |SelectionTool Class
9.4 [StdForm Class
9.1 TestiCases Namespace
9.4 Tester Class
9.4 WinFile Class
9.4 WinReg Class
9.4 WinSys Class j

| [Ready...
| [CurObis Tobo (Varisble)

Ins |NUM

[d:0 [ATRAP [051:0 |OI0:0 |OML:3

In the future I want to use Phil Last’s excellent code management system acre[1].
In order to do so I decided to restructure the code so that all the GUI-related
classes and namespace scripts go into an ordinary namespace #.GUI . That is all

77

VECTOR Vol.26 No.2&3

those shown in boxes.

That's relatively easy to achieve because I wrote my own tool that allows me to
move scripts around; unfortunately the Workspace Explorer is still not capable of
doing this. After that the root looks like this:

JListObjects -n=9

ONC Name Type

9.1 APLTreeUtils Namespace
9.4 CompareSimple Class

9.1 GUI Namespace
9.1 Demo Namespace
9.4 IniFiles Class

9.1 TestCases Namespace
9.4 Tester Class

9.4 WinFile Class

9.4 WinReg Class

9.4 WinSys Class

But that is not enough: the functions in the #.Demo namespace as well as all the
test cases still try to address the GUI utilities in the root. Those references need to
be changed, and that is a perfect task for Fire.

The first goal is to find out how many functions and how many lines of code need
to be changed. For this we enter #. in the “Search for” box and #.Demo into the
“Start looking here” box as shown here:

x|
Fle Edt Reports Help
1l Searchfor
= 5
i Statlooking here
[5-Deno
—Options o rouectypes o 5t o o rRecusie —
¥ Meich case I [yadeblas e @ Full source code 5 o remeseee| | & Fu
I Metch APLname || [Tradfns s oprs [~ Class instances| | [-butignore comments | I Nefmes onb(INL) ‘
I St [Directin +oprs ¥ Interfaces. [~ . butignore text I~ Headers only. [~ Unnamed namespaces | | € None

™ Match full lines only ¥ Scripted NS Comments only I~ Locaizonly ™ GUIInstances: € Justone level

I™ Metch number

Find Replace

€ Textonly

™ Negetesearch [l [Searchhithist flf [Tellacre il

I™ KeepFire ontop

Tiosatvon] Type[L

Modified on

INC] 1] Wits| Modiried by

#-Demo I 2013-09-03 06:56+10

#.Demo tfn N 3 Kai 2013-09-03 11:23:15
st #oemo tin 3.4 % Kes 2013-08-03 12

NoOrYesV tha1gF ont Hoeme tin 342 ke 2013-09-03 12

NoOr YesW i thLongQuest ion #ena tin 34 2 Ke 2013-08-03 12
#oeme trn 30 % Kes 2013-08-03 12
#oeme thn 34 3 Kes 2013-08-03 12:45

Notepads imple #ene tin 3.4 %+ Ke 2013-05-03 06:18:10 =l

122 hits foundin 26 of 27 APL objects from 1 container in 0.04 seconds processing tme 37.3- 20140811 Y

There are 26 functions with 122 hits (see the status bar of Fire) which potentially
need to be changed.

With the next step we check whether the hits we got are really what we are after.
The report can be created via the “Report hits” command from the “Reports” menu.
It gives an excellent overview:

78

VECTOR

Vol.26 No.2&3

® Fire - Hit Report

—IDix|

Specal Help
No [Name [Type|[21 mreuirarns—tirricuirarns createverautts =]
[5] parms+£iDiatogs .CraateNoOrYasFarns.
1 #.Demo.NoOrYes [71 OvmyGuiParms parms EiDialogs.NoOrYes'Are you really sure about
2 #.Demo.NoOrYesAutoPress 8. #_Demo.NotepadSimple
3 #.Demo.NoOrYesErrorStyle [2] AglobsParms=E.APLGuipemmerores sutts
e {51 AglovstParmslc’ icon"fecBLONEW Tcon e 'Fite’ *sample. ico’)
4 #.Demo.NoOrYesWithBigFont [17] Apsrms+#.Notepad. CreSten doepfrignt notice'
5 #.Demo.NoOrYesWithLongQuestion [13] n-#iNotepad.Create VIV
. s 9. #.Demo.OptionTool_Checkboxes
6 #.Demu.NnDrVEsUfthNestedQuestlnn T3] olobalParms-EiAPLGERs Bt D aults
7 #.Demo.NoOrYesWithoutStatusbar e iy, LR
8 #.Demo.NotepadSimple [7] parns-#a0ptions TomrroReS 4

9 #.Demo.OptionTool_Checkboxes

10 #.Demo.OptionTool RadioBtns

11 #.Demo.SelectionTool_List_MultiSel..
12 #.Demo.SelectionTool_List_MultiSel
13 #.Demo.SelectionTool_List_SimpleSe..
14 #.Demo.SelectionTool_Table_MultiSe..
15 #.Demo.SelectionTool_Table_MultiSe..
16 #.Demo.SelectionTool_Table_MultiSe..
17 #.Demo.StandardForm_WithParent

18 #.Demo.YesNoCancel

19 #.Demo.YesOrNo

20 #.Demo.YesOrNoAutoPress

21 #.Demo.YesOrNoErrorStyle

22 #.Demo.YesOrNoWithBigFont

23 #.Demo.YesOrNoWithLongCaption

24 #.Demo.YesOrNoWithLongQuestion

25 #.Demo.YesOrNoWithNestedQuestion

26 #.Demo.YesOrNoWithoutStatusbar

[40] parms.styleE.Optionsstyles.check
[12] nieglobalParms parms #.OptionsTool.Create list
[14] (Flag boolean)~#i0ptionsTool.Modalbait ni

10. #_Demo.OptionTool_RadioBtns

[2] globalParmse#.4PLGUIES eateefaults
051 g.m.hm.,m:‘;,.a- templa.tes)
{71 parns+#loptions T8 Setns

[12] nivglobstParms psrms #.0ptionsTool.Craste list
[14] (flag boolesn)=#.0ptionsTool.ModalWait ni

11. #.Demo.SelectionTool_List_MultiSelfContained
[21 globalParms-EiApkEmHermernggt cDef aul t

[s1 QlubalParms.vsc‘Fvla' ‘sample.ico’)

[6]1 List~u300p&.ONL -

[8] parms-EiselectionTool.CreateParms

[15] ni-globalParms parms EdSelectionTool.Create List

[47] (flag boolean)-#.SelectionTool.MedalVWait ni

12. #.Demo.SelectionTool _List MultiSelfContainedBigFont
[2] glonatparms-£.4pLoutre cateosrauits

[8] Liste((c'.)"0 eppemrglpgiOnL -2

[51 parns-ElsatectionTaol.Creatararms

[16] nieglobatParms parms EdselectionTool.Craate List

[18] (fiag boolean)-#iselectionTool . ModalUait ni

13. #_Demo.SelectionTool List _SimpleSelfContained

[2] globatrarms-EiAR

[51 globatParms. ico "File’ 'sample.ico’)
[6] List=((<'. *),” LONL-3

[7]1 parms-#uselectionTool.CreateParms J_I
Fl

eDefaults

As you can see there are quite a number of functions that carry #.[ONEW in them -
these statements must remain unchanged. However, those functions also carry hits
we are interested in. What's the best way to deal with this situation?

First we create a hit list with objects that do not contain the string #.[0” . We can

achieve this with these settings:

Development x|

File Edt Reports Help
1l ssarchior.
=
Il Statiocking here:
[#-Demo

~ Qpions. I bjectypes e e — ~Container ecursive ———

¥ Maich case I Varisbles ¥ Classes O e R - | | @ Nemedne ® Ful

[~ MetchAPLname || [Tradfis soprs [~ Class instancas I™ . butignore comments lames only (INL)

I~ Strict [Directing +opre [¥ Interfaces ™ . butignore text I~ Headers only (o U st | | e
I Mistch yl nss on Nag| 7 ScrietedNS || ¢ Commenss ony I Locacory || T GUlnstances © Justons level

™ Match number

 Textonly

Find Repiscs..| I Nogete saarch [Saarch hitlist [Tellacre
P! £l bil o bil

I~ KeepFire antop

Restore defautts | g

Name [Location| Type [[INC[I[Hits[Modified by|Modified on -
NoOrYes #.Deno 1 0 Ka 2013-00-03 06:56:10

NoOrYesAutoPress #.Demo tin 3.1 0 Kes 2013-09-03 11:23:15

NoOrYesErrorStyle #.Demo tfn 3.1 0 Kei 2013-09-03 |
NoOrYeswi thaigFont #.0ems tin 3.1 o Ke 2013-00-03

NoOrYesWithLongQuestion | #.Demo tfn 3.1 0 Ket 2013-09-03

NoOrYesWithNestedQuestion #.Demo tfn 3.1 0 Kei 2013-09-03 12145105

NoOr¥esWithoutStatusber #.Demo &fn 3.1 0 ke 2013-09-03 12:45:25

Stenderdform WithParent &.Demo tfn 3.1 0 ket 2013-09-03 19:51:17 -
18 hita foundin 18 of 27 APL cbject from 1 container in 0.03 seconds processing e 37.3-20140811 Y

Note that the “Negate search” option was ticked, therefore Fire just lists functions

that do not contain the string #.[].

Now we untick “Negate search” and tick “Search hit list”. Then we search for #. as

shown here:

79

VECTOR

Vol.26 No.2&3

Developr x|
File Edt Reports Help
Hl Searchior.
[e 5

1l Startiooking here:

Options i Cbiecttes o i — ~Container cusive — i
¥ Meich case I [vanabics ¥ Clesses & Full source code |
I MotchAPLneme || [¥ Tradms soprs [~ Glassinstancas || [.butignore comments ||| Nemes anky (INL)
I stic F¥ Dimctins +oprs [Inisrfaces I . butignore text I Headegs only [™ Unnamed nemespaces | € e
™ Match full lines onty A‘ M‘ ¥ Scripted NS ¢ Comments only I~ Locals anly ™ GUI Instances € Justone leval

™ Match number Textonly

Eind Replace... [~ Negetssearch [if [Searchhitlst Jf [~ Tellacre [I™ Keep Fire on top Restore defauts | i

Name. [Location] Type [[INC] T[Hits[Modified by[Modified on I -
NoOr¥es #.Deno 1 2 ke 2013-09-03 06:56:10

NoOrYesAutoPress £.Demo tfn 3.1 3 Kai 2013-09-03 11123115

NoOrYesErrorStyle #Demo fn 3.4 4 Kei 2013-09-03 12

NoOrYesWithBigFont #.Demo tfn 3.1 2 Kai 2013-09-03 k=
NoOrYesWithlongQuestion #.Demo fn 3.1 2 Kat 2013-09-03

NoOrYesWithNestedQuestion #.Demo tfn 3.1 L Kei 2013-09-03 12+45:05

NoOrYesWithoutStatusber #.Demo tfn 3.1 3 Kei 2013-09-03 12:45:25

Standardform MithParent #.Demo fn 3.4 & Ke 2013-09-03 14:51:17 -

[49hsfoundin 17cf 18 APL cbjects from 1 container n 0.03 seconds processing tme

7320140811

That results in 17 functions. This is again the “Report hits” report:

Hit Repos -(alx|
specal Hep
No | Name [Type[][1- #.pemo.NoOrTes 5
121 my ~F.APLGUIParmE.CrastaDatauits =
1 #.Demo.NoOrYes 3.1 [51 OemyGuiParns #J0ialogs.NoOrYes'Are you reslly sure sbout this?'
2 #.Demo.NoOrYesAutoPress 3.1 ||2. #.Demo.NoOrYesAutoPress
3 #.Demo.NoOrYesErrorStyle R S Bttt e
4 #.Demo.NoOrYesWithBigFont 3.1 || (3] Deparms myCuipsrms £.0i3logs.NoOr¥es Are you really sure?’
S #.Demo.NoOrYesWithlongQuestion 3.1 ||3. &-Demo-NoOrrestrrorstyle
myGuiParms-ELAPLGuTParms. CrastaDataults
6 #.Demo.NoOrYesWithNestedQuestion 3.1 | 3} MrBamartertrndn marte oee ot
7 #.Demo.NoOrYesWithoutStatusbar 3.1 || (6] parms.styte-Ea0ialogTypestnun.error
8 #.Demo.StandardForm WithParent 3.1 | {73 Uparms myouizarms Eidialogs.odrtas ra you resily sure sbeut thist®
. #_.Demo.NoOr Tes gFon
9 #.Demo.YesNoCancel 3.1
[2] myGuiParms~#.APLGuiParms.CresteDefaults
10 #.Demo.VesOrNo 3.1 || 7] Denybutparas BED1slogs.NoOrYes Are you restly sure sbout this?®
11 #.Demo.YesOrNoAutoPress 3.1 5[]'-n-ﬂ-""of\‘u“"hl"ﬂuu“m
21 ny SAPLGuTParmE. -
12 #.Demo.YesOrNoErrorStyle 3.1 Ce] O-myGuiParns EJD1alogs.NeorYes msg
13 #.Demo.YesOrNoWithBigFont 3.1 ||6. #.Demo.NoOrYesWithNestedQuestion
5 i [2] my IAPLGusParmS . e
o #.Demc.VesDrNoNnhLangCaleun 3.1 (8] parms~#.Dialogs.CreateNoOrYesParms
15 #.Demo.YesOrNoWithLongQuestion 3.1 [10] parms.style-BuDislogTypesEnum.Error
16 #.Demo.YesOrNoWithNestedQuestion 3.1 [[C1i] {}psrms myGuiParms EIDislogs.NoOrves msg _
17 #.Demo.YesOrNoWithoutStatusbar 3.1 - #-Demo.NoOrYeswithoutStatusbar

21

WAPLGuiParms. s
[5] parms~#:0islogs.CreateNoOrYesParms

[71 DemyGuiParns
8. #.Demo.Standar dfo

arms BiDialogs.NoOrYes'Are you really sure about this?’

thParent

2] g

[21

UAPLGuiParms. ts
(71 parns-Eistaforn.CrestePsrms

[13) nfistaForm.Create globalParms parms
[14] n.VersionNo.Text~1sfuStdForn.Version
9. #.Demo.YesNoCancel

[2] myl

[e] O-globatParns §
10. #.Demo.YesOrNo

GuiParms. ts
Logs.YesHoCancel'Da you want te fix them before carryi

< el

AAPLGuiParms. s
[5] OrmyGuiParns #0ialogs.YesOrNo'Are you really sure sbout this?'
11. #.Demo.YesOrNoAutoPress

|

This is indeed a big step forward: apparently only stuff that needs to be changed is

reported.

However, if there were still some items in
the hit list we don’t want to change we
could easily remove them from the hit list
via the Hit Report’s context menu:

After pressing the “Replace” button we
get the “Replace” dialog box were we can
enter this:

80

Cancel this menu

Edit code Ctr+Enter
Print name(s) to session

Remove from hit list Del

VECTOR Vol.26 No.2&3

xl

Help
1l Searchfor

E Copy | |

1l Replace by: [~ Multi-line
|#.cu1 |
~Type 7“ - Comparison report . -~ Changes 71

@ Allin one go @& Comprassed ™ Markthem

¢ One by one Ful Same line 'I

[~ Delete lines with hits [l |

Preview | Cancel |

After clicking on “Preview” we get this:

-lojx|
No | Name ype [1%1 ;I

=
M1 #.Demo.NoOrYes 3
M2 #.Demo.NoOrYesAutoPress 3
[F13 #.Demo.NoOrYesErrorStyle 3
Et #.Demo.NoOrYesWithBigFont 3
[EI5 #.Demo.NoOrYesWithLongQuestion 3
M6 #.Demo.NoOrYesWithNestedQuestion 3
M7 #.Demo.NoOrYesWithoutStatusbar 3
F8 #.Demo.Standardform_WithParent 3
9 #.Demo.YesNoCancel 3
3
3
3
3
3
3
3
3

n.VersionNe.Text~12#,BiEdstdForn. version
n.VersionNe.Text~12%.5tdForm. Version

9. #.Demo.YesNoCancel (3.1)
21
globalParms~#.BUILAPLGuUiParms.CreateDefaults
globaLParns«#. AP LCutParns CrasteDaraults
163
O-globalParms #.EUENDialogs.YesNoCancel ‘Do you want to fix them before carr
El10 #.Demo.YesOrNo [-globalParns #.Dialogs.VasNoCancel Do you vant to Fix them bafore carrying
El11 #.Demo.YesOrNoAutoPress
El12 #.Demo.YesOrNoErrorStyle

10. #.Demo.YesOrNe (3.1)

[13 #.Demo.YesOrNoWithBigFont (21

El14 #.Demo.YesOrNoWithLongCaption Lovercased. BUTNAPL Trealt1 Ls. Lovarcase
(15 #.Demo.YesOrNeWithLongQuestion Louercase % APLTrasUts (=.Lovereass

Fl16 #.Demo.YesOrNoWithNestedQuestion
[117 #.Demo.YesOrNoWithoutStatusbar

13]

hhbhbhbhbhbbbrbbhbrobenfs

myGuiParme~#. BUEUAPLGUiParms. CrasteDefaults
myGuiParms~#.APLGuiParms.CresteDefaults

83
O-myGuiParms #.BUEIDislogs. YesOrNo Are you really sure sbout this?'
O-myGuiParms #.Dialogs.YesOrNo'Are you really sure about this?®

11. #.Demo.YesOrNoAutoPress (3.1)
[2]

myGuiParms—#. BUINAPLGuiParms . CresteaDefaul bs

GuiParment APLGMParan Crentaeratts =
J° I _'l_I

Fix changes Caneel

[A117 tems are icked

Everything is fine except number 19 which is the function #.Demo. YesOrNo : apart
from two lines that we want to change indeed (3 and 6) there is also a line we
don’t want to change: line number 2.

One way to deal with this is to change the function anyway and then to fix line 2 in
the editor afterwards. Here however we use a different approach which is much
more appropriate in case we want to exclude not just one but quite a number of
changes: we simply untick the checkbox number 10 in the tree view. That leads to
this:

81

VECTOR Vol.26 No.2&3

_Iojx|

@ p
No | Name Typel| iy
1 #.Demo.NoOrYes 3.1 n.Versionto. Text -1a#. s tarorn. version
M2 #.Demo.NoOrYesAutoPress 3.1 n.Versionho.Text+13#.5tdForm. Version
M3 #.Demo.NoOrYesErrorStyle 3.1
Bt #.Demo.NoOrYesWithBigFont 3.1 || purEE———"
E5 #.Demo.NoOrYesWithLongQuestion 3.1 [21
El6 #.Demo.NoOrYesMithNestedQuestion 3.1 e T
E7 #.Demo.NoOrYesWithoutStatusbar 3.1 globalParms=d .
M8 #.Demo.StandardForm_WithParent 3.1 el
El5 #.0emo.YesNoCancel 3.1 O-gtobstrarms 4. BE0Iatogs. TestoCancel ‘Do you vant te fiz them
Osg# -Yes0OrNo 3.1 [-globalParms #.Dialogs.YesNoCancel Do you want to fix them bef.
E11 #° .YesOrNoAutoPress 3.1
M1z 3.1
HE13 3.1
[=ERS 3.1 fux:
BE1s 3.1
El16 #.Demo.YesOrNoWithNestedQues 3.1
E17 #.Demo.YesOrNoWithoutStatusbar Eur]
oo]
11. #.Demo.YesOrNoAutoPress (3.1}
r21
myGuiParms-#. BEIAPLGu Parms . CreateDefaul ts
myGuiParms-£. APLGUIPArRS . CrasteDefaults
P
|

before carr
ore carrying

Fix changes Cancel

[Vot 17 2ems s ot cked

#.Demo. YesOrNo is now greyed, indicating that the function will not be processed

any more.

Finally we press the “Fix changes” button. First part of the task
majority of the necessary changes have been carried out already.

is done - the

In order to address the remaining problems we first want to get a list of objects
that do not contain any reference to #.GUI. because those that do are the ones we

have just changed, so we are not interested in them. In order to a
tick the "Negate search” check box and repeat the search:

@ Fire - Development

Fle Edt Reports Hebp
1l searchfor

chieve that we

x|

e cur|

1l Startlooking here:

I~

[#-0eno
— Qptions bject ty e 57| = ntainer ecursive ——
¥ Match case [Veriebles ¥ Clesses & T R [Wemeeliemeamsss ||| (Gl
I MeichAPLname || 7 Tredns+oprs [Class nstances| | [- butignore comments | | I~ Nemes orly (IN)
I Suict [Directins +oprs [Interfaces I . butignors text I Headers only [_[Unneed nemespaces | KCNono
™ Metch fullines only | | Nane| [Scripted NS € Comments only I | Locals anly I~ GUInstances € Justone level
™ Match number € Textony

Find Replace... ¥ Meoiesecich [f [Searchhitist [§f ™ Tellacre i I KeepFire ontop Restore defaults | [

Name. [Location] Type[[INC] T[Hits[Modified by[Modified on -
Notepadsimple #.0emo Efn 3.0 0 Kai 2013-09-03 06:18:10
OptionTool_Checkboxes #.Demo tfm 3.1 0 Kei 2013-09-03 12146118
OptionTool_Radiobtns #Demo tfn 3.1 0 Kas 2013-09-03 13:53:05.

SelectionTaol List MultiSeliContained £.0emo tfn 3.4 0 Kai 2013-10-1% 08:40:07
SelectionTosl_List MultiSelfContatnedsigFant #Demo tfn 3.1 0 Kai 2013-09-03 14:44:22
SelectionTool_List_SimpleSelfContained #.Demo tfn 3.0 0 Kei 2043-09-03 14:45:41

SelectionTaol Teble MultiSelfContained #.Demo tin 3.1 0 Kei 2013-09-03 14:46:07
SelectionTool_Table_MultiSelfContainedui thCheckboxes #Demo tfn 3.4 0 Kat 2013-09-03 14:47:00
SelectionTool_Teble MultiSelfContainedWithCheckboxesBigFont #.Demo tfn 3.1 0 Kai 2013-09-03 14148131 1
YesOrNo #.0emo tin 3.1 0 Kai 2014-08-15 15:47:52

4Run £.0emo _tin 3.4 0 Kei 2013-09-01 08:14:17 =
11 hitsfound in 11 of 27 APL objectsfrom 1 contamer in .04 seconds processing time: 37.3-2014-08-11

Eleven objects do not contain any reference to #.GUI as of yet. These still need to

change. Now let’s search this hit list for any references to #.

82

VECTOR

Vol.26 No.2&3

Note that the "Search hit list" check box is ticked now; that restricts the search the

the objects in the hit list:

@ Fire - Development x|
Fie Edt Reports Help
1l Searchtor
F =l
1l Startlooking here:

— Qptions bjecttypes can.. n -~ [Container ccursve

1 I 1 I
pvencase B yaiebtes 7 Casses | @ Fullsource coce I Nemeson ,:‘ (el {F,\“ e rl T
™ Match APLname: ¥ Tradfns +oprs [~ Class instances ™ . butignore comments = ly NG I Unnamed namespaces ||| ¢ 11
I~ |8t [Directins +opris [Interfaces I~ . butignore text I™ Headers only P e
I™ Metch fulllinesonly | an | Ngnel v Scripted NS € Comments anly I~ Lacals arly I GUlInstonces: 2 Justanalas
™ Match number Textonly
Find Replace... I Negatesearch [¥ Searchbitlist Il Tellacre Tl I KeepFire ontop Restore defoults | [

Name. [tocation| Type [[INC[I[Hits[Hodified by[Modified on JT]
NotepadSimple #.Demo tfn 3.1 & Kai 2013-09-03 06:18:10
OptionTool_Checkboxes #.Demo tfm 3.1 6 Kai 2013-09-03 12146118
OptionTool_RadioBtns FDemo tfn 3.1 5 Kas 2013-09-03 13:53:05.
SelectionTaol List MultiSeliContained £.Demo tin 3.4 6 Kai 2013-10-1% 08:40:07
SelectionTool_List _MultiSelfContainedsigFont £Demo tim 3.1 6 Kai 2013-09-03 14:44:22
SelectionTool_List_SimpleSelfContained #.Demo tfn 3.1 6 Kei 2013-09-03 14:45: 11
SelectionTaol_Teble_MultiSelContained #.0emo tin 3.1 13 Ked 2013-09-03 14:46:07
SelectionTaol_Table_MultiSelfContaineduithCheckboxes #.Demo tin 3.1 13 Ket 2013-09-03 14:47:00
SelectionTool_Teble MultiSelfConteinedWithCheckboxesBigFont #.Demo tfn 3.1 1% Kei 2043-09-03 14:48:31

YesOrNo #.Demo tin 3.1 3 Kai 2014-08-15 15:47:52

[76hitsfoundin 10 11 APL cbjecs from 1 containern 0,04 secands processing ime [37.3-201608-11 y

That has reduced the number of objects down to 10.

We already know that all remaining objects do need to be changed but we also
know that some of them have references to #. which must remain unchanged.
There is no escape route; this problem cannot be solved automatically. However,

Fire can still be of great help in this situation.

After a click on the “Replace” button we modify the default setting of the “Replace”

dialog box:

@ Fire - Replace - Development

Help
ﬂ Search far

x|

0l Replace by

Copy | |

[~ Multi-line

Je.cur.

hanges
[~ Markthem

Type

_— omparison report
i i

 Allinone go

! Compressed

® One by aone & Full

ISame line vl

[~ Delete lines with hits | I

Freview | Cancel |

Note that here we assume that you have installed the excellent 3rd-party tool

“Comparelt

”

on your machine. If that is not the case than a very basic built-in

83

VECTOR Vol.26 No.2&3

comparison tool will be used.
This allows the user to accept - or deny - changes on a hit-by-hit bases for one
object after the other:

R 20148151624669610_Kaldyalog + 201481516246698104_Kai dyalog - Compare It 4.2 Ny -lafx|

Fle Edt Merge View Options Took Heb

File' ‘sample.ico’)
OrNo'Are you really sure about this?

ile' ‘semple
es0rNo"Are you really sure sbout

15.08.2014 16:02:46 | WIN UTF8 | |ox20 () | col 1 |tn 3 | 15.08.2014 16:02:46| WINUTF8 | |ox20 () | Col 1|t 3

Tovercase-#.GUIL APLTreeUti (s . Lovercase
Lovercase~#.APLTrect 1Ls. Lovercase

Ready [Defautt Profie [Source Only [Terget only [Changed (2) IV [EDIT [T | OVR [CA 4

The highlighted areas can be moved from the right pane to the left by clicking at
the arrow(s) but not the other way around: the icon shown in the caption of the
right pane indicates that the right pane is read-only. You can also simply edit the
code in the left pane.

Either way, we should end up with the following and the problem is solved.

€9 20148151624669610_Kaldvalog + 201481516246698104_Kal dyalog - Compare It 4.2 -1olx|

He it Mewe Vew Optons Took ey
HiH O B89 F ELNcRT Fosd2e

Let

myGus (<'File’ ‘semple.ico’)
e50rNo"Are You reslly sure sbout Ehisi’

4 [7_-myGuiParms #.Dislogs.

15.08.2014 16:02:46 | WIN UTFS | |0x2190 (<) |Col 2| 7 | 15.08.2014 16:02:46 | WIN UTF8 | Jox20 () |col 1| 7
Ready [Defauk Profie [Source Only [Target only [Changed (2) [I¥ [EDIT I~ [OVE [CAFS [UM /|
Case study II.

With version 3.3.0 Fire itself changed its user interface: a new check box “Strict”
became available:

The option is active only when the “Match APL name” check - gptions ———
box is ticked. With both check boxes ticked an entry like Foo. [Match case i
in “Search for” is rejected by Fire. With just “Match APL [~ Match APL name
name” ticked but not “Strict” you can search for Foo., .Foo or [~ Strict

.Foo. and it will find such strings while a reference to Foo [atch full lines only
without a dot won’t be found. In April 2014 I realized that [Match number
this is a very useful feature and added it immediately to Fire.

That posed a problem: Fire comes with a large set of test cases: at the time of

84

VECTOR Vol.26 No.2&3

writir;g 121. The vast majority fires up the GUI and then sets properties. This is
how a typical test case looks:

R«Test_Search_001(stopFlag batchFlag);n;0OTRAP
A Search for "a" everywhere with "Names only"
OTRAP«<(999 'C' '. a Deliberate error')(0 'N')
R<1

A Preconditions
1 #.Fire.Run 0
n<#.Fire.GUI.n

n.SearchFor.Text<'a'
n.LookIn.Text«'#'

.Case.State<0
.APL_Name.State«0
.FullLineOnly.State<«0
.AsNumber.State<0

3 3 33

.Vars.State«1
.FnsOprsTrad.State«1
.FnsOprsDirect.State«1
.Classes.State«1
.Interfaces.State«1

33 3 33

n.ScriptedNamespaces.State«1

n.Code.State«1
n.NoComments.State«1
n.NoText.State<0
n.CommentsOnly.State«0
n.TextOnly.State<0

n.NamesOnly.State«1
n.HeaderOnly.State<0
n.LocalsOnly.State<0

n.NamedNamespaces.State<«l
n.UnnamedNamespaces.State«<0
n.Guilnstances.State«1

n.Recursive.State<1
n.RecursiveOnelLevel.State«<0
n.RecursiveNone.State<0

n.Negate.State<0
n.ReuseSearch.State<0
n.acre.State<0
n.acre.State<0

{}aSelect n.StartBtn

AProcess n.Form
+PassesIf(0<02pn.HitList.ReportInfo)
A Tidy up

CloseFire
R<0 A Okay

These lines pose the problem:

85

VECTOR Vol.26 No.2&3

n.Case.State<0
n.APL_Name.State<0
n.FullLineOnly.State<0

After

n.APL_Name.State<«0

there should be a line:

n.StrictOnNames. (Active State)«0

That can be achieved with Fire quite easily. First we search for n.APL_Name.State
justin #.TestCases:

x|
Fle Edt Reports Help

Ml Searchior

[r-APL Name 5 tote] =l
Ml Statlocking here:

[r-Testcases

[~ Qpions.] bject types o o i ol ontainer [~Fecursive T
[Z Match case [~ Veriables [Classes @ Full source code ¥ Hemed nemespecas & Ful

I~ Nemes cnly {INL) mEd e spECas ul
I~ Match APLname | | [7 Tradfssoprs [~ Class instances. ™ . butignore comments
I~ [Stict [¥ Ditectfns +opis [Interfaces ™ butignore text I~ Headegs only I Unnamed namespaces | | € None
I~ Match fyllinesonly | Al | Nane ¥ Scripted NS € Comments only I~ Lol o7y [~ GUIInstances: € Justone lavel
I Metch number € Textonly
Eind Replace. I~ Megetesearch [[Searchpitlist [[Tellacre i I KeepFire ontop.

Name [Location | Type| [INC[L[Hits|Modified by| Modified on

Test_ocre_001 #.TestCoses tin 3.1 T Kt 2014-08-15

Test_aere_002 #.TestCases tfn 3.1 1 Ket 2014-08-15

Test_List_001 #.TestCases tfn 3.1 1 Ket 2014-08-15

Test_List_002 #.TestCases tfn 3.1 1 Kai 2014-08-15

Test_List_003 #.TestCases tfn 3.1 1 Kei 2014-08-15
[Test_L1st_ ooy #.TestCoses tin 3.1 1 Ket 2014-08-15

Test_Lizt_008 BoTestCases tfn 3.1 1 ket 2014-08-15

Test_List_006 #.TestCases tin 3.1 t Kei 2014-08-15

Test_List_007 #.TestCases tin 3.1 1 Ket 2014-08-15

Test_Mize_001 #TestCazes tfn 3.1 t Kes 2014-08-15

Test Misc 002 #.TestCases tfn 3.1 1 Kei 2014-08-15 =
160t feund n 160 of 221 APL objects from 106 cortamer i 0.2 saconds processing tme 373-20140811 y

“Report hits” confirms that we are on the right path, although it also shows that
sometimes the “APL Name” check box is ticked and sometimes it isn’t, so we need
to carry out the work in two steps:

86

VECTOR

Vol.26 No.2&3

-loix

Special Help
Name [Type[~][t- #-Testcuses.Test_acre_oot =
[3 o —
1 #.TestCases.Test_acre_001 3.1 2. #.TestCases.Test_acre_002
2 #.TestCases.Test_acre_002 3.1 [37] 0
3 #.TestCases.Test List 001 3.1 o I -
L #.TestCases.Test_List_002 3.1 T k. t.Tmlessas Test | L!;l 002
5 #.TestCases.Test_List_003 3.1 5 ‘ Tasto T l L t_003
6 #.TestCases.Test List _00% 3.1 o) e
7 #.TestCases.Test_List_005 3.1 6. #.TestCases.Test | Li;(oon
B #.TestCases.Test_List_006 3.1 finl neanL - L \ 003
9 #.TestCases.Test_List_007 3.t tia) NS
10 #.TestCases.Test_Misc_001 3.1 B. Lm;muzs,m;LL t_006
11 #.TestCases.Test Misc_002 3.1 Jio) NS o7
12 #.TestCases.Test_Misc_003 3.1 [ia] | 3 o
13 #.TestCases.Test Misc_00b 3.1 10. #.TestCases.Test_Misc_001
B [13] 1
14 #.TestCases.Test_Misc_005 3.1 11. #.TestCases.Test Misc 002
15 #.TestCases.Test_Misc_006 3.t [13] T
16 #.TestCases.Test Misc_007 3.1 1[1-]'ATESlCES!S~TESl Misc_003
. 13 1
17 #.TestCases.Test_Misc_008 3.1 13. #.TestCases. 12;& . Mizc_oom
18 #.TestCases.Test_Misc_009 3.1 i3]
19 #.TestCases.Test MultipleOps_001 3.1 l" l‘ TastCases. Test Misc_00s
. -t
20 #.TestCases.Test_MultipleOps_002 3.1 ’5 ‘ TestCoses. Tesl Hisc_006
21 #.TestCases.Test MultipleOps_003 3.1 131
22 #.TestCases.Test_MultipleOps_004 3.1 16. 8.TestCases. TES(_Hise_007
. [13)
23 #.TestCases.Test_MultipleOps_005 3.1 17. #.TestCases. Test Misc_008
24 #.TestCases.Test _MultipleOps_006 3.1 =l cim
< | v 18. #.TestCases. Test_ms:_oos _I

Next we repeat the search for

n.APL_Name.State<1

simply because that will result in lesser hits. Indeed we get just 43 hits:

File Edt Reports Help
Ml Searchfor

[p-APL Name_state-1]

[l Stat|ooking here:

[F-Testoses

Options] bject ypes] can iT] ontainsr

¥ Match case I [Vericklas @G @ Full source code ———

I Match APLnsme || [7 Tradfns s oprs [~ Class mstances | [. butignare comments | | I Nemes only {IhL) Sfacee
I |Btic: [¥ Directins s oprs [7 Interfaces [~ butignare text I~ Headerz only I~ Unnamed nemespaces

I~ Match fullines only

I~ Match number

80| el

¥ ScriptedNS

C Comments only [~ GUllnstances

C Textonly

I~ Uocaisony

cursive

& Full
€ None
€ Justone level

Find Replace.

™ Negateseerch il [Searchhitist ff [7 Tellacre i

I KeepFite antap

Fectars defaufis |

[Type] []nc\ I[Hits|Modified by|[Modified on

Name [Location

Test_List 007 #.TestCases tfm 1
Test_Mise 001 #.TestCases tfa 3.; t ke
Test Misc 002 #.TestCases tfm 3.1 1 Ket
Test Misc_003 #.TestCases tfn 3.1 1 ke
Test Misc 004 #.TestCases tin 3.1 1 Kei
Test Misc 005 #.TestCases tfm 3.1 1 Ket
Test_Replace 001 #.TestCazes tfm 3.1 t ke
Test_Replace O+ £.TestCases tfn 3.1 i Kai
Test Replace 065 4.TestCases tfm 3.1 1 ket
Test Replace 066 #.TestCases tfn 3.1 1 Kei
Test Replace 067 #.TestCases tfm 3.1 1 Kei

2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15
2014-08-15

=

(43 ms found n 43 of 221 APL objects from 106 cortaners in 0,17 seconds processing time.

373-20140811

87

VECTOR

Vol.26 No.2&3

Help
Hl Searchfor

x|

Hl Replace by:

Copy |

v hult-line
[n.APL_Name.State-1 -]
n.StrictNames.(Active Stjte)=i
Type Comparison report Changes
4 4 [¥ hdark th u
€1 Allinenego ¢ Eompressed @ o

® CUne byvone & Ful

[Deletz lines with hitz u

Presdew Cancel

Same line -I

[+ 2014-04-25 by Kat & Fir:

In “Replace” we first tick the “Multi-line”

check box and then repeat the search

string followed by a second line with the statement (line) we want to add:

Note that the “Mark them” check box is ticked and the combo box underneath
carries “Same line”. That means that the added line will be marked, by default by

the string:

A 2014-04-29 by {0AN} & Fire

After a click on “Preview” we can check the results for one function after the other:

R 20148151627551437.

dvalog + 201481516275567_Kal dyalog - Compare It 4.2
Text~"Hello" n.Searchfor. Text~"Hel Lo’
| exte'#.TestDats.Refs’ n.LookIn. Text~'#.TestData Refs" J
= SERte)ST W Z0Te0s20 by KaT £ Five a
e Statel1 n 2014-0-29 for version 3.3.0 Ve State)i n 2010-0s-29 for version 3-3.0
n.Vers.State-t 19 n.Vers.State-t
n-FnsOprsTrad.State-t _lj 20 nlFnsOpraTrad.statet -
15082014 16:27:55| Wi US| JosE @ ol 1 s | 15820 162755] wivuTes| I- Jcol 1
T oSErictRancs (Aetive SEate)=1 w Z00+-0v-29 by KaT T Fire

Ready o[4

For a large number of changes this can
turn out to be annoying. However, if you
feel confident that everything will just be
fine you can tick the "Carry out any
remaining changes without further ado"

@ Fire : confirm fix (1 of 43)

Sure thatyou want establish the changed abject
Test_List 007
inthe workspace?

[~ Camy outany remaining changes without further aco (dangerausl)

Eix Skip | Qﬂm:e\l

check box and you are done:

Of course that is dangerous, so keep a backup! In a separate step we can repeat this

for

n.APL_Name.State<0

88

VECTOR Vol.26 No.2&3

and add

n.StrictOnNames. (Active State)<«0
We have changed more than 100 functions within a matter of minutes.

Note that the “Strict” option has a different meaning when you search for # or ##.
Let's look at an example: in a WS we have just 4 objects, two class scripts
(APLTreeUtils and WinFile, both members of the APLTree project[2]) and two
functions located in an ordinary namespace #.MyApp:

V Run;A
[1] A<#.APLTreeUtils
[2] AWSID<A.Uppercase OWSID
[3] #.WinfFile.PolishCurrentDir
[4] WorkHorse €

v
v {r}<WorkHorse.WorkHorse dummy
[1] r<o
[2] O«##.WinFile.PWD

v

The coding of the functions does not make too much sense but they are good
enough to highlight the topic. Note that Run carries references to # and ## while
Workhorse carries only a reference to ##.

Now let’s assume that we want to use these two functions in a user command by
copying the code over to a user command script. Although with Workhorse that
would work without further ado, Run might or might not run because it relies in
WinFile and APLTreeUtils to live in #. If they are not to be found in # the user
command generates a VALUE ERROR.

Of course a user command should not make such assumptions: instead it should
refer to the parent for utilities and stuff. In practice however this scenario might
well occur because the application might have been written without considering it
to run as a user command one day. It is also quite easy to try to address an object
with ##. but occasionally to address it as #. anyway. Worse, running the
application in normal mode would not reveal such problems because both ways
would work just fine.

In short, to convert an application into a user command we need to find all
references to#. and convert them to ##. while all references to ## can be left
alone. The problem is that searching for # or #. would not help because it would
also find ## or ##. .

“Name” and “Strict” to the rescue: with both options ticked Fire will perform some
sort of special search that deals with the problem. In our case Fire would ignore

89

VECTOR

Vol.26 No.2&3

Workhorse because it does not contain any reference to # . The function Run would
change; here the change preview:

=
No | Name Type ;I
1 #_MyApp.Run 3.1 :-]#-MY‘PP-RU“ (3.0
1
A~#8 . APLTreeUtils
A+# . APLTreeUtils
Fix changes Cancel

|One item s ticked

Finally I want to draw your attention to the boxes displaying
an “1” for information: these are links to Fire’s help file. For

example, clicking at this

brings up the help page that is associated with that very

topic:

e = A 5

Special search..

box: [~ Mames only (]
[~ Headers only

[~ Locals anly

Hde Back Forward Home Print Options

j oduction
& [searching
2] “Search for”
2] “start looking here”
2] Report hits
@ options
@ Object types

Container
Recursion
Negate search
Search hit list
Tell Acre

The hit list
Editing
Defaults

@ Replace

@ Reports

= [Misc

Tips and tricks
Installing Fire
Comparelt!
SALT & Fire
Smelling Code
About: Kai Jaeger

Special search

This group of options offers additional filters:

Names only (ONL)

Restricts the search to just the names (ONL) of APL objects.
Note:

1.The "Scan" options have no effect when "Names only" is ticked.

2. The "Object types" group is honoured but only in the sense that the
names of the selected objects are investigated. For example, when
"Classes" are ticked and you search for "foo" than all classes carrying
"foo" in their names will be found. Functions and operators within
classes however won't be found even if they carry "foo" in their
names, too. There is no way to detect such functions and operators
via a "Names only" search.

3. Searching for names will always include ordinary namespaces.

Note that "Names only" and "Headers only" are the only search
operation that can make a namespace script appear in the hit list.

Headers only

Note that only traditional functions and traditional operators are
searched when "Headers only" is ticked. This is because dfns and dops

be searched with a "Names only" filter anyway.

This restricts the search to just the headers; that is the names of the...
« explicit result

« arguments

o local variables

NoteS:

« From the "Scan" options for obvious reasons only "But no comments"
is honoured.

« "Names only" and "Headers only" are the only search operation that
can make a namespace script appear in the hit list.

Locals only

have neither a named result nor named arguments while their name can _|

90

VECTOR Vol.26 No.2&3

Over time you might find all these information boxes distracting. No problem,
unticking the menu command Help > Show info buttons make them disappear:

Converted into a Word document Fire’s help file comprises 33 pages. Scanning a

workspace and trying to change selected objects can be a surprisingly complex
business.

Although this article describes just a few of the features of Fire I hope you agree
that these already proved how valuable Fire can be when dealing with legacy code.
However, Fire offers many features which make it also a useful tool when dealing
with non-legacy code as well.

Fire is part of the APLTree project[2,3] and as such sort of Open Source[4]: you can
use it freely, you can contribute to the code basis or even take a copy and modify it
for your own purposes and do whatever you like with that code.

Fire has its own page on the APL wiki[5] and can be downloaded from there[6].

References

=

acre's home page on the APL wiki: http://aplwiki.com/acre

. “Sharing code: the APLTree project” by Kai Jaeger, Vector 25-3,
http://archive.vector.org.uk/art10500730

. The APLTree project on the wiki: http://aplwiki.com/CategoryAplTree
The APLTree project license: http://aplwiki.com/AplTreeLicensing
Fire's home page on the APL wiki: http://aplwiki.com/Fire

The APLTree download page: http://download.aplwiki.com/apltree/

N

o va W

91

http://aplwiki.com/acre
http://archive.vector.org.uk/art10500730
http://aplwiki.com/CategoryAplTree
http://aplwiki.com/AplTreeLicensing
http://aplwiki.com/Fire
http://download.aplwiki.com/apltree/

VECTOR Vol.26 No.2&3

Writing a simple Japanese dentist office
system in APL2

Kyosuke Saigusa, APL Consultants of Japan Ltd.

Introduction

We have written several office systems for small businesses mainly to explore the
potentials of APL2. Some of them have been used daily for ten years or more. They
all run under IBM workstation APL2 runtime. Users do not know what language is
being used, nor need to. I would like to introduce my current work which aims to
address a rather wider range of users for the first time. It is an office system for the
dentists in general working under the Japanese health insurance setup. It is said
that we have more dentist offices than the number of convenience stores in this
country and many of them cannot afford to use expensive commercial systems.

System QOutline

It consists of the following four modules as represented in the figure shown in
Fig.1.

1. Client information(Upper left box on the left)
2. Reservation information(Upper right box on the left)
3. CARTE information(Lower left box on the left)

4. RECEPT* information(Lower right box on the left)
*note: document to submit to the national insurance union for insurance

claims.
: In the screen, the left side four boxes
MRS RIEY AT L (DENTTST) represent the referenced modules and
BREBEED DL TAER the right side table shows a list of clients

in the waiting room.

WEE 20134F10A198 (1)

Upper two boxes are mainly used by
clerks at reception desk, and the lower
boxes are for dentists to use. These can be
concealed as required.

Fig. 1: Startup screen to enter the four modules

92

VECTOR Vol.26 No.2&3

The system operates on Microsoft Windows XP and later versions. It is installed at
respective user sites but linked via VPN to our centre for maintenance.

Client information module

The following screen records client personal information regarding the means of
contact, social insurance and government subsidies. This is used to record the time
the client has arrived at the dentist office, to alter the personal information
recorded, to issue bills and prescriptions after treatment and to link to the
reservation module by way of a popup menu.

s For a new client, a unique client number

o is automatically assigned. Initial
- - information and later alterations can be
‘ s 1936 (83F011) F4H 8HE ;
(2520335 [AA)IIRRIEErhrb G M 150 7 entered manually or for some items by
B (027782127 ||t J#A way of menus. Automatic translation of
— national post code is also implemented.
139141530
iweqywu F2649A 308
} i Filz3tFaA 88
B /RO EFIID BEERLED
LMt
[51146017 Syl
3’)[’\1}0'3‘?

Fig.2: Client information screen
By way of mutually exclusive control of

the AP 211 of the IBM APL2 interpreter, multiple screens can be operated
concurrently by clerks for different clients. The recorded data is accessed for read
and write by different modules simultaneously as well. The data takes the form of
APL2 general arrays and hence it is flexible, powerful and easy to handle by APL2.

Reservation information module

This module can be started via the link from the client information screen to enter
or to alter the reservation date and time. As any desired date box is clicked, the
reservation status list is shown for the date. As you click the time zone on the left
of the list, the set of client name and number is automatically entered and upon
confirmation, it is recorded in the database. Aside from the client number and the
name, you can also specify the kind of treatment and expected time required to
finish the treatment as an option (probably by dentist).

When the reservation screen is entered directly from the main screen, it only

93

VECTOR Vol.26 No.2&3

worKks as a reference and the contents cannot be altered.

The calendar is shown by weeks and calculated by APL2 to begin with the current
week. The national and public holidays are centrally entered, based on the public
web information by the central maintenance via remote access.
Scheduled operating dates and off-days/time information can be entered and
maintained at individual dentist offices. The calendar can be scrolled back and
forth between the current week and any pre-specified future week. Each hour on
the calendar is made to accommodate up to five clients, divided optionally by
fifteen or thirty minutes.

= —_— = Dentists are entitled to charge additional

‘| fees from the clients and the insurance
union, if the treatment is done at an
irregular time.

s sses| w66 |)

(TSP aETT™

Fig 3: Reservation information screen

CARTE information module

Each client (patient)’s ailment and treatment information is recorded in the same
format as the officially designated form of the ministry of labour and welfare for
compatibility with the manual systems. This is a single sheet form which records
ailment information on the first (front) page and treatment information in the
second (rear) page. These two pages are shown side by side on the screen, so that
the related information can be viewed at a glance and new data entered with
minimum errors. The records can be viewed historically by scrolling. The
advantage of this approach is that it can eliminate the need to store an increasing
volume of physical paper documents in the office and to search for the appropriate
page of the documents in a short time. The target document page is displayed on
the screen any time for reference and for hard copy printout if required. The
documents are dually recorded in the center at specified intervals for back-ups
and recovery of user data in case accidents occur. The dentist can enter the name
of the ailment and code and the ailing teeth, if any, by mouse click on the
illustration of the teeth in the first page. Treatment is entered from the multiple
selection popup menu in tree structure, together with the date of treatment and
the fees in points with appropriate calculations.

94

VECTOR Vol.26 No.2&3

Patient’s personal information is entered
L. o™ | as you click the client number from the
z list of clients in the waiting room, which
is shown as you click the blank space

The registered ailment names and codes
are shown in the popup menu by
category in tree structure to select from
to avoid errors in entry.

ER I

i

Fig.4-2: Popup menu to enter ailment The names of the ailment are recorded in

historical order in the next line without

limit. The lines scroll automatically as the space runs out for new lines or manually

when the past records are referenced. The treatment information on the right page

relating to the selected ailment line framed in red on the left page also changes
automatically.

Both pages permit alterations and deletion by the discretion of the dentists. The
treatment information is entered or altered by selecting the target line on the right
page. Each line records five items: date of treatment, treated teeth, treatment, the
fees in points and other information. Today’s date is automatically recorded but if
this column is clicked, a popup calendar allows the alteration of the date. When the
treated teeth column is clicked, a popup menu appears to select the teeth to treat
from the list of ailing teeth recorded on the left page for this ailment. When the
treatment column is clicked, a popup menu appears, showing the possible kind of
treatment, care or medicine in tree structure for multiple selections to replace the
previously selected list of treatments for the same day if any. De-selection works
this way. Points are automatically calculated according to the rules set by the
national dentist union and insurance union.

95

VECTOR Vol.26 No.2&3

IR ST, =n
oM OB oW
T 2- 2 3 AT T
samms 51146017 |feasn miensae =
Fe1imnT =

CUMFHDET 182
DU NH: 4B
DR EME.4250
CEENR: 1BD
MR D
oiiEEEL 1620
CREEER:+175
BENW: 250

UEEMET 40

-]

T

W L

AR 0

EEh

Fig.4-3: Popup menu to enter treatment and care

RECEPT information module (currently being built)

] I AFZY CEESE, i — VI Ay CERIFET .
fraag i kR RBg EnEm-p ﬂ‘“:.“
D FRZ5F IMH 18 NO0OKOX & roniiam)

‘l‘ |\I|

'glgllﬁlzlsle

[]

2 e |
s 1m e 1M ax smoaw i _S
FII&MMM
s
g o
2 58
H S P ey
2 LI BN EET N L T) il
- I S T ST
| Erar— Y N [oa [mef=nl-sfce [mm]
[v) - - Tal I
=0 Co—r PR n
= = i ik
ws == tR3 R
-] ‘l zn
. I. H H i Ew
- ————
- [l ls L1
=
P 0 i—
2 [B

L IERLEE RN]

G

96

VECTOR Vol.26 No.2&3

Fig 5: RECEPT information screen

RECEPT is an official document dentists are required to submit to the national
insurance union for insurance claims on monthly bases for each client treated
during the past month. Theoretically, RECEPT is created automatically from
CARTE, if the information there is all correct. In fact this is where dentist offices
spend much time to eliminate entry errors to avoid rejection and repeated re-
submission and penalties. Therefore, this document can be viewed for any errors
with references to the details recorded in the CARTE before submission to the
insurance union by hard copy or optionally via internet.

The form of the RECEPT is printed in very small characters , therefore when it is
viewed on the screen, the system can augment the displayed size of the copy and
permits scrolling of the drawing by mouse drags to view the entire copy in details
and also for the last-minute corrections.

Why APL2 is suitable to write small systems

Through my observation of the development of APL2, I understood that IBM has
used a tremendous amount of energy and brains to make it a practical tool to
develop computer applications to the present day level. To us in the Far East,
symbolic representations of the primitive functions should be the best choice to
convey the precise meanings at a glance like Chinese characters, which we have
been using over centuries. Aside from the philosophy of the language itself, I must
say that existence of the auxiliary and associated processors have played
indescribably important rolls to make interface programming very easy and
simple. Hence it is easy to introduce internet access for the reservation by way of
PC or smart phones and the like with the use of QR code or regular bar code. Here
APL2’s AP 119 socket interface and HTML helps.

Writing programs in APL is quite private in the sense that it depends much on
personal interpretations of the effects of limitless combinations of simple
functions, analogous to the game of GO. This aspect of the language makes it
difficult to produce extremely large application systems by groups of programmers
without failure.

On the other hand, small systems require only a small team of application experts
and a single well-trained and qualified APL programmer.

Small systems can grow into more comprehensive systems in time as I aim to make
this dental system eventually to cover the entire segment of professional medical
doctor’s office systems in town because they all run under the same public
insurance system.

97

VECTOR Vol.26 No.2&3

98

VECTOR Vol.26 No.2&3

J-ottings 57 Heavens above!

by Norman Thomson (ndt4@btinternet.com)

J-ottings 56 decribed the development of a verb rotate which, given a left
argument (axis, angle) delivers the result of performing a 3-D rotation of a point
whose coordinates form the right argument. axis is defined by the three
coordinates of any point on it other than the origin, so the left argument is a 4-item
list. Here, repeated from J-ottings 56, is the verb rotate along with its subverbs :

rotate=.] - (m1 *x rmdata) + m2 * }:@[xp]

rmdata=.rm@dircos@(}:@[) +/ .x] NB. rotn matrixxdata
rm =.(id - x/~)@dircos NB. rotation matrix
id=.=@i.@# NB. identity matrix

dircos=.% %:@(+/@:x:) NB. direction cosines

xp=.4% : ‘1 _1 1xdet each<”(2) 1+\.(dircos x),.y’
NB. normalised cross product

det=.-/ .x NB. determinant
each=.8&>
mi=.-.@(280.@({:@[)) NB. (1-cos angle)
m2=.180.@({:@[) NB. sin angle

David Edwards has pointed out that the verb xp the above delivers the normalised
cross-product; if a conventional cross-product is required as part of another
application, magnitude must be taken into account by e.g.

mag=.%:@: (+/)@:x: NB. magnitude
xprod =.4 : ‘(mag x)*x xp y’ NB. cross-product
04 5 xprod 2 1 3

7 10 _8

In this article rotate is used to perform some basic calculations in astronomy. Trig
ratios as well as conversions to and from radians and degrees are frequently
required, and so it is convenient to define in advance a few utility verbs :

dtor=.180%~o0. NB. degrees to radians
rtod=.dtor”:_1 NB. radians to degrees
sin=.180.@dtor NB. sine (angle in degs)
cos=.28&o0.@dtor NB. cosine (angle in degs)
asin=.rtod@(_180.) NB. arcsine in degrees
acos=.rtod@(_28o0.) NB. arccosine in degrees

Plotting star movements

This is a special case of 3-D rotation in which all data points in the heavens are
identified by two rather than than three parameters. Astronomers measure star

99

VECTOR Vol.26 No.2&3

positions as observed from Earth in angular rather than Cartesian measure.
Specifically the two angles used are altitude A which corresponds to celestial
latitude, and azimuth Z which correponds to longitude in terrestrial
measurement. The stars themselves lie on the surface of a sphere called the
celestial sphere which is continuously rotating about the extended Earth axis and
on which every star has a latitude and a longitude which are called respectively
declination D and right ascension ra. Analogous to the Greenwich meridian on
Earth the celestial sphere requires an arbitrary zero line or celestial meridian
from which ra is measured. This is conventionally taken to be the first point in
Aries, which is observable as the rightmost star in the constellation Cassiopea.
Azimuth is often measured in sidereal hours, minutes and seconds rather than
degrees; the significance of sidereal is that a sideral year is one day longer than a
solar year, that is the fixed stars appear to rotate at a slightly slower speed than
the sun, the difference being about four minutes per day. Stars rise in the east and
set in the west, and so to an Earth-bound observer looking outwards to the Pole
Star, the celestial sphere appears to rotate in an anticlockwise direction.

To convert star positions defined by A and Z into (x, y, z) coordinates assume the
x-axis runs west to east, the y-axis south to north, and the z-axis upward. The
plane x=0 is then a meridian on a fixed celestrial sphere from which Z is measured
clockwise. (x, y, z) coordinates are then given by

x=cosAsinZ; y=cosAcosZ; z=smnA

Inverting these formulae to convert from (%, y, z) coordinates to (A, Z) coordinates :

1y -l X

A=sin'1; Z=cos8” or sin
: V12 V12

Transits

z A star is said to transit or culminate when
it is at its highest point in the sky when
seen by an observer on Earth, at which
time x=0. The diagram below shows a
circle of celestial longitude through the
transit point T of a star S as it traverses

> ¥ its daily circuit shown as a dotted line :

N is the zenith, P is the Pole Star. As S
moves on from transit, the curved
triangle NPS comes out of the page
towards the reader.

100

VECTOR Vol.26 No.2&3

Side SP is 90°-d where d is S’s declination.
Side NP is 90°-1 where | is the observer’s latitude.

The lengths of both of these remain fixed as S progresses.
Q1 and Q2 are points on the celestial equator.
Quantities which change as the star S proceeds along its course are :

side NS = 90° - A where A is the altitude;

angle NPS = the angle of rotation about the polar axis, known as the hour
angle;

angle TNS = the terrestrial azimuth Z based on the transit plane as zero
meridian.

The diagram below shows the same cross-section of the celestial sphere through
the plane x=0 for a specific star with declination 20° observed from a latitude of
50° North. 40 + 20 = 60, and so the (x,y,z) transit coordinates are (0,cos (180-60)°,
sin (180-60)°), that is (0,cos 120°, sin 120°).

Transit

Earth's Equator

90°- 50°=40°

This diagram can be generalised to show that the altitude at transitis (90°-1) + d

101

VECTOR Vol.26 No.2&3

provided that d < I as in the case of the star illustrated. This star transits south,
that is to the left of the zenith and dips below the terrestrial horizon for at least
part of its circuit. If d > 1 a star is circumpolar and transits north. Here the altitude
at transit is (90° + 1) - d, or combining the two cases, the altitude of every star at
transit is

90° - abs(l - d) .
Plotting star positions

Unlike locations on a geographical map, a star’s position has time as a parameter,
which can be either local time - where was a star six hours ago? - or time by year
- where was it three months ago at the current time of day? The star sphere
appears to Earth observers to revolve from east to west around the pole,
completing a revolution in a sidereal day which is shorter by 1/365th of a day
(that is approximately four minutes) than the solar day. Thus the position of a star
six hours ago (% of a day) is the same as its position three months ago (% of a
year).

For example, consider the star illustrated above with declination 20°, and ask what
are the (x,y,z) coordinates of its position six hours earlier, that is when the hour
angle is -90° . The list ‘0, cos x, sin x’ is required sufficiently frequently in defining
axes and points that it is convenient to have a verb

cs=.0,cos,sin NB. e.g. rotn. axis in y-z plane
((cs 50),dtor _90)rotate cs 120
0.939693 0.219846 0.262003

This result can be confirmed by spherical trigonometry applied to triangle NPS
(see next section).

The next step is to make the hour angle a parameter (clockwise 90° = anti-
clockwise -90°):

v=.monad :'((cs 50),-dtor y)rotate cs 120';

and plot values as this moves towards transit at 10° intervals :

v each 90 80 70 60 50 40 30 20 10 O

0.9% 0.22 0.262
0.925 0.0948 0.367
0.883 _0.0264 0.469
0.814% _0.1% 0.564
0.72 _0.243 0.65

0.60% _0.332 0.725
0.47 _0.40% 0.785
0.321 _0.457 0.83

0.163 _0.489 0.857
0 0.5 0.866

102

VECTOR Vol.26 No.2&3

More generally, it is useful to convert time to angular measure with 24 hours being
equivalent to a complete rotation, which suggests three more utility verbs :

ttor=.0.8&(%&43200@(60&%#.)) NB. time (hms) to radians

ttor 12 0 0 NB. check 12 hrs = pi rads
3.14159

dtot=.60 60 608&#:@(*&240) NB. deg to time (hms)

dtot 180 NB. check 180 deg.= 12 hours
1200

atod=.%&3600@(60&#.@(38{.)) NB. angle(deg,min,sec) to degrees

atod 49 15 NB. check 490 15’ 0” = 49.25
49.25

The cooordinates of the above star 15 and a half minutes after transit, are given by

((cs 50),ttor 0 15 30)rotate cs 120
_0.0635044% _0.498354 0. 864645

that is a little bit to the west, a shade less south and a bit lower, all as expected.

Spherical Trigonometry

The cos formula for a spherical triangle ABC states that if a, b and c are sides
measured in angles, and A, B and C are the angles between the sides with A
opposite a, etc. then

cos a = cos b cos ¢ - sin b sin c cos A

Although the sides are nominally measured as angles they are nevertheless lengths
- length being defined by the angle subtended at the centre of the sphere.

There are two forms of ‘Pythagoras’ theorem’ in spherical trigonometry, viz.

if cosA = 90° (n.b. do not confuse this A with A = altitude)
if cosc = 90°

Applying this to the first diagram above, triangle NPS has sides SP=(90° - d),
NS=(90° - A) and NP=(90° - 1), and angle NPS is 180° - Z, so in general .

In the worked example angle P was chosen to be -90° and so the first ‘Pythagorean’
form applies, that is, for the star with declination 20° observed at 50° latitude, the
altitude six hours earlier is given by :

sin A = sin 50° sin 20°

103

VECTOR Vol.26 No.2&3

The values of sin A and cos A are thus given by,

JsinA=.x/sin 50 20 NB. sin Altitude = z coordinate
0.262003

JcosA=.cos asin sinA NB. cos Altitude
0.965067

The sine formula in spherical trigonometry states that

sinag _sinb _sinc
snAd sinB sinC

Apply this to triangle TNS. The dotted line is a circle of latitude and so angle
NTS = 90°. If the hour angle P is 90° the side it subtends at the celestial equator is
sin 90° = 1, hence the dotted line TS at declination 20° has length cos 20°.

cos 20Y _ cos 4

Thus ~g—7==—7

JZ=.asin(cos 20)%cosA NB. azimuth
76.8322

which enables the x and y coordinates to be found using formulae given earlier :

cosAx(sin,cos)Z NB. x,y coords
0.939693 0.219846

The case of the sun

Unlike other stars whose declination is constant, the sun’s declination varies in the
course of a year from -23.5° to +23.5° and back again. At sunrise and sunset the
sun’s altitude is zero, so side NS of triangle NPS is 90° and now the second
‘Pythagorean’ form applies to give

sind = cos / cos Z

at these times.

From this

cosZ:Zgl—sc;
Then using the sin formula,

sinP=%

where P is the hour angle.

104

VECTOR Vol.26 No.2&3

Consider London (latitude of 51° 30) on the 21st December when the sun’s
declination is -23° 30, and its altitude at noon, that is at transit, is (90° - 51° 30") -
23°30'=15°00.

JZ=.acos(sin 23.5)% cos atod 51 30 NB. azimuth
50.17

JP=.dtot asin(sin Z)%cos 23.5 NB. time to noon
3 47 27.2637

that is, in midwinter the sun is above the horizon for about 100+360 of the day or
7% hours.

Now use rotate to spin the sun from noon for 3 hrs 47 minutes and 27.26
seconds:

lat=.atod 51 30
dec=.atod -23 30
tim=.3 47 27.26
alt=.90-| lat-dec

((cs lat),ttor tim)rotate cs 180-alt
_0.7679 _0.6405 1.278e_7

As expected the sun is south and west at altitude zero.

Both of the examples used above have involved special ‘Pythagorean’ cases which
help to clarify principles from which more extended spherical trigonometry
calculations can be made.

105

VECTOR Vol.26 No.2&3

Squares, neighbours, probability, and]

John C. McInturff

The following problem is taken from the Mathcounts School Handbook for 2012-
2013[1].

Two unit squares are chosen at random, without replacement, from the 4 x 4 grid
shown. What is the probability that the squares do not share a side? Express your
answer as a common fraction.

A student at the 6 through 8 grade level will, most likely, devise some method for
counting the neighbors, and divide this number by the total number of
possibilities.

The purpose here is to illustrate two methods that apply to a square of 4 sides that
can be easily communicated and executed on a computer using J, then illustrate a
generalisation to n sides.

Method 1

This method, suggested by Colin A. Hedges, a high school mathematics teacher,
involves classifying the square into 3 mutually exclusive categories: Execution is
shown for n=. 4.

Corners The chance of selecting a corneris C=. 47%x:n.
C

Sides,S These are bordering squares but not corners. The chance of selecting such a
squareis S=. 4x(n-2)% *:n.

Interior These squares are landlocked squares. The chance of selecting an interior

1 squareis I=. (*:(n-2))% *:n

Letz=. C,S,I.

+/1

106

VECTOR Vol.26 No.2&3

It is seen that they sum to unity, as they should.

After selecting a cell, there are k=. <: (*: n) cells remaining A corner square
has 2 neighbors, a side square has 3 neighbors, and an interior square has 4
neighbors. Therefore the conditional probability of selecting one of these squares
isX=. 'c s i'=. 2 3 4 % k.The conditional probability that the square has no
neighboris Y=. -.X.Itis seen that X+Y sum to unity in each of the three cases:

X+Y
111

The inner product, (ip=. +/ . x), of Z and X. gives the unconditional probability
that two squares share a side. The inner product of Z and Y is the probability they
do not. These two probabilities, W, sum to unity as they should, and are shown
below expressed both as a decimal and as a common fraction.

IW=. (Z ip X),(Z ip Y)
0.2 0.8

+/M
1

x: W
1r5 4rb

The monadic verb, Fo , simplifies the above formulation.It produces the
probability that a square shares a side for any square having n sides. The
expression (-. Fo n) produces the complementary probability,e.g.

Fo=. 4 % (x >:)
Fo &4
0.2

(Fo 4);(-.Fo 4)
oios

Fo 2345
0.666667 0.333333 0.2 0.133333

Method 2

This method is simple and straightforward and may be the method a student in
grades 6 through 8 may use. It compares every square with every other square
and counts the neighbors it encounters in the process. The following pattern
emerges and conclusions soon become evident:

Each row except the last has the same pattern wherein each square, except the last,
has 2 neighbors, a row neighbor to its immediate right, and a column neighbor

107

VECTOR Vol.26 No.2&3

below. The last square in a row only has a column neighbor. For the 4 x4 matrix
given this pattern, p1 would be p1=. 2 2 2 1 (for a total of 7 neighbors).

The last row, being at the bottom has no neighbors below it, and the last square in
the last row has no neighbors, only a single, row, neighbor. Therefore, this last row
has the pattern, p2.

p2=. 1 1 1 0.
The 4x4 matrix would then have the following neighbor pattern, p :

Ip=. > pl;pl;pl;p2

The total number of neighbors, N, is easily seen to be (N=. +/,p) or 24.

The total number of possible neighbors, T, is n squares taken 2 at a time. Expressed
in], thisis (T=. 2!nor 120). A student, not knowing] but knowing the formula for
T could reduce T to (15 *16)%2 or 120.

[fWl is the probability of having a neighbor, then (Wi=. N%T) or 0.2.The
probability of not having a neighbor is (W2=. -.W1) , or 0.8.It is seen that this
result is the same as that produced using Method 1.

Generalization and Simplification

The above conclusions, which were applied to a matrix having n=4 sides, also
apply to a matrix having n sides. The above pattern, p , can be re-expressed as a
tally of neighboring squares.

p=. (neighbors having p1 type patterns) + (neighbors having p2 type patterns)
p= 2(n-1)(n-1) +1(n-1) + 1(n-1)

p= 2(n-1)(n-1)+2(n-1)
p= 2(n-1)(n-1+1)

p= 2(n)(n-1)
p=. 2xnx(n-1)
p=. hn

Although the last two expressions produce the number of neighbors, and both are
executable, the last expression is more simply expressed using the monadic verb, h
, Where

h=. [: +: (% <:)

The expression (F n) is the probability of p where (F=. h%g) and (g=. 2!x:),

108

VECTOR Vol.26 No.2&3

the total number of possible neighbors, or equivalently, n squares taken 2 at a
time.

F234%5
0.666667 0.333333 0.2 0.133333

The expression (-. F n) is the probability of no neighbors.

W -: (Fn);(-. Fn)
1

It is seen that Method 2 produces the same result as Method 1.

References

1. Mathcounts Foundation. “2012-2013 Mathcounts School Handbook. Contains
300 Creative Math Problems That Meet NCTM* Standards For Grades 6-8.”
Alexandria, VA, USA. Mathcounts. p. 27.

*National Council of Teachers of Mathematics

109

VECTOR Vol.26 No.2&3

All integer partitions:] programs
compared

by Howard A. Peelle (hapeelle@educ.umass.edu)

] programs to generate all partitions of an integer are presented and compared.

Whoever wants to go about generating all partitions
not only immerses himself in imnmense labor,
but also must take pains to keep fully attentive,
so as not to be grossly deceived.

-- Leonhard Euler,
De Partitione Numerorum (1750)

Introduction

Historically, there has been great interest in partitions, especially computing the
number of partitions of an integer. Relatively recently, algorithms and programs
for generating all integer partitions have appeared but have not been expressly
compared in a common language. Here, a dozen or so] programs are presented
developmentally and then compared by speed, space, and spread.

Note: Programs are organized generally in chronological order by author of
algorithm, with alternative coding to contrast efficiency, but with minimum
explanation. If you are still learning], please consult the JSoftware website [1] and
read appropriate tutorials, notably [7] and [8]. If you are only interested in the
best programs, skip to Comparisons and see Appendix for their final definitions.

A partition of an integer n is represented here as a list of parts: positive integers
whose sum is n. All integer partitions of n are all the distinct partitions of n with
parts in ascending (non-decreasing) or descending (non-increasing) order.

110

VECTOR Vol.26 No.2&3

Partitions may be listed in any order but usually are in ascending or descending
base value. For example, all partitions of 6 in ascending order, with ascending
parts:

Note: The following utility names will be used often throughout, but their
definitions will not be repeated.

ELSE =

WHEN =: @.

EACH =: &.>
Skiena’s Algorithm

The first program is a simplified coding of Steven Skiena’s algorithm [2] using
double recursion to produce partitions of input integer n beginning with input
largest part p. It joins two arrays vertically: The top is the result of p joined
horizontally onto partitions of n - p with the new largest part being the smaller of
n - p and p; the bottom is the partitions of n with largest part p - 1. In tacit J:

Skiena =: Parts ELSE Ones WHEN Under2 NB. (n) Skiena (p)
Ones =: ,:@#
Under2 =: 2 >]
Parts =: Top , Bottom
Top =:] ,. - Skiena - <.]
Bottom =: Skiena <:

For example, partitions of 5 beginning with 3 in a table (padded with 0s):

5 Skiena 3
32000
31100
22100
21110
11111

All partitions of 6 in descending order:

6 Skiena 6 NB. Skiena~ 6
6 00000
510000
+20000
+11000
330000
321000
311100
222000
221100
211110
111111

This is the shortest program here, but it is inefficient in speed and space.

Knuth’s Algorithms

M

VECTOR Vol.26 No.2&3

Donald Knuth proffered two algorithms for generating partitions in [3].
Knuth

Knuth'’s algorithm P computes partitions successively, starting with n and ending
with a list of 1s: “If a partition isn’t all 1s, it ends with (x+1) followed by zero or
more 1s, for some x<1; therefore, the next smallest partition in lexicographic order
is obtained by replacing the suffix (x+1)1..1 by x..xr for some appropriate
remainder r<x. The process is quite efficient if we keep track of the largest
subscript q [of partition a] such that aq not equal 1..” [3 page 37]. Coded explicitly
in J, the program below performs classic scalar processing to produce a table of all
partitions in descending order:

Knuth =: 3 : 0 NB. Knuth (n) for n>:1
n=.y

all =. i.0,n

label_P1. NB. Initialize

a =. n#0

m =.0 NB. origin 0

label_P2. NB. Store final part

a =. nm}a

g =.m- (n=1)

Llabel_P3. NB. Visit a partition

all =. all,(m+1){.a
if. (g{a)~:2 do. goto_P5. end.

label_P4. NB. Change 2 to 1,1
a=.1qla

q=.g91

m =. m+l

a =. 1 m}a

goto_P3.

label_P5. NB. Decrease q{a
if. gq<0 do. all return. end.

x =. (q{a)-1

a =. x q}a

n =, (m-q)+1

m =. g+l

Llabel_P6. NB. Copy x

if. n<:x do. goto_P2. end.

a =. x m}a

m =. m+l

n =. n-x

goto_Pé6.

)

For example, all partitions of 6 is the same resultas 6 Skiena 6:

Knuth 6
600000
510000
+20000
411000
330000
321000
311100
222000
221100

112

VECTOR Vol.26 No.2&3

- N
-
-
-
-
- o

The program can be shortened drastically, get the remainder neatly, and handle
n=0 as a bonus:

Knuthx =: 3 : 0 NB. Knuthx (n)
all =. ,:p =. ,y
while. 1 < {.p do. i=. <t pi.t
x =. -<:i{p
a=.1i{.p
s =. y - +/a
p=.a, x +/\ s#1
all =. all , p
end.

)

Look at intermediate steps during a loop of Knuthx 10 to produce the next
partition after + 3 1 1 1:

y =. 10

p=. 43111

Ji =. <t pi. 1
1

Ix =. - <z i {p
2

la=.i{.p
N

Js =. y - +/a
6

Ip =. a , x +/\ s#1
4222

Unfortunately, Knuthx uses twice the space and is (increasingly) slower than
Knuth.

A tacit translation is even slower and fatter in space:

Knutht =: Parts ~: While ~:_ @ N

N =: ,:@,
While =: 1 < {.@{:
Parts =: , Next@Last
Last =: {: -. 0:
Next =: A , X +/\ S#1:
A=:1{.]
I =: <:@. 1:
X =:1I-.0{]
S =:] -amp;(+/) A

Changing Knuthx to use s=.x+(#p)-i for the sum of a suffix and including a
condition to change a 2 to 1 1 will improve its speed - especially for large n with
growing percentage of 2s:

Knuth2 =: 3 : 0

all =.,:p=.,y
while. 1 < {.p do. i=. <:pi.l

113

VECTOR

Vol.26 No.2&3

o o
— 3
—Q

end.

Next =: -@[+/\] # 1:

Better yet, use a sub-program to group partitions by their leading part and append

an array of all leading 2s separately, with a final row of 1s:

Knuth2s =: 3 : 0
all =. i.0,n=.y
while. n>1
do. nexts =. n Nexts y-n
all =. all , n ,. nexts
n =. n-1
end.
all,1
)
Nexts =: 3 : 0
if. y<2 do. ,:,y return. end.
nexts =. ,:next =. x New y
while. 2 < {.next
do. i =. <: next i. 1
x =. i { next
if. x=2
do. next =. 1 i} next,1
else.
a =. i {. next
X =. <:iX
s =. x + (#next) - i
next =. a , x New s
end.
nexts =. nexts , next
end. NB. next is 2..(1)
repeats =. >:i.#next-.1
twos =. Two “:repeats next
nexts,twos
)
Two =: }. , 1 1"_

This is faster and much slimmer, but longer.

Nevertheless, these revisions cannot compete with Knuth in speed or space.

Hindenburg

Knuth'’s algorithm H (attributed to Hindenburg [4]) computes partitions of n with

114

VECTOR

Vol.26 No.2&3

m parts -- that is, m-tuples that sum to n. “The basic idea is that colex order goes
from one partition as..ay to the next by finding the smallest j such that a; can be

increased without changing a;.1..an.” [3 page 38] The new partition will have j

leading parts = aj+1 and the same sum if aj<as-1. Note that this algorithm does

not work for 0 or 1 parts. Later, see program AP that produces m-tuples robustly.

Assuming n2m>2, code H in J:

H=:3:0 NB. (n) H (m)
n=.x NB. n>:m

m=.y NB. m>:2

ps =. i.0,m

label_H1. NB. Initialize

a =. m#0

a =. (1+n-m) 0} a NB. origin O

a=.1(}.i.m} a

a=.a, _1

label_H2. NB. Visit partition

ps =. ps , (i.m){a
if. (1{a)>:(0{a)-1 do. goto_H4. end.
label_H3. NB. Tweak O{a and 1{a
a =. ((0{a)-1) O}a
a =. ((1{a)+1) 1}a
goto_H2.
label_H4. NB. Find j
j=.2 NB. origin 0
s =. (0{a)+(1{a)-1
while. (j{a)>:(0{a)-1 do. s =. s + j{a
jo=. g+t
end.
Label_H5. NB. Increase j{a
if. j=m do. ps return. end.
x =. (j{a)+t
a=.x j} a
jo=. j-1
label_H6. NB. Tweak (i.j){a
while. j>0 do. a =. x jla
s=X
j-1

s
j
end.

a=.s 0} a
goto_H2.

)

For example, partitions of 6 with 2, 3, and 4 parts:

w F o
N

w

115

VECTOR Vol.26 No.2&3

By appending such results, H can be used in a supra-program to generate all
partitions:

Hindenburg =: 3 : 0 NB. Hindenburg (n)
n=.y
m=. 2
all =. ,.n
while. m<:n do. all =. all , nHm
m =. m+l
end.
all
)

Notice that the order of all partitions is not the same as in Knuth 6.

Hindenburg is increasingly slower than Knuth and uses about twice the space, so it
will be omitted from further comparisons.

Hui’s Algorithm

part

Roger Hui presented a concise program for all partitions [5]:

pu =:] <@:+"1 [* </\"1e=@]
pext =: [: ~. [: /:~&.> ,&.> , ;@:(pug.>)
part =: ,&.>"(pext/)@.(1:<#) @ ($&1)

An example of partitions of 6 in a list of 11 boxes with ascending parts:

part 6

11111 1‘1 111 2|1 11 3‘1 12 2‘1 1 4|1 2 3|1 5|2 2 2|2 4|3 3‘6|

To produce a numeric table (padded with 0s), open the list:

>part 6
111111
111120
111300
112200
114000
123000
150000
222000
240000
330000
600000

With or without Os, this program is woefully slow and obese in space. It cannot
compete here.

116

VECTOR Vol.26 No.2&3

Boss’s Algorithm

Boss

R. E. Boss developed an efficient algorithm [6] that sparked interest, as well as
some revisions. His program computes all partitions with descending parts:

init =: (<@<@i.@(1 0"_)) ,~ <"0@(] , (] (- <. >:@]) i.)e<:)
ppsl =: >:@i.@[<@;@:(([,. (>: {."1) # 1)&.>) {.
exit =: >e{.@>
Boss =: [: exit [: (],~ pps1)&.>/ init
Example:
Boss 6
111111
211110
221100
222000
311100
321000
330000
411000
420000
510000
600000

This program is very fast but fat.
APO

Boss’s program can be re-coded more perspicuously:

APO =: Exit@Part@Init NB. APO (n)
Exit =: >@{.e>
Init =: <"0@Mins , <@Empty
Empty =: <@,:@i.@0:
Mins =: , (<. |.)@}.@i.
Part =: Next EACH/
Next =: <@;@Ps ,]
Ps =: Ns@[Join EACH {.
Ns =: >:@i.
Join =: [,. Select #]
Select =: >: {."1

10% shorter, APO runs at about the same speed as Boss in a little less space.
Hui

Hui [7] recast Boss's program using Power instead of Insert:

part =: 3 : 'final (, new)*:y <<i.1 0'
new =: (-i.)@# <@:(cat&.>)]

cat =: [:@:(,.8.>) -@(<.#) {.]

final =: ; @: (<@-.80"18.>) @ > @ {:

17

VECTOR Vol.26 No.2&3

part 6 produces a list of 11 boxes of partitions with descending parts (without

0s).
This program is much slower than Boss and uses 80% more space. It could speed
up 33% if Os in boxes were not removed: NB final =: ;@>@{: But that would

require more space.

Make it conform to other programs here that return a numeric table:
Hui =: >@part

(Hui -: Boss) 6

This could be re-coded in smaller modules:

Hui0 =: Final@Parts
Final =: ;@>@{:
Inputs =:] ° Start
Start =: <@<@,:@i.@0:
Parts =: Boxes”:Inputs
Boxes =: , <@New
New =: (-i.)@# ;@Cat EACH]
Cat =: [,.EACH Min {.]
Min =: -@<. #

However, these programs need excessive memory and will not compete well at
high n.

AP1

Here is my revision of Boss's program, notably without using an outer level of
boxing:

AP1 =: ;@ALL ELSE Ns WHEN (< 2:) NB. AP1 (n)
ALl =: Ns ,.EACH Parts/@Mins
Ns =: >:@i.
Mins =: Smaller@}.@i. , 0:
Smaller =: <. |
Parts =: Next ELSE
Zero =: 0 e.]
Start =: 1 ; ,@0:
Next =: ;@New ;]
New =: Ns@[Join EACH {.
Join =: [,. Select #]
Select =: >: {."1

Start WHEN Zero

(AP1 -: Boss) 6

This program runs much faster than Boss in significantly less space. Indeed, it can
do n = 70 whereas Boss runs out of memory.

Also consider an explicit translation:

118

VECTOR Vol.26 No.2&3

AP1x =: 3 : 0

ns =. >:i.y

mins =. (<. |.) }:ns

all =. <i.1 0

while. #mins do. new =. all New~ {:mins
all =. all 3~ ;new
mins =. }:mins

end.

all =. ns ,.EACH all
sall

)
Notice use of New and its tacit sub-programs from above.

AP1x is slower than AP1, needs a lot more space, and is longer. So it will bow out of
the competition.

How about a recursive definition?

APir =: ;@ALL

ALl =: Ns ,.EACH Mins Parts Empty
Empty =: <@,:@i.@0:
Ns =: >:@i.
Mins =: Smaller@}.@i.
Smaller =: <. |.
Parts =: Build ELSE] WHEN Done NB. Parts calls Build

Done =: 1 > #@[
Build =: ButFirst Parts First Next] NB. Build calls Parts

First =: {.@[

ButFirst =: }.@[

Next =: ;@New ;]

New =: Ns@[Join EACH {.
Join =: [,. Select #]
Select =: >: {."1

This has about the same speed and space as AP1 but is longer. So, it will defer to
AP1.

See Peelle’s Algorithms later for more efficient recursive programs.
AP2

In [8], I described a variant of Boss’s algorithm that computes the leading part at
each iteration: the smaller of the number of accumulated boxed arrays and n
minus that number. Renamed and edited slightly:

AP2 =: ;@ALL NB. AP2 (n)
AlLL =: Ns ,.EACH Parts
Ns =: >:@i.
Parts =: Build”:N Start
Start =: 1 0 <@$]
N =:0>. <:@[
Build =: <@;@Next ,]
Next =: Lead Ps]
Lead =: Min #

119

VECTOR Vol.26 No.2&3

Min =: - <.]
Ps =: Ns@[Join EACH {.
Join =: [,. Select #]
Select =: >: {."1

(AP2 -: Boss) 6
1

See [8] for a tutorial. Example:

AP2 6
111111
211110
221100
222000
311100
321000
330000
411000
420000
510000
600000

This program is about 33% faster than Boss at n = 65 in about 25% less space.
Compared to AP1, it has about the same speed, slightly less space, and less length.

Efficiency can be improved slightly further by separating top and bottom halves of
the partitions array, by defining separate programs for odd and even input, or
with other programming techniques (not shown here because those programs are
much longer).

Kelleher’s Algorithm

Jerome Kelleher and Barry O’Sullivan published two algorithms in [9] for all
partitions with ascending parts, superseding speed of existing programs for
descending parts by Knuth [3] and by Zoghbi & Stojmenovic [10]. Kelleher’s most
efficient algorithm generates lexicographic successors iteratively with embedded
loops, notably a second loop to handle transitions involving only the last two
parts. Coded straightforwardly in J:

elleher =: 3 : 0 NB. Kelleher (n)

Y

(n+1)#0
o i

(0) 0} a NB. redundant
. n-1

K
n
a
k
a
y
a
W

L
hil

=. k-1
i (2xx)<:y do.
. x k} a
.y-X

. k+t

QX< o o
nonon

120

VECTOR Vol.26 No.2&3

L o=. k+1
while. x<:y do.
a =. x k}a
a=.y l}a
all =. all , (i.k+2){a
x =. x+1
y =. y-1
end.
a =. (x+y) k}a
y =. x +y -1
all =. all , (i.k+1){a
end.
all
)
Example:

Kelleher 6
111111
111120
111300
112200
114000
123000
150000
222000
240000
330000
600000

Kel leher is 4 times slower than AP2 at n = 65 but uses only about 40% of the
space. It is faster than Knuth in about the same space, and much shorter. An even
faster and shorter, more J-ish version Kel Leherx is given in the Appendix.

Peelle’s Algorithms
Now look at how well some new recursive algorithms perform.
AP

Peelle presented a tidy ambivalent program in [8] using a ‘1 Plus’ recursive
approach to produce all partitions of n or partitions of n with up to p parts:

AP =: ;@ALL NB. AP (n) or (n) AP (p)
ALl =: Parts EACH >:@i.
Parts =: Ones ELSE Plusl WHEN >
Ones =: = #] ,:@# 1:
Plust =: 1 + - AP]

The main idea is to add 1 to each sub-array of partitions of (n-1 to p) for 1 top
parts. In other words, for a given number of parts, partition n-parts, then add 1 to
each part (including 0s).

For example, assemble 1 plus each result below to get 6 AP 3:

121

VECTOR Vol.26 No.2&3

5 AP 1 6 AP 3
5 6 00

4 AP 2 510
4 0 20
31 330
22 b 11

3 AP 3 321
300 222
210
111

See[8] for a tutorial. Notice that the order of all partitions is the same as
Hindenburg:

A NB. 6 AP 6

FNNWNWF WF oo
PP NPENONREWN O
PR PR, NP,P,PO0OO0O0O0
BB, P, O0OO0OO0OO0OOOOO
A, OOOOOOOOO
~OOOOOOOOOOo

AP can speed up greatly by exiting when either input is 0 or 1:

AP =: ;@ALL ELSE N WHEN Under2
Under2 =: 2 > <,
N =: ,:@{.~

This program runs three times faster than Skiena but needs 30% more space at
n=65. Yet, AP can do n=70, whereas Skiena runs out of memory.

AP can be improved by handling 0 and 1 parts separately:

AP =: N ;@, [ALL <.
N =: <@,:@{.~
ALl =: Parts EACH 2 }. i. ,]
Parts =: 1 +] {."1 - AP]

This version will be used for comparisons and is listed in the Appendix. It is much
faster and much shorter than AP1 and AP2 in much less space at n=70 although it is
much slower at n=65. Which is better? See Comparisons.

Translation into explicit definition avoids boxing:
APx =: 3 : 0

all =. ,:y{.x
for_p. 2 }. i.>:y do. all =. all , 1 + p {."1 n APx p<.n=.x-p end.
)

122

VECTOR Vol.26 No.2&3

This needs 40% less space than AP but twice the time and is longer. So it will drop
out.

APr

Here is a simple recursive definition for two inputs: n and a lead part. Explicitly:

APrx =: 3 : 0 NB. (n) APrx (lead)
all =. i1.0,x
while. y>1
do. all =. all , y ,. n APrx y <. n=.x-y
y =. y-1

end.
all,1
)

Note that it skips the loop whenever y is 1 and just appends the last row of 1s.
Example: 6 APrx 6 or APrx~6 is the same as Knuth 6.

This program is much slower than AP yet much slimmer in space until n=70 when
it exceeds memory. So, forget it.

A tacit ambivalent version is shorter, 40% faster in 75% more space and can do
n=70:

APr =: ;@ALL ELSE Ones WHEN Under2 NB. (n) APr (lead) or APr (n)
Ones =: ,:@#
Under2 =: 2 >]
ALl =: Ns Parts EACH Leads@]
Parts =:] ,. [APr <.
Ns =: - Leads
Leads =: - i.

This can be improved further by generating 1s separately:

APr =: <@Ones ;@, Allbutils NB. (n) APr (lead) or APr (n)
Ones =: ,:@# 1:
Allbutls =: Parts EACH Leads
Parts =:] ,. - APr - <.]
Leads =: 2 }. i. , 1]

Now it is more competitive with AP in speed, but much fatter, albeit shorter.
Indeed, this is the shortest program among those here that can perform high n.

APm

Another simple recursive definition uses previous partitions as a memo to produce
the next:

APm =: 3 : 0 NB. APm (n)
all =. i.0,n=.y
while. n>1

123

VECTOR Vol.26 No.2&3

do. memo =: APm y-n
leads =. {."1 memo
drop =. leads i. n <. y-n
all =. all , n,. drop }. memo
n =. n-1
end.
all,1

)

Note that global memo cuts down space significantly. Still, it's way too slow.
J's built-in Memo adverb M. does better. See APdb later in Other Programs.

APh

This approach produces all partitions in two halves, recursively, in an ambivalent
program. For the bottom half; it recurses when n > lead part; and for the top half; it
recurses with n as both inputs.

APh =: [;@Parts New NB. APh (n) or (n) APh (lead)
New =: -@<. {. i.@[
Parts =:] Part EACH -
Part =:] ,. Recurse ELSE Empty WHEN Zero ELSE Ones WHEN One
Recurse =: [APh [ELSE] WHEN >
Empty =: ,:@i.@0:

lero =: = 0:
Ones =: ,:@#
One =: 1 =]

Examples of its subprogram for two inputs:

0 Part 6

1 Part 5

4 Pa
0
1
1

N NN

22
21
11
5 Part 1

111111

APh 6 assembles these results into one table of descending partitions (same as
| .APr 6).

Include an exit for 2 and build an array with leading 2s directly:

124

VECTOR Vol.26 No.2&3

Part=:] ,. Recurse ELSE Empty WHEN Zero ELSE Twos WHEN Two ELSE Ones WHEN One
Two =: 2 =]
Twos =: Build #*: Inputs
Build =: 1 ,~2 ,.] ,. 0:
Inputs =: <.@% ° Start
Start =: ,:@:>:@i.@|~

This program is now much faster in equal space but quite longer.

APn

Another approach constructs a table of partitions horizontally by nesting columns
recursively:

APnx =: 3 : 0 NB. APnx (n)
is =. i.y

; is Nest EACH y-is

)

Nest =: 3: 0 : if. y=1 do. 1,x#1 return. end. if. x=0 do. ,;,y else. min =. - x <. y is =.
min {.ixy ,.; is Nest EACH x-is end.)

A tacit version is shorter and much faster:

APn =: [;@Parts <. NB. APn (n)
Parts =: Is Nest EACH Ns@]
Is =: i.@] + -
Ns =: - i.

Nest =: Join ELSE N WHEN Zero ELSE Ones WHEN One
Join =:] ,. APn

N =: ,:0,@]
Zero =: =0:
Ones =: 1,#
One =: 1=]

APapr

Finally, consider this: halve input n to become the largest second part, subtract it
from n to get the first part, iterate through decrements of first and second parts
respectively, and call APr (presented previously) to attach a sub-array of
partitions for the remaining new_n with the leading part as the smaller of second
and new_n:

APapr =: 3 : 0 NB. APapr (n)
all =. Nsis y-i.y
for_second. 2 To <.-:y

do. for_first. |.second To y-second
do. all =. all,first,.second,.n APr second<.n=.y-first+second
end.

end.

125

VECTOR

Vol.26 No.2&3

For efficiency, all partitions with a second part 0 and 1 are done at once separately

in a table:

Nsis

Example:

APapr 6

P
0
0
1
1
1
1
0
1
1
2
0

WNNWF~,NDWFOO

WNNNNE PO
OO, OO LR, OO0O

Note the unorthodox order: by increasing second part.

[eNeNeNeNN T NeoNoNoNe)
0OO0OO0OO0OOF,OO0OOOOo

8 50

(</ }:)

NB.

Nsis (n-i.n)

This program is faster than APr, and much shorter than Kel leher, using only a
little more space. (even counting APr). Despite relying on a sub-program that itself
can compute all partitions, it competes very well at high n. Indeed, it is the fastest
here at n=70.

Comparisons

Now compare the most competitive programs here for n=65 by ratios of time,
space, and length - where 1.00 is best. Finally, sum the ratios for a simple
composite of overall program efficiency:

Skiena

Knuth

Boss

Hui

AP1

AP2

Kel leher

AP

APr

APh

APn

Time

12.

5.

1.

24.

59

15

38

31

.01

.00

.49

77

.53

o1/

.85

Space
ilo

1.

46

00

.00

L3

.34

.34

.00

.89

.34

.34

.34

1.

7.

Length

00

ok

.00

.38

.79

Ll

.35

.21

i3

i

.85

126

15.

14,

32.

Overall

05

09

.38

11

A

.78

.85

.86

.02

.49

.04

VECTOR Vol.26 No.2&3

APapr 3.40 1.03 3.88 8.31
So AP2 is the winner, with AP and AP1 close behind.

For n=70, Skiena, Boss and Hui cannot participate on my computer because they
run out of memory. Timing results for most remaining programs have large
variance since they are pushing space limits. Within this uncertain repeatability,
APapr emerges as the fastest and AP becomes the new winner overall. In order, the
top six are: AP, APr, APapr, AP2, AP1, Kel Leherx. Considering only time and space,
the top six are: APapr, Kel Leher, AP, Knuth, AP2, APr.

No program above can do n=75 on my laptop. Timing ratios on other computers
differ somewhat but indicate that AP1 and AP2 are the fastest.

Readers may be able to run higher n, may want to weight the three criteria
differently, and may add other criteria, such as a measure of clarity. See Appendix
for benchmark details and copies of the best programs for convenient use.

Number of Partitions

For any program above, the number of partitions can be counted perfunctorily
from the resulting table of partitions. For example: #AP 6 is 11. A list of partition
numbers:

#@AP"0 i.20
112357 1115 22 30 42 56 77 101 135 176 231 297 385 490

There is an issue about how to count the number of partitions for n=0:

$Skiena~ 0
10

NB. Knuth 0 does not compute

$Boss 0
0

$Hui 0
10

$APL O
1

$AP2 0
0

$Kelleher 0
11

$AP 0
10

$APFr O
10

$APapr 0
01

127

VECTOR Vol.26 No.2&3

Since the shape of an empty list is 0, one can argue that there are zero partitions of
0. One can also argue that there is one partition of 0: the empty partition (a 1 by 0
table) or a 1-item list (,0). In all cases, the sum is 0. So, what should it be - an
empty list, or an empty table, or just 0? See oeis.org/wiki/Partition function.

Of course, the pertinent problem is how to compute number of partitions
efficiently for large n without the effort of generating them.

P

To begin with, here is a clean program to compute number of partitions of integer
n with k parts, albeit inefficiently due to recursion:

P =: Recur ELSE = WHEN Done NB. (n) P (k)
Recur =: P&<: + - P]
Done =: <: +, 0 =]

An alternative definition:

P =: Recur ELSE] WHEN (2>]) ELSE = WHEN <: NB. (n) P (k)

For example, number of partitions of 10 with 4 parts:

10 P &4

The total number of partitions of n with k partsis +/n P"0 i.>:k.

A table of P for both n and k from 0 to 10:

P"0/~ i.11
10000000000
01000000000
01100000000
01110000000
01211000000
01221100000
01332110000
01343211000
01455321100
01476532110
01589753211

Notice that the nth row sum is the number of all partitions of n.
Pnk

An efficient program to build this table iteratively adds the reverse diagonal to the
shifted last row:

TP =: One , 0 ,. Row *: (Repeat‘One) NB. TP (n)

128

VECTOR Vol.26 No.2&3

Repeat =: 0 >. <:
One =: ,:@,@1:
Row =: , Last + Diag , O:
Last =: 0 , {:
Diag =: (<0 1) |: |.

Index the table to get number of partitions of n with k parts:
Pnk =: <@, { TPe[NB. (n) Pnk (k) or Pnk (n)

Example:

10 Pnk 4

NP

Since Pnk is ambivalent, Pnk(n) is the last row, and its sum is the number of all
partitions:

NP =: +/@Pnk NB. NP (n)

Example:

NP 10
42

First 20 numbers of all partitions:
NP"0 i.20
11235711 15 22 30 42 56 77 101 135 176 231 297 385 490

Larger numbers:

n ,: NP"O n =. 5xi.15
05 10 15 20 25 30 35 40 45 50 55 60 65 70
17 42 176 627 1958 5604 14883 37338 89134 204226 451276 966467 2012558 4087968

Growth factors:

Growth =: }. % }:

5j2 ": Growth NP"0 i.15
1.00 2.00 1.50 1.67 1.40 1.57 1.36 1.47 1.36 1.40 1.33 1.38 1.31 1.34

load 'plot’
plot Growth NP"0 i.50

129

VECTOR Vol.26 No.2&3

Growth NP"0 n=.1000+1.10
1.04035 1.04033 1.04031 1.04029 1.04027 1.04025 1.04023 1.04021 1.04019

For very large n, use Hui’s efficient pnv program in [7] based on Euler’s recurrence
relation to see convergence to an asymptote approaching 1.

Other Programs

Several other programs that generate all integer partitions have not been
mentioned yet because they are not nearly competitive with those above. With
respect for their role in research and development, they are summarized as
follows:

Reingold

Reingold et al. [11] described an algorithm for generating tuples with ascending
parts. Coded explicitly in J:

Reingold =: 3 : 0 NB. Reingold (n)

n=.y

m=.1

ps =. i.0 0

while. n>:m

do. ps =. ps , n Parts m
m=.m+1

end.

ps

)

130

VECTOR Vol.26 No.2&3

Parts =: 3 : 0 NB. (n) Parts (m)

n X
m=.y

ps =. ,: 1 + (-m) {. n-m
while. +./1<p-~{:p=.{:ps
do. ps =. ps , Next p
end.

Next =: 3 : 0 NB. Next (p)

: <: 0 i.~ 2 <: p-~{:p
. (1+i{p) (i }. i.m)} p
. (n=+/}:p) (m-1)} p

L T T TR TR
H*
hel

For example:

=

~FrOOOOOOOOOOOQ
o

PR R R NP R, WN PO
PR R, R NNEWF OO
PR NRPNWFOOOOD
PP NWOOOOOOOS3
~nvoOOOOOOOOOS

The program is lengthy, four times slower than Knuth at n=65 in twice the space,
and runs for hours at n=70. Tacit translations (for both ascending and descending
parts) use 30% less space but are ten times slower.

Reiter

Reiter [12] presented a recursive program in APL that uses three inputs (in one
list): integer n, number of parts p and smallest part s. It splits the computation
depending on whether there are partitions into one, two, or more parts. The case
of two parts is not necessary to the correctness of the algorithm, but it does
improve the efficiency of the algorithm. When the number of parts is three or
more, then a loop catenates blocks of partitions of smaller (or equal) numbers into
a smaller number of parts with the smallest number allowed being the index of the
loop. [11 page 8] In J:

Reiter =: ;@Blocks ELSE (,@N) WHEN (P < 2:) NB. Reiter (n,p,s)

Blocks =: <@(S,.Reiter)"1 @ NPSs
NPSs =: (N-Ss) ,. <:@P ,. Ss
: 1.

N
P {.@}.
S {:

131

VECTOR Vol.26 No.2&3

Ss =: SToNQP
Q =: <.@%
To =: [+ i.@:@-~

Example of partitions of 10 with 4 parts, starting with 1:

Reiter 10 4 1
7

NN - =
NNWNNP PP
WNWWN FWN =
W F wWFOF OO

All partitions of n are produced by inputs (n,n,0). For example: Reiter 6 6 0.
This program runs slower than Skiena but needs less space. Unfortunately, it is
much longer.

Peelle

Here is my doubly recursive program based on P (above) that uses two
fundamental functions to generate all partitions - appending a 1 and adding 1:

Peelle =: ;@ALL NB. Peelle (n)
ALl =: Parts EACH >:@i.
Parts =: Recurse ELSE Empty WHEN < ELSE N WHEN One ELSE Ones WHEN =
Recurse =: Append!l , Plus1
Appendl =: Parts&<: ,. 1:
Plusl =: 1 + - Parts]
Empty =: 0 i.@,]

Ones =: # 1:
N =: ,:@,@[
One =: 1 =]

This program is twice as fast as Skiena, in less space than Reingold, and shorter
than Reiter. It can be improved by combining exits:

Parts =: Recurse ELSE N WHEN Under2 ELSE Ones WHEN >:
Recurse =: Appendl , 1 + - Parts]

N =: ,

Under2

Ones =:

: 2>]
#[,:@# 1:

Now it’s quite competitive at n=70 - notably faster, slimmer, and shorter than AP1
and AP2 and even faster than Ke l Leherx (but with more space).

A key insight here led to the development of AP (in [8]): Appending 1 is equivalent
to1+(n-p) Parts (p-1) with an appended column of Os so that the result of
Recurse can be produced by Plus1 alone. AP is superior to Peel le, being faster in
equal space and shorter.

132

VECTOR Vol.26 No.2&3

Another improvement handles 0 and 1 parts separately and exits for n=2:

Peelle2 =: ;@ALLl2 NB. Peelle2 (n)
ALl2 =: <@NO1 , AllbutNO1
ALLbutNO1 =: Parts2 EACH 2 }. i. ,]
Parts2 =: Recurse2 ELSE Pairs WHEN Two ELSE Ones WHEN <:
Recurse2 =: Append2 , 1 + - Parts2]

Append2 =: Parts2&<: ,. 1:
NO1 =: ,@[
Ones =: = #] ,:@# 1:
Pairs =: [By >:@i.@<.@%
|

This program is very fast at high n in about the same space.

Using an explicit master program saves 40% space but is longer:

Peellex =: 3 : 0

all =. 1.0,y

for_p. <i.y do. all =. all , y Parts p end.
)

Further, an Iterative version builds a table of boxes to index:

Peellei =: ;@Corner@T NB. Peellei (n)
EACH =: &.>
Corner =: Top,Right ,"1 EACH Ones
Ones =: >:@i.@# #EACH 1:
Right =: {:"1
Inputs =: <:@<: ° Start
Start =: One (<0 0)} ,~@Half $ Empty
One =: 1 1 <@$ 1:
Empty =: 0 0 <@$ O:
Half =: >.@-:
Top =: First , Appendl EACH@}:@{. ,EACH Plusi EACH@}.@Diagonal
First =: Plusl EACH@{.@Diagonal
Diagonal =: (<0 1) |:]
Appendl =: ,.&1
Plusl =: >:
T =: Build *: Inputs
Build =: Top }:@, 1]
NB. correct except for n=0 and 1

This program is very fast (about same speed as Boss) up to n=65 but very fat
(fatter than Boss).

Now, here are several unusual (and inefficient) approaches that may be of interest
to the curious:

APod
An odometer approach entails selecting unique lists of partitions with sorted parts
from a table of consecutive integers represented as lists in base n+1. The program

is loopless and short, but indulgent:

133

VECTOR Vol.26 No.2&3

APod =: ~.@Select (Odometer >:)
Odometer =: # #: i.@"~ NB. (n) Odometer (n+1)
Select =: Sort"1@Parts
Parts =: IsSum"1 #]
Sort =: /:~
IsSum =: = +/

Lexical order, as on an odometer:

>

P OOOOOOOOOO
PP, OO0OO0OO0OOOOOO
PP, P, P, 0000000
HHHHN»—\HOOOO&
PP NEPENNEPRWNS OO
P RNNWNWFWFOo

Revise it to be 2.5 times faster:

APod =: N , (~.@Select Odometer~)
N=:-{.1]

Using multiple bases is 64 times faster still:

APod =: ~.@Select Odometer
Odometer =: Encode@Bases NB. Odometer (n)
Encode =: #: i.@(x/)
Bases =: 1 + Diagonal@i.
Diagonal =: {"0 1 Copies@:>:
Copies =: |. #"0 1]

6 times faster again (with left-justified result):

APod =: ;@(<@Parts"0 Ns)
Parts =: 1 + - ~.@Select Odometer NB. (n) Parts (p)
Odometer =: Encode@Bases NB. (n) Odometer (p)

Encode =: #: i.@(x/)
Bases (-i.) Q |.@Nse]
Q =: <.@%

Even though this is hundreds times faster than the initial definition, it is so
inefficient that it runs out of memory at about n=30.

AP9s

Another approach encodes only multiples of 9 (instead of a full odometer) into
base-10 digits, selects ascending lists, then selects lists that sum to n. How crude!

AP9s =: ALl ELSE i. WHEN (=0:)

134

VECTOR Vol.26 No.2&3

ALl =: Parts Ascend@Encodel0
Encodel0 =: #&10 #: (+ 9 Multiples <:)
Multiples =: * i.@(108")
Ascend =: #~ (-: Sort)"1

Sort =: /:~
Parts =: IsSum"1 #]
IsSum =: = +/

This program is very slow and space-consuming - only able to do up to n=8.
APid

This next approach iterates adding an identity matrix to generate all possible new
partitions: Start with an empty 1 by 0 array. Iteratively join a left column of Os
then a top row of 1s to ascending (sorted) lists in tables created by adding each
row of an appropriate size identity matrix to each row in the previous array.
Finally, remove duplicate partitions from the result.

APid =: ~.@ALL": (] Empty)
Empty =: ,:@i.@0:
ALl =: 1 , 0 ,. Parts
Parts =: Sort"1@(,/)@:(Plus"1)

Sort =: /:~
Plus =: +"1 Id
Id =: =@i.@#
APid 6
111111 NB. Reverse lexical order
011112
001122
001113
000222
000123
0001114
000033
0000 2 4
000015
000006

This program runs out of memory at n=45.

Alternative: Use boxes and trim the identity matrix to add 1s only to the last
unique part, so there is no need to sort.
APid =: ~.@ALLA:(] Empty)
Empty =: ,:@i.@0:
AlLL =: 1 , 0 ,. ;@:Parts
Parts =: <@Plus"1

Plus =: +"1 Id
Id =: (i: ~. -. 0:) =/ i.e#

This is almost 10 times faster and uses less than 10% space, but runs out of
memory at n=60.

APpnk

135

VECTOR Vol.26 No.2&3

Here is an approach that computes the number of partitions in advance for a given
n and k in order to generate partitions iteratively in k-tuples. It uses program Pnk
(from Number of Partitions earlier) to determine how many times to iterate.

APpnk =: ;@ALL NB. APpnk (n)
ALl =: Parts EACH Ns
Ns =: >:@i.
Parts =: Next”:(Pnks'Start) NB. (n) Parts (k)
Pnks =: i.@Pnk NB. (n) Pnk (k)

Start =: 1 +] {. -
Next =: Front To Body]
To =: Tos i. 1:
Tos =: 1 < (- ~{.)
Body =: Copies , Back
Back =: >:@[}.]
Copies =: [# >:@{
Front =: (- +/) , 1]

(APpnk -: AP) 6
1

This program is shorter and faster than Knuth and Kel Leher at n=65, but requires
more space. It is even more competitive at n=70, although it seems like cheating.

APdb

Another approach updates a database every time the program is used anew. A
global variable contains previously executed results for smaller n and k that can be
looked up directly instead of re-computed.

First, initialize a global boxed matrix:
parts =: 1 1 $ <i.1 0

Define the program to immediately extend the matrix with empty boxes if either
input n or k is larger than its shape. Then look up the nth row and kth column. If it
is empty, compute the result and update the global matrix; otherwise, open it as
the result.

APdb =: 3 : 0 NB. (n) APdb (k) or APdb~ (n)

nk =. x,y

if. +./ nk >: $parts do. parts =: (nk+1) {. parts end. NB. extend
p =. (<nk) { parts NB. Llook up
if. p=a: do. p =. < x APrdb y NB. compute
parts =: p (<nk)} parts NB. update

end.

>p

The following co-program used above is a modification of APr that computes all
partitions of n in k parts recursively but calls APdb (instead of itself) to look up a

136

VECTOR Vol.26 No.2&3

sub-result if it is already known.

APrdb =: ;@ALL ELSE Ones WHEN Under2 NB. (n) APrdb (lead)
Ones =: ,:@#
Under2 =: 2 >]
ALl =: Leads@] <@Parts"0O Ns

Parts =: [,.] APdb <. NB. APdb instead of APrdb
Leads =: - i.
Ns =: - Leads

Using a database is advantageous whenever partitions below n and k must be re-
computed quickly. APdb is also quite speedy for new n and k up to about n=60. For
instance, APdb~60 is about 4 times faster than APr 60. However, by n=65, it
becomes sluggish and demands about 50% more space even though only about
1r6 of the database is filled up.

It is easier to use J's built-in Memo adverb M. to gain about the same advantage.
For example: NB. APr =: ;@AlL M. ELSE Ones WHEN Under2
Then APr 60 would be 4 times faster, but still more than 4 times slower for n=65.

Other Representations

So far, a natural representation has been used for a partition - that is, a list of
positive integers (without interspersed + symbols). For example, a partition of 15:
53311110r111133S5.0ther possible representations include: base (or
standard), frequency (and multiplicity), and Ferrers dot diagram.

Base

The numerals of a partition can be compressed into digits of a single number in
base 10, as in 5331111 or 1111335. This might be advantageous for certain
algorithms, such as selecting multiples of 9 (see AP9s above). However, if any part
exceeds 9, this representation becomes awkward, necessitating pairs of digits, or
triples for n>99, etc.

To convert from natural to base representation, use J's Decode with base 10 for
partitions such as:

10 #. 56331111 10 #. 1 111335
5331111 1111335

To convert from base to natural, use its inverse Encode with the appropriate base
for each digit:

(7#10) #: 5331111
5331111

Or use J's Power to find the inverse:

137

VECTOR Vol.26 No.2&3

10&#. ~:_1] 5331111
5331111

Frequency
A partition can be represented as a list of frequencies of parts from 1 to the largest.

To convert from natural to frequency representation, use this program:

Freq =: +/@(=/) >:@i.@(>./)

Example:
Freq 5331111 Freq1 111335
40201 40201

To convert from frequency to natural:

FreqInv =: # >:@i.@#

FreqInv 4+ 0 2 0 1
1111335

Or include its inverse in the definition:

Freqs =: Freq :. Freqlnv

Fregs?:_1] 40201
1111335

For any partition of n (in any order), n equals the sum of frequencies times integers
1 to the largest part, respectively:

p =. >:210#10
n=. +/p
fs =. Freq p NB. fs =. Freqs p

n = +/fsx>:i.>./p
1

Multiplicity

Alternatively, a partition can be represented simply by multiples of its unique
parts. For example, 4 2 1 multiples of unique parts 1 3 5 represents 11113 3 5.

Convert from natural to multiplicity:

+/"1=1111335
b 21

Convert from multiplicity to natural representation:

135 # 4 21
1111335

138

VECTOR Vol.26 No.2&3

Define a program with its inverse:
Multi =: +/"1@= :. (#~)
Both conversions:

Multi 1111335
k21

135 Multir: 11421
1111335

Any sorted partition p is identical to the inverse conversion of its conversion:

p -: (~. Multi?:_1 Multi) p =. /:~ >:210#10
1

Ferrers diagram

Another representation devised by Norman M. Ferrers provides visualization of a
partition via rows of dots (or any symbol) for each part. See [3] or [13]. For
example,533 111 1would be:

P I

A program to produce Boolean indices for such a diagram:

Ferrers =: #"0 1: NB. Ferrers =: >/ i.@(>./)
Example:
Ferrers 53 31111 “ %x* {~ Ferrers 5331111
11111 * KKKk
11100 * ok k
11100 *k ok
10000 *
10000 *
10000 *
10000 *

Include its inverse:
Ferrers =: (# 1:)"0 :. (+/"1)

To produce a conjugate partition, simply sum the rows (vertically):

139

VECTOR Vol.26 No.2&3

+/ Ferrers 5331111
73311

Fractal Patterns

Due to the recursive structure of partitions, it is not surprising to find fractal-like
patterns. See [14].

load 'graph'
viewmat 1 = Knuth 10 NB. white 1s

o]
oJ wviewmat | =0 é

viewmat 1 = AP 20

o viewmat [E=EEE =)

140

VECTOR Vol.26 No.2&3

Similarly, view other parts, such as viewmat 2=AP 20 or all parts in colors:
viewmat AP 10

Summary

] programs for generating all integer partitions were presented and compared for
the first time. Most programs and some algorithms are new. The best programs
were determined (within my computing constraints) for equally weighted criteria
that included program length as well as speed and space. Translations between
tacit and explicit definitions were often supplied and contrasted without due
explication. To follow up, see References.

Acknowledgements

Thanks to Professor Emeritus Murray Eisenberg (UMass Mathematics & Statistics
Department) for his helpful critique and for obtaining benchmarks on his iMac
with]J7.01. Thanks also to Boyko Bantchev for valuable feedback and generous
contributions, to Devon McCormick (ACM, New York) for checking performance of
programs, and to Professor Cliff Reiter (LaFayette College Mathematics
Department) for continuing attention.

References

1. http://www.]software.com

2. S. Skiena, Implementing Discrete Mathematics ... with Mathematica, Addison-
Wesley,1990

3. D.E. Knuth, The Art of Computer Programming Vol.4A 7.2.1.4, Addison-Wesley,
2005-2011

4. C.F.Hindenburg, Infinitomii Dignitatum Exponentis Indeterminati (Gottingen)
pp. 73-91, 1779

5. RKW. Huij, http://www jsoftware.com/pipermail /general /2005-
June/023191.html

6. R.E.Boss, “Partitions of numbers: An efficient algorithm in J”, Vector 23.4 pp.
121-131, 2008 http://archive.vector.org.uk/art10012080

7. R. Hui, http://www.jsoftware.com/Jwiki/Essays/Partitions , 2008-2011
8. H. A. Peelle, http://www.jsoftware.com/jwiki/Essays/AllPartitions , 2011

9.].Kelleher & B. O’Sullivan, “Generating All Partitions: A Comparison of Two
Encodings”, arxiv.org > cs > arxiv: 0909.2331 [cs.D5], 2009

10. A.Zoghbi & I. Stojmenovic, “Fast Algorithms for Generating Integer Partitions”,
Int. J. Computer Math., Vol. 70 pp. 319-332, 1998

11. E.Reingold,]. Nievergelt, & N. Deo, Combinatorial Algorithms, Prentice-Hall,

141

http://www.jsoftware.com
http://www.jsoftware.com/pipermail/general/2005-June/023191.html
http://archive.vector.org.uk/art10012080
http://www.jsoftware.com/jwiki/Essays/Partitions
http://www.jsoftware.com/jwiki/Essays/AllPartitions

VECTOR Vol.26 No.2&3

1977

12. C.Reiter, “Random Markov Matrices and Partitions of Integers”, APL Quote-
Quad, Vol. 22, No. 3, pp. 7-8, March 1992

13. E.W. Weisstein, http: //www.Mathworld.wolfram.com/PartitionFunctionP.html

14. A.Salerno, “Partition Numbers Unveiled as Fractal”, MAA Focus, April-May
2011 maa.org/focus.html

Appendix

Benchmarks for time and space were obtained on a Dell Latitude E6410 laptop
(64-bit 0S M620 at 2.67 GHz with 4GB RAM) running J6.02 under Windows 7.

Length (Spread) = total number of characters in a program definition body,
ignoring spaces, and counting only 1 for each name.

For a table t of benchmarks, the table of ratios (in Comparisons) is:
(,. +/"1) t 2"1 <./t

Utility programs:

Time =: 6 |: 2
Space =: 7 l: 2

Test =: (-: ~.)@:Sort x. +/"1 x./ . = {:@% NB. all unique and all rows sum = n
Sort =: /:~"1

Example tests:

x./Test@nuth"0 }.i.66
' *./Test@Boss"0 i.66
' *x./Test@Hui"0 i.66
' *x./Test@AP"0 i.66
1

Example plots of Time and Space:

: |
Ian

109 -

http://www.mathworld.wolfram.com/PartitionFunctionP.html

VECTOR Vol.26 No.2&3

load 'plot’
plot n ; Time"1 'AP2 ' ,"1 ":,.n=.5x%i.14

TTrer R S ol
/

el |

108 -

plot n ; Space"t "AP2 ' ,"1 ":,.n=.5%i.14
Program Definitions:

Definitions of the best programs in Comparisons are shown below for convenient
copying and pasting. Note: Use separate scripts:

AP1 =: ;@ALL * Ns @. (< 2:) NB. AP1 (n)
ALl =: Ns ,.&.> Parts/@Mins
Ns =: >:@i.
Mins =: Smaller@}.@i. , O:
Smaller =: <. |.
Parts =: Next * Start @. Zero
Zero =: O e.]
Start =: 1 ; ,@0:
Next =: ;@New ;]
New =: Ns@[Join&.> {.
Join =: [,. Select #]
Select =: >: {."1

AP2 =: ;@ALL NB. AP2 (n)
ALl =: Ns ,.&.> Parts
Ns =: >:@i.
Parts =: Build”:N Start
Start =: 1 0 <@$]
N =:0>. <:@Q[
Build =: <@;@Next ,]
Next =: Lead Ps]
Lead =: Min #
Min =: - <.]
Ps =: Ns@[Join&.> {.
Join =: [,. Select #]
Select =: >: {."1
AP =: N ;@, [ALL <. NB. AP (n) or (n) AP (p)
N =: <@,:@{.~
ALl =: Parts &.> 2 }. i. , 1]
arts =: 1 +] {."1 - AP]

L
p

143

VECTOR

Vol.26 No.2&3

APr =: <@Ones ;@, Allbutis NB. APr (n) or (n) APr (lead)

Ones =: ,:@# 1:
Allbutls =: Parts &.> Leads

Parts =:] ,. - APr - <.]
Leads =: 2 }. i. ,]
Kelleherx =: 3 : 0 NB. Kelleherx (n)
a =. 0,y#0
k =.1
y =. y-1
all =. i.0 0
while. k do.
k =. k-1
x =. 1+k{a
while. y>:2xx do.
a =. x k}a
y =. y-x
k =. k+1
end.
L =. k+1
while. x<:y do.
a =. x k}a
a=.y l}la
all =. all,a{.~k+2
x =. x+1
y =. y-1
end.
a =. a k}~x+y
y =. x+y-1
all =. all,a{.~k+1
end.
)
APapr =: 3 : 0 NB. APapr (n)

all =. Nsis -i.y
for_second. 2 To <.-:y
do. for_first. |. second To y-second

do. all =. all,first,.second,.n APr second<.n=.y-first+second

end.
end.

Nsis =: ,. (</ }:)
To =: }. i.@>:

NB. uses APr (above)

144

	Contents
	News
	General
	APL
	J

	Editorial
	BAA: Chairman’s Report 2014
	BAA AGM Minutes 2014
	Dyalog Ltd
	Version 14.0
	New Platforms, and the Remote IDE
	New Web Site and Social Media Channels
	Another successful Annual Programming Contest
	Come to the Dyalog User Meeting!

	Optima Systems Ltd – Industry News August 2014
	4xtra Alliance - News
	APL2000 User Conference 2014
	APL2000 Welcomed Attendees in Fort Lauderdale, Florida
	Conference Session Descriptions
	Catching Up on APL+Win (John Walker)
	Multi‐threading in APL+Win (Jairo Lopez, Joe Blaze, Pik Ng)
	Windows Event Log and APL+Win (Brian Chizever)
	Using APL to Manage Google Earth (John Magill)
	APL+Win ⎕CSE System Function Interface to the APLNext C# Script Engine ‐ Part 1 (Jairo Lopez, Frank Yang, Joe Blaze)
	APL+Win ⎕CSE System Function Interface to the APLNext C# Script Engine ‐ Part 2 (Jairo Lopez, Frank Yang, Joe Blaze)
	APL+Win as a Web Server (Jairo Lopez, Joe Blaze, Pik Ng)
	Thor ‐ An APL Expert System to Assess Corporate Health (Eric Baelen)
	Workspace Recovery (Brain Chizever)
	Using .Net with ⎕CSE Made Easy ‐ Part 1 (Eric Lescasse)
	Using .Net with ⎕CSE Made Easy ‐ Part 2 (Eric Lescasse)
	APL+Win Interfaces: R statistical package (Ajay Askoolum, Joe Blaze)
	APL+Win Development Roadmap (APL2000 Team)
	Accessing a Remote APL+Win COM Server from Excel (Joe Blaze, Pik Ng, Tesa Carlson)
	APL+Win Implementation and Comparison of Error Correcting Algorithm Performance (Olga Shukina)
	Tags: APL and .NET Access to Your Personal Metadata Cloud (Jeremy Main)
	APL2000 – A Full‐Service Software Development Company (Sonia Beekman)
	Driving MS Office (Eric Baelen)
	APL+Win Interfaces (Joe Blaze, Frank Yang, Melissa Farmer)
	Computing Automorphism Groups of Projective Planes (Jessie Adamski)
	Sunday Seminar (Jairo Lopez, Frank Yang, Tesa Carlson, Joe Blaze)
	Group Social Events at the Conference

	SwedAPL April 2014
	The meeting
	Not one iota
	RIDE vs Dyalog+
	Aplensia
	Ways of working
	News from Dyalog
	Cosmos and big data
	Group photo
	Others present
	Next meeting
	LinkedIn

	Minnowbrook conference review: September 14–18, 2013
	Steve Mansour
	Impending kOS
	by Stephen Taylor (sjt@5jt.com)
	References

	Searching for the state in which Wonderful Things are inevitable
	by Gianfranco Alongi (gianfranco.alongi@gmail.com)
	References

	APL
	One reason that APL is so cool
	Notation as a tool of proof
	Robert Pullman (rpullman@gmail.com)
	1. A Primer On Magic Squares
	2. Symmetries of magic squares
	3. Definitions & Lemmas
	4. Symmetric transforms
	4.1. T1 of a magic square A
	4.2 T2 of a magic square A
	4.3 T1 and T2 are disjoint
	4.4 Closure Under T1 and T2
	4.5 T3: Reflections
	4.6 T4: Transpose

	5. Footnote: Associative Magic Squares
	References

	A tool of thought
	Dan Baronet (danb@dyalog.com)
	The problem
	Attempt #1

	Attempt #2
	Attempt #3
	Conclusion

	References

	Table Diff
	Step 1: Tabulate all row matches
	Step 2: Generate and select candidate solutions to evaluate
	Step 3: Find best solution
	Step 4: Align matching rows
	Listing
	Scope for improvement
	Acknowledgements
	References

	A letter from Dijkstra on APL
	Roger K.W. Hui
	Example 1: Ackermann’s Function
	Example 2: Inverted Table Index-Of
	Summary of Notation
	References

	Legacy code, survival strategies and Fire
	Kai Jaeger (kai@aplteam.com)
	Case study I.
	Case study II.
	References

	Writing a simple Japanese dentist office system in APL2
	Kyosuke Saigusa, APL Consultants of Japan Ltd.
	Introduction
	System Outline
	Client information module
	Reservation information module
	CARTE information module
	RECEPT information module (currently being built)
	Why APL2 is suitable to write small systems

	J-ottings 57 Heavens above!
	Plotting star movements
	Transits
	Plotting star positions
	Spherical Trigonometry
	The case of the sun

	Squares, neighbours, probability, and J
	John C. McInturff
	Method 1
	Method 2
	Generalization and Simplification

	References

	All integer partitions: J programs compared
	Introduction
	Skiena’s Algorithm
	Knuth’s Algorithms
	Knuth
	Hindenburg

	Hui’s Algorithm
	part

	Boss’s Algorithm
	Boss
	AP0
	Hui
	AP1
	AP2

	Kelleher’s Algorithm
	Peelle’s Algorithms
	AP
	APr
	APm
	APh
	APn
	APapr

	Comparisons
	Number of Partitions
	P
	Pnk
	NP

	Other Programs
	Reingold

	Reiter
	Peelle
	APod
	AP9s
	APid
	APpnk
	APdb

	Other Representations
	Base
	Frequency
	Multiplicity
	Ferrers diagram

	Fractal Patterns
	Summary
	Acknowledgements
	References

	Appendix
	Program Definitions:

