APL AND PARTITIONED DATA
by Jonathan Barman
Introduction

APL arrays provide a natural way of partitioning data. A matrix can be viewed as a set of vectors;
each row of a matrix of numbers could be vectors of costs incurred by each department in a
business. Adding up the total costs incurred by each department isthen a simple matter of applying
plus reduction along the last dimension. Reduction and Scan operators allow the application
of any scalar function along any axis of an array, and provide powerful tools for creating functions
which work on partitioned data. There are, however, limitations in some applications. In the
example of department costs, some departments may incur many cost items, and have long
vectors, while others may have only one or two cost items. APL arrays have to be rectangular,
so holding the costs as a matrix means that all the rows have to have the same length; short
vectors have to be padded out with zeros to match the largest number of cost items. The amount
of padding required can be so large that it becomes difficult to manipulate the matrix without
workspace full messages, although the amount of data is relatively small. If one department
out of 100 departments had 5000 cost items and all the other departments averaged 5 items
apiece, then the matrix has to be 100 rows by 5000 columns taking up 2,000,000 bytes, of which
only 40,000 bytes is data.

Another difficulty is where the data is normally manipulated as a vector and it is inconvenient
to form it into a matrix so that reductions and scans can be applied, and then reformat it as a
vector. For example, text typed by the user of a system may need to be manipulated and re-
displayed, and it is convenient to keep the text as a vector throughout the processing.

This article explores the ways in which partitioned data can be processed in amore natural way,
without looping. The techniques are well known and have been in use for many years. The Working
Memorandum on Boolean Techniques by Robert A. Smith was published by STSC in 1975, and
sets out the fundamental ideas and lists an extensive set of functions. The FinnAPL Idiom list
contains examples of manipulating partitioned data. The APL*Plus and Sharp timesharing
services both provide workspaces of partition functions.

Before plunging into detail, the general principles will be illustrated with a simple example. The
principles will then be analysed in more detail and illustrated with more examples.

Taking the department cost example, assume that each department has a unique code and
that the costs and codes are held in two numeric vectors COSTS and DEPTS. The costs and
department codes were entered from invoices, so that each cost has a corresponding department
code.

There are three basic ways of adding up the costs for each department; by looping through each

department code, by forming the data into a matrix and using plus reduction, or by using partition
techniques. The looping method could be implemented as follows:

127,

_ VR<DEPTS ADDUP COSTS;A;B;0I0
[11 & ADD UP <COSTS> FOR EACH CODE IN <DEPTS>
[2] n <R[;11> IS DEPT. CODES, <R[21 IS TOTAL COSTS.
[3] a LOOPING METHOD.
(4] 0O10«1
[51 R<0 2p0
[6]1 L1:>(0epDEPTS)/0
[7] A«1tDEPTS
[8] B<«A=DEPTS
[9] R«R,[114,+/B/COSTS
[10] B+B
[11] DEPTS+B/DEPLS
[12]1 C0OSTS<B/COSTS
[131 -~I1

v

144 3 1 ADDUP 10 20 30 40 50
1 60
4 50
3 40

This method is inefficient if large amounts of data are involved. Lines 9 to 12 reassign the variables,
so data is being moved in memory for every unique department found.

Forming the data into a matrix is more efficient than the looping method, but, as explained above,
there may be workspace full problems:

VR«DEPTS ADDUP COSTS;A; P31I0
[1] a ADD UP <COSTS> FOR EACH CODE IN <DEPTS>
[2] a <R[3;11> IS DEPT CODES, <R[32] IS TOTAL COSTS.
[3] & MATRIX METHOD.
(4] Or0«1
[5] @ SORT INTO DEPT CODE SEQUENCE
[6]1 A<ADEPTS
[7] DEPTS<DEPI'S[A]
[8] C€0STS<C0SrSlA]
[9] & FIND WHERE CODES CHANGE
[10] P<DEPTSz1+DEPTS,0
{111 PL(02pP)/pPl«1
[12] a FIND NUMBER OF CODES FOR EACH DEPT.
[13] A«P/1pP
[14] A«A-"1+40,4
[15] A FORM EXPANSION VECTOR.
[16] A<«4e.21[/0,4
[17] A MAKE COS[S INTO A MATRIX.
[18]1 Re(pA)p(,A)I\COSTS
{191 m ADD UP, AND APPEND DEPT CODES.
[20] R«(P/DEPTS),[1.5]+/R
v

144 3 1 ADDUP 10 20 30 40 50
1 60
3 40
4 50
Forming the data into a matrix requires a technique which is constantly being used when deahng
with partitioned data. Line 10 is a “‘not-equals positive difference operation”, and line 14 is a
“minus negative difference operation’.

128

Lines 10 and 11 generate a “partition vector”’. Line 11 is necessary because it cannot be
guaranteed that a department code of zero does not exist. If the rotation method is used:

P<DEPT Sz 1$DEPTS

then line 11 is required in case there is only one department code in the data.

Care has been taken that empty arguments do not cause an error. Line 11 checks for an empty
vector. Line 14 could have been written as:

A+4-0,7 144

which would have caused a length error if A was empty. Line 16 has a 0 catenated toAincase
it is empty. It is good practice to ensure that all code will work properly on empty vectors, but
itis sometimes simpler to branch out on empty at the beginning of the function rather than having

to include special processing as in line 11.

The partitioned data approach is as follows:

VR<DEPTS ADDUP COSTS;A;P;0I0
C1] W ADD UP <COSTS> FOR EACH CODE IN <DEPTS>
L2] a <R[;11> IS DEPT CODES, <R[;2] IS TOTAL COSTS.
[3] m PARTITION METHOD.
- [4] 0O10«1
[5] a SORT INTO DEPT CODE SEQUENCE
[6]1 A<ADEPTS
[7] DEPTS«DEPTS[A]
[8]1 (C0STS«C0OSTS[A]
[9) n FIND WHERE CODES CHANGE
[10] P«DEPTSz1+DEPTS,0
[111 PL(0#%pP)/pPl«1
[12] a CUMULATIVE SUM FOR EACH DEPT.
[13]1 RepP/+\COSTS
[14] n CONVERT TO INDIVIDUAL SUMS.
[15] Re<R-T1+40,R
(161 a APPEND DEPT CODES
[17] Re(P/DEPTS),[1.51R

v

14 4 3 1 ADDUP 10 20 30 40 50
160
3 40
4 50

The steps down toline 11 are identical to the matrix method. Line 13 gets the overall cumulative
sum for each department, and line 15 does the ‘“minus negative difference

129

operation”” which converts the cumulative sums back to individual sums. This relationship between
scan and negative difference operation is another important technique which will be explored
more fully later.

The ADDUP function is really carrying out three processes: sort the data, set up a partition vector,
and carry out a partitioned plus reduction. The processes are needed in many varied
circumstances, so it is convenient, and better programming practice, to have separate functions.
Lines 10 and 11 generated a trailing partition vector as it was needed in this form on line 13.
A trailing partition vector is one where a 1 flags the end of each partition:

A2 2266777
A%1+¥A,0
00101001

A leading partition vector is one where a 1 flags the start of each partition:

Az7140,A
10010100

All partition functions need a partition vector as an argument, and it is necessary to standardise
on either leading or trailing partitions. As the literature on partition functions always uses leading
partitions, we will do likewise. The first function to be defined is one to create a partition vector:

VR<CREATEAPARTITION A
[1] a <R> IS A LEADING PARTITION VECTOR WITH 1'S WHERE'
[2] & <4> CHANGES.
[31 R4z 104
[4] ~>(0epR)/0O
[5]1 RIOIOI+1
v

CREATEAPARTITION 1 11 1 8 8 50 50 50
100010100

Line 3 uses the rotation method to allow for the data being either character or numeric, line 4
branches on empty, and line 5 guarantees the first element is a 1.

VR<P PAPLUSARED A
[11 n <P> IS A LEADING PARTITION VECTOR,
[2] a <4> IS A NUMERIC ARRAY.
[3] a <R> IS A PARTITLONED PLUS REDUCTION ON THE
4] m FIRSI DIMENSION OF <A>.
[5]1 FR<(10P)#+XA
(61 R<R-(pR)p0,[I0]R
v

Lines 5 and 6 of the partitioned plus reduction function are generalisations of lines 13 and 15
of the last ADDUP example. The rotate of the leading partitions on line 5 changes them into
trailing partitions, and the plus scan is carried out along the first dimension so that the data can

130

be a matrix. Line 6 carries out the “minus negative difference operation” along the first dimension
of the array.

P
100010100
4

6 3 1
1 6 7
1 4%
5, . 7.8
10 9 6
1 7 5
8 10 8
3 1 8
b 7 8
P PAPLUSARED A
13 26 15
11 16 11
15 13 24

A more general accumulation function can be written in place of the ADDUP function:

VR+ACCUMULATE A;P;0I0
C1] m <A[31)> IS A SET OF CODES. REMAINING COLUMNS
[2] A OF <4> IS DATA. <R> IS THE UNIQUE SET OF
L3] @ CODES IN COUMN 1, WITH THE TOTALS OF THE DATA
(4] a IN THE REMAINING COLUMNS.
[51 0Or10«1
(61 ~+(0epRr+d)/0
[7] R<R[AR[;11;]
(8] P«CREATENPARTITION R[;1]
[9] R«(P/R[;11),P PAPLUSARED 0 14R
v

37 25 99
76 66 8
89 28 4y
u8 24 28
17 49 90
7 91 51
ACCUMULATE A
2 17 49 90
4 213 118 80
5 44 116 150

ONFFFo

Difference Operations

A list of the boolean difference operations are given in the appendix. At first sight they tend to
look similar, and it is difficult to appreciate which ones are going to be useful. Rather than go
through them all, the following functions show how the more popular difference operations are
used in practice.

The greater-than negative difference operation keeps the first one in each series of ones, and
sets the remaining elements to zero:

131

801 B BT % 14D
A>7140,4
0100010000

This difference operation is very useful when analysing text typed by the user. For example,
when checking fullscreen data input it is usually necessary to count how many words or numbers
have been entered in each screen field:

VR<WORDANCOUNT A
[11 nm <A> IS A CHARACTER MATRIX. <R> IS THE WUMBER
[2] n OF WORDS OR WUMBERS ON EACH ROW OF <A>

[3] Repz' !
[4] R<R>(pR)*0,R
[5] Re+/R
v
A
ONE TWO
12 34 6
589
WORDACOUNT A
231

When errors are found in the text typed by the user, an error message has to be displayed
describing what has gone wrong. It is nice to be able to point out the exact location of the trouble:

VR<ERR REPORTAERROR TEXT;A;CR
[1] @ <ERR> IS A BOOLEAN ERROR INDICATOR WITH AN ELEMENT
[2] w FOR EACH WORD IN THE CHARACTER VECTOR <TEXT>.
(3] m <R> IS AN ERROR MESSAGE.
[4] A<TEXTz' '
[5] A«A> 1+0,4
[6]1 @& VSAPL CARRIAGE RETURN CHARACTER.
[71 CR<0 1 0/07C
[8]1 R<'"INVALID ITEM:',CR,TEXT,CR,A\ERR\'A'
v

0 0 1 0 REPORTAERROR ' ONE TWO THRE FOUR'
INVALID ITEM:
ONE TWO THRE FOUR

A

Lines 4 and 5 flag the first letter of each word in the TEXT, which is used to position the caret
on line 8.

Two algorithms for checking numbers were published in Quote Quad, and they both exhibit the
use of difference operations. Algorithm 139 by Gerald Bamberger in the March 1980 issue of
Quote Quad (Vol 10 No 3) verifies numeric input, and is similar to the Quad function available
on Sharp APL and APL*Plus APL.

132

[1]
[2]
(3l
[4]
[s]
6]
[7]
[8]
L9l

VR<VI A

VERIFY NUMERIC INPUT.

<4> IS A CHARACTER VECTOR CONTAINING GROUPS OF
CHARACTERS DELIMITED BY ONE OR MORE SPACES.

<R> IS A BOOLEAN VECTOR WITH A 1 WHERE THE
CHARACTER GROUP IS A VALID NUMBER. NUMBERS
OUTSIDE RANGE (T/10)<A<L/10 COUNTED AS VALID.
Re' 111111111123u45'[* 0123456789. E"1'0 ',A]
Re14+2((Re'234')VR2 1+' ',R)/R
R<Re(8 3p0 41 431)+1 12 121 21 31 312 3121 321e.x1 100
1000

v

D DDd®D®DD

VI'123 1.3 3 4 3.4 3E4 3E 34 E3'

1101110

A slightly simpler version, excluding E notation values, may be preferred:

[1]
[2]
[3]
[u]
[s5]
6]
£71]
£8]
[9]

 VReAVI A
VERIFY NUMERIC INPUT.
<A> IS A CHARACTER VECTOR CONTAINING GROUPS OF
CHARACTERS DELIMITED BY ONE OR MORE SPACES.
<k> IS A BOOLEAN VECTOR WITH A 1 WHERE THE
CHARACTER GROUP IS A VALID NUMBER. NUMBERS
OUTSIDE RANGE (T/10)<A<L/10 COUNTED AS VALID.
Re' 1111111111234'[' 0123456789. '1'0 ',A]
Re1+e((Re'23")VR2 14" ',R)/R
R<Rel 12 121 21 31 312 3121 321
v

>» dDD>®D>dD®D

Line 8 of the function uses the not-equal negative difference operation to remove duplicates.

Algorithm Number 146 by Jeffrey Multack, in the September 1980 issue of Quote Quad (Vol
11 No 1) converts numeric input:

[1]
[2]
[3]
[u]
[5]
(6]
£71
[8]
[al
[101]
[11]
EL7]

123 1.3 0 3.4 30000 3E 3

VR<FI A;M

a VERIFY AND CONVERT NUMERIC INPUT.
a <A> IS A VECTOR CONTAINING GROUPS OF CHARACTERS
n DELIMITED BY ONE OR MORE SPACES. <R> IS A
a NUMERIC VECTOR WITH VALID NUMBERS IN <A> OR
a ZERO FOR ANY GROUP WHICH IS NOT A NUMBER.
ReVI' ',A

+(V/R)+0
a FORM MASK FOR VALID CHARACTER GROUPS.

M.(_.Az 1 \]

MeM>T 140, ,M

Mez\M\Rz 1+0,R

R[R/1pR1«2M/A

v

FI'123 1.3 374 3.4 3E4 ~3E 34 E3"
T3E34 0

133

Lines 10 and 11 have been altered slightly so that they are in the same form as the difference
operations already given. Line 10 is the greater-than difference operation which flags the first
character in each group. Line 11 then extends the ones for each character group that is valid.

A<'1234 1..23 460"
D“M"‘Az' Al
111100111110000111
JeMeM>" 140 ,M
100000100000000100
RV A
1 0~1
[JeM<Z\M\Rz 1+0,R
111111000000000111

Line 11 can be broken down into 3 stages, a not-equal difference operations:

RZ 140,R
1A

an expansion:

M\Ez 140,R
100000100000000100

and a not-equal scan:

2\M\Rz 1+0,R
111111000000000111

Not equals scan has the property of switching from 1 to 0 and from O to 1 every time a 1 is
encountered in the vector. The not-equals difference operation does the opposite, so the three
stages are: apply a transformation, expand, then put it back to what it was. The partitioned plus
reduction does a similar task:

Reit- 1+0,R<P/+\A

Apply a transformation (plus scan), compress, then put it back using the minus negative difference
operation. The conversion back to the original form is possible because the minus negative
difference operation is the inverse of plus scan. ‘

(FA<+\2 4 1 5
26 7 12
A-"140,4

2 415

134

Also, the not-equals difference operation is the inverse of not-equals scan:

Jede2\1 1 0 0 1
10001

Az7140,4
110201

Line 11 of Fl is so useful that it should be defined as a function:

VR« PAMASK A
£1] n <P> IS A LEADING PARTITLON VECTOR. <A> IS 4 BOOLEAN
I2] A VECTOR WwHERE pA IS IDENTICAL TO +/P.
[3] m <k> IS A BOOLEAN VECTOR WITH 1 IN EACH PARTITION
(4] m WHERE <4> IS 1.
[5] Rrez\P\4z 1+40,4

g

0 Qs
[0

[

—

0100 PAMMASK 1 0 1
1

o

Having seen that the basic process is difference, expand, scan, with not-equals, an equivalent
function can be written using the same basic process, but with minus and plus:

VR«<P PAREPLICATE A
[1] a <P> IS A LEADING PARTITION VECTOR. <A> IS A
[2] = NUMERIC VECTOR WHERE pA IS IDENTICAL TO +/P.
[3] m <R> IS A NUMERIC VECTOR WITH EACH ELEMENT OF
(4] m <A> REPLICATED IN EACH PARTITION.
[51 Re+\P\A-"140,4

v

10001010 0 PAREPLICATE 2 6 3.2
22226586 3.2 3.2 3.2
Using the partitioned plus reduction technique of difference, compress, scan, but with not-equals

in place of minus and plus, yields a partitioned not-equals reduction function:

VR«<P PANEARED A
[1] w <P> IS A LEADING PARTITION VECTOR. <A> IS A
[2] n BOOLEAN VECTOR. <R> IS %/ FOR EACH PARTITION.
[3] ER<(1¢P)/%\A
(4] ReRz™140,R

\"

This function can be used to flag partitions with an uneven number of occurrences.

Another ‘tool-box’ function that illustrates a difference operation is one for removing surplus
spaces:

135

[1]
[2]
L3l
[u]
[s]
[e]

VR+SQUEEZE A3B

an REMOVE LEADING, TRAILING AND DUPLICATE SPACES
a FROM CHARACTER VECTOR <A>

ReAd, !

B4_| |zR

B«BvV™1+0,B

R< 14B/R

v

Line 5 has an ‘or’ negative difference operation which adds a 1 after each group of ones. Line
3 guarantees a trailing space which is then removed on line 6.

The following function is one of a set of functions to help formatting numeric data in VS APL:

[1]
£21
£3]
[u4]
[5]
[6]
[71
[8]
f9]
[10]
[11]
[12]

VRBRACKETS A3B3C3D
A <4> IS A CHARACTER ARRAY OF FORMATTED NUMBERS
n WITH AT LEASI ONE SPACE BEFORE EACH NUMBER.
n <R> HAS THE WUMBERS MOVED ONE SPACE TO THE LEFT
A AND HAS BRACKETS [N PLACE OF NEGATIVE SIGNS.

Re1$,4

B<Rz!' !

C 1+0,B

De'"'=C/R

RL(O\D) /1pRI+" ("

C+B< 1+0,B

RL(C\D)/1pR1+")"

R<(p4) pR

v

NUMS
.00 368.55 .35 40.10 .3y
.00 .00 6.43 536.58 T.ou
.00 .00 .00 T761.24 42

BRACKETS NUMS

.00 368.55 (.35) (40.10) (.34)
.00 .00 6.43 536.58 (.ow)

.00 .00 .00 (761.2u) 42

Line 7 is a greater-than negative difference which flags the beginning of each group of numbers.
Line 10 is a less-than negative difference which flags the beginning of each group of spaces.
The negative sign is therefore only replaced by both a left and right parenthesis.

The function was created to help develop a generalised formatter for VS APL. In practice, a
formatting function would have the format specification available to indicate where the right
parenthesis should be placed.

136

Partition Functions

Partition functions have been given for plus reduction and not-equal reduction, but partition
functions are needed to carry out the equivalent of all the reduction and scan operations. The
working Memorandum on Boolean Techniques gives a very comprehensive list, but here are
two that are most frequently used:

VR«<P PAORARED A
[1] a <P> IS A LEADING PARTITION VECTOR. <A> IS A BOOLEAN
[2] e VECTOR. <R> IS v/ FOR EACH PARTITION OF <A>.
[3] FRe(PVA)/P
(4] R«(P/A)2R/1¢R
v

VR+<P PANDARED A
[1] & <P> IS A LEADING PARTITION VECTOR. <A> IS A BOOLEAN
[2] a VECTOR. <R> IS A/ FOR EACH PARTITION OF <A>.
[3] FRe(P2A)/P
[4] R<(P/A)AR/10R
v

These functions are also published in the FinnAPL Idiom Library numbers 491 and 492.
An example of their use is taken from a set of functions to carry out formatting under VS APL:
VR<BLANKAIFAZERO A3B3C;P

[1] a <4> IS A CHARACTER ARRAY OF FORMATTED NUMBERS.
[2] m <R> HAS ALL ZERO NUMBERS SET TO SPACES.

[3] R<A
[4] ~+(0eB+pR)/0
[5] Re,R

[6] PeR='
[7] P«<P> 140,P
[8] PLOIO]«1
[9] C<P PAMMASK~P PANDARED Re' 0.
[10] R«BpC\C/R
v

NUMS
.00 368.55 =85 ~40.10 .34
.00 .00 6.43 536.58 .04
.00 .00 .00 T761.24 42

BLANKAIFAZERO NUMS

368.55 ~.35 40.10 :.34
6.43 536.58 .04
T761.24 42

Lines 6 to 8 set up a partition vector, and line 9 creates a mask for those partitions that do not
have a space, zero or decimal point. Of course, if the format specification is available the partition
vector can be set up without searching the data.

137

Finally, an example of using partition functions to eliminate looping. In the last issue of the APL
User Group News Letter Dick Bowman gave a very interesting problem of calculating geometric
means of sets of data.

The solution published calculated the geometric mean of each set of data in aloop, which would
be inefficient if large amounts of data were involved and Dick ends his article with ‘There surely
must be a better way’. The partitioned data approach would be to create a partitioned geometric
mean function.

VR<P PAGEOM A3B;C;D
[11 a <P> IS A PARTITION VECTOR, <A> IS A NUMERIC VECTOR.
[2] a <RB> IS THE GEOMETRIC MEAN IN EACH PARTITION WHERE
[3] m ALL NUMBERS ARE GREATER THAN ZERO, OTHERWISE Tl
[4] B«P PADANDARED A>0
[5] (<P PMASK B
[6]1 D«C/P
[7] Rex(D PAPLUSARED®C/A)+PASHAPE D
[8] R<«(B\R)-~B

v

VR<PASHAPE P
[1]1 & <P> IS A LEADING PARTITION VECTOR.
[2] & <R> IS THE NUMBER OF ELEMENTS IN EACH PARTITION.
[3] R«(1¢P)/1pP
[u] R«R-"140,R
v

100010100 PANEM368102321
3.464101615 1 1.817120593

Line 4 finds the partitions that need to be processed, and line 5 creates a mask. Line 7 then
calculates the geometric mean for each valid partition, and line 8 sets invalid partitions to negative
one. This function can then be used to replace the loop in the original function, after having
created a partition vector.

Conclusion

Difference operation and partition functions provide a useful set of tools which help to solve
the programming problems where the data does not it in with rectangular nature of APL arrays.

The generalised array facilities in APL2, NARS and Sharp APL developments provide much
more powerful tools for manipulating non rectangular data. The partitioned data approach is
much easier and more direct with generalised arrays; the partitioned plus reduction is merely
a plus reduction for each element of a vector of vectors, and a proper notation is provided for
its application. Roll on generalised arrays — but in the meantime we can make do quite
successfully with partitioned functions!

APPENDIX
Boolean Difference Operations

Less-than Negative Difference. The first of each group of zeros is set to one, all other elements
are set to zero.

138

eA<0 0 1 1110011100010 1
00111200121 0004 04

A<"140,4
00000010000100010

Less-than Positive Difference. The last of each group of zeros is set to one, all other elements
are set to zero.

A
00111100111000101

A<1+4,0
01000001000001010

Less-than-or-equal Negative Difference. The first of each group of ones is set to zero, all other
elements are set to one.

00111000101

11011111010

Less-than-or-equal Positive Difference. The last of each group of ones is set to zero, all other
elements are set to one.

001 0111000101

(S . N

110
<1+44,1
111 101104 041 1 1705 14

Equal Negative Difference. The first of each group of zeros and the element to the right of each
group of zeros is set to zero, all other elements are set to one.

A
00111100111000101

A="1+1,4
01011101011011000

Equal Positive Difference. The element to the left of each group of zeros and the last of each
group of zeros is set to zero, all other elements are set to one.

001 0111000101

-
o
[y
[S

110
=1vA,1
1010110110001

139

Greater-than-or-equal Negative Difference. The first of each group of zeros is set to zero, all
other elements are set to one.

00111000101

01111011101

Greater-than-or-equal Positive Difference. The last of each group of zeros is set to zero, all other
elements are set to one.

A
11100111000101
Az1+A,1

1 1110113110101

Greater-than Negative Difference. The first of each group of one is set to one, all other elements
are set to zero.

A
0011110011100 0101
A> 1+0,4

00100000100000101

Greater-than Positive Difference. The last of each group of ones is set to one, all other elements
are set to zeros.

A
00111100111000101

A>14A4,0
00000100001000101

Not-equal Negative Difference. The first of each group of ones and the element to the right of
each group of ones is set to one, all other elements are set to zero.

A
00111100111000101
A27140,A

00100010100100111

Not-equal Positive Difference. The element to the left of each group of ones and the last of each
group of ones is set to one, all other elements are set to zero.

A
00111100111 000101
AZ1¥A,0
01000101001001111

140

Or Negative Difference. The element to the right of each group of ones is set to one, all other
elements are unaltered. ’

A
00111100111000101
AvVT1+0,4

002314 1101 319200111

Or Positive Difference. The element to the left of each group of ones is set to one, all other elements
are unaltered.

A
00111100111000101

AvivA,0
01111401111 001111

And Negative Difference. The element to the right of each group of zeros is set to zero, all other
elements are unaltered.

A
00111100111000101
ANT1+41,4

00011100011000000

And Positive Difference. The element to the left of each group of zeros is set to zero, all other
elements are unaltered.

A
00111100111000101

Anl1¥A,1
00111000110000001

141

