VECTOR

Vol.4 No.2

Go Pack Your Knapsack - or
APL is Better without Loops

by Norman Thomson
The knapsack problem is well known in Applied Mathematics and is capable of succint APL

formulation. It thereby has inherent value in expounding to mathematical audiences the worth of
APL in general and of inner products in particular.

First define a binary matrix of all possible binary sclections with the help of a function ALLS :

(L and R stand for left and right argument in this and subsequent function definitions, and index
origi1is taken as 1.)

ALLS : TTix/T<Rp2

ALLS 3
00011110
01100110
10101010

Suppose also that the weights and values are defined as global vectors :

7 % % 2

Vel5 8 7 ‘3 : 3

Now select those weight combinations which do not exceed the given weight limit R :
U<(R2W+.xU)/U<ALLSpN

From these sclect the selection which gives maximum valuc :

ULsT1l /T<V+,xU]
01110

These steps can be combined in a one-line function which gives all value-maximising selections and
also prints the maximum value :

KNAPSACK: UL;T INDEX D<—F/Z’<~V+.xU+R2W+.><U)/U<-ALLS pH]
INDEX: (L=R)/1pL

KNAPSACK 10

18

10010
10001
0 1 12:2-0

As shown above KNAPSACK not only describes the problem but is also an executable solution.
The trouble is that if the number of items is other than a small value, the space requirements are
enormous, and this is surely not the way to encourage APL students to program!

103



VECTOR Vol.4 No.2

To write the recursive section it is useful to have a function which for a given weight limit L and
weight vector R returns a matrix whose rows are solution vectors, and returns a single row of all
zeros if none of the selections meets this criterion . This latter condition is expressed in the left hand
part of VALID :

VALID : (1 O0lpT)4T<(L2R)#IDpR
ID : (1R)e.=1R

It is also necessary to have a function which joins a vector of the single (possibly repeated)
lefthand blocks of the above diagram to the matrix right hand block :

JOINEACH: (((14pR),pL)pL),R
KNAP can now be completed with the recursion occuring at line 8.

VZ<«L KNAP R;I;T:;X:;Y
[1] +>(1<pR)/L1
[2] Z<1 1pL2R
[31] »>0
[4] Li:I<+/14pT<L VALID R
[5] Z<(T1,pRIAT
[6]1 L2:>(1>I<I-1)/0
L7 X<«P[I3]11
[81] Y« (X+T[I;])JOINEACH(L-R[X])KNAP X+R
[9] Z2<Y,[112
[10] =L2
v

10 KNAP W

CocCcOoOO0OoORR
Ocoo0OoORRROO
corPrPOOROO
ORrORORRO

RRRRRRORO

and the solution is completed with an inner product with V as in KNAPSACK.

The set of 9 solutions immediately prior to multiplication by V is certainly an improvement on
the 32 of KNAPSACK, and so for practical purposes we have a better algorithm.

We can make things better still by arranging that the multiplication by V happens within every
step of the loop, i.e. by adding after line 9 :

Ze(X=T/X<Z+.x(="14pZ)4V)/2Z

10 KNAP W
10010

104



VECTOR Vol.4 No.2

We therefore seck other approaches. V and W above are arranged in order of decreasing V/W,
a trivial matter to arrange in APL, but one on which the following algorithm depends.

At the first step find (as binary selection vectors) those solutions which involve just one item :

1 000
01000
00100
00010
00001

For the first 4 consider solution vectors which include just one more item to the right and remain
within the weight limit :

1000 TO0O01
01000 10001
0%0::1: 0 o\\\\\\
00010 0 1.1 0.0
00001 01010
(S e

In each case the rightmost block is a subsidiary problem as indicated in the diagram below which
also advances th: procass one siep further :

10 KNAP 7 4 4 2 3

3 KNAP 4 4 2 3 1 KNAP 3
10000 i[oo 10 [0 0]1 0]
01000 1Jo 0 0 1
00100 \‘\\\\\ 6 KNAP 4 2 3 2 KNAP 2 3
00010 10 0] 01 1]10
00001 010 G KNAP 3
0 0 il 7Ty
AP 2 3 T KNAP 3
00111

Note that the last line in a block is always a stopper - this is where the V/W ordering comes in.
The diagram suggests a recursive solution, and it seems sensible to make the (diminishing) weight
vector the right argument R, and the limit weight the left argument L. Clearly the stopping con-
dition occurs when R has just one item, so we can write the first few lines :

VZ<L KNAP R
[1] +>(1<pR)/L1
[2] Z<1 1pL2R
[31 >0

105



VECTOR Vol.4 No.2

10001

0 1 1:150

and now the maximum number of extant selection vectors is never more than the number com-
peting for a tie in first place which is 3 with the current data - the algorithm gets better and better
as it lengthens!

In its final stage it is what is known as a “branch and bound” solution to the problem, i.e. the
V/W ordering ensures that a limit-exceeding partial vector and all its descendants are excluded from
further consideration. Branch and bound is the name given to a powerful general technique, or
rather family of techniques employed widely in Linear Programming and Operational Research.

106



