VECTOR Vol.9 No.4

An Implementation of]

Roger Hui's presentation to the British APL
Association on 12 February 1993

transcribed by Anthony Camacho

It is a pleasure to be in London again and an honour to be invited to speak to this
audience. [am going to talk about An Implementation of J. Please interrupt me
at any time if you have questions.

What is J?

] is a dialect of APL based on Ken Iverson’s work over the last forty years. It uses
the standard ASCII symbols and therefore does not require the special
keyboards, special displays, special printers, special editors and so on that
previous APLs did.

It has facilities which enable functional programming. It is freely available and
runs on many machines including;:

Sun 3

SPARC

Silicon Graphics
Mips

Next

RS 6000

Vax

PG

Macintosh
Archimedes

and others.

Tt is written in C and is portable. The source code is available. It uses standard
facilities. For example it uses STDIN and STDOUT for dialogue. It uses the C
library functions malloc and free for memory management and it provides
access to host files or native files.

85

VECTOR Vol.9 No.4

The following dialogues give a taste of the system. The lines that are indented
are those I typed; the lines that begin at the margin the system’s responses.

‘ a =.123145@6

sum =, +/
| sum a

21
mean =, sum % #
mean a

3.5
report =, 1, 2 3 4
report

(o SRR (R SRR

B it B 63 7

8 '9:10 11

12 13 14 15
16 17 18 19
20 21 22 23

The first sentence says ‘a’ is a list of six numbers.

‘sum’ is a verb or function which computes the sum. The sum of ‘a’ is 21. We call
‘sum’ a verb because it applies to a noun to produce another noun. The symbol
slash (/) is an adverb because it applies to a verb, in this case plus (+), to produce
another verb. ‘mean’ is the sum divided by the number of items. The mean of ‘a’
is 3.5.

Verbs in] apply to elements, lists, tables and reports. For example suppose
‘report’ is the revenues for two departments over three countries over four
quarters. The mean over the departments is simply ‘mean report’.

mean report
6 7 8 9
10 31 12 .13
14 15 16 17

mean "1 report
1.5 5.5 9.5
13.5 17.5 21.5

mean "2 report
4 5 6 7
16 17 18 19

86

VECTOR Vol.9 No.4

mean "3 report
G, Z &8
10 11 12 13
14 15 16 17

‘mean’ over the four quarters is ‘mean” applied to the list of rank one objects in
report and ‘mean’ over the three countries is ‘mean” applied to the tables of rank
two objects in ‘report’. ‘mean” applied to the rank three objects in ‘report’ is the
same as ‘mean report’ because report only has rank three.

The symbol double quote used here is the ‘rank’ conjunction. It is dyadic and
applies to a verb left argument and a noun right argument to produce a verb.

A2 3 4

7.38906 20.0855 54,5982
1 2 3A2 3 4

18 81

square =. A&2
square 1 2 3 4
14 9 16

antilog =. 10&A
antilog 1 0.699 _1
10 5.00035 0.1

ss =, +/8&(A&2)
ss"1 report
i4 126 366
734 1230 1854

The symbol hat (1) denotes a verb and like other verbs it has a monadic and
dyadic meaning. The monadic meaning is exponential. The dyadic meaning is
exponentiation or power.

Now if you fix one of the arguments of a verb you get a different verb. For
example ‘square’ is power with a fixed right argument of two. Ant ilog is power
with a fixed left argument of ten.

The symbol ampersand denotes a conjunction. If one argument is a noun it does
fixing or currying; if both arguments are verbs it does composition. For example
sum of squares is sum composed with square.

Like all verbs, these verbs that are derived from conjunctions apply to lists, tables
and reports and are in the domain of conjunctions.

87

1 VECTOR Vol.9 No.4

Nouns (arrays)

In the implementation the fundamental structure is the APL array, by which I
mean the C structure capital a (A), which has the following parts:

The type
] Reference count
| | Number of atoms or elements in the array
The rank
The shape or dimensions (the rank gives you the number
of elements in the shape)
The value — the elements of the array in ravelled or ‘row major’ order

1 typedef long I;
1 typedaf struct (T t,c.n,v,8[1]:3* 2%

t type

C reference count
n number of atoms
e rank

- shape

R I atoms of the ravelled array
(row major order)

All objects, whether numeric, literal or boxed, whether noun, verb, adverb
conjunction or punctuation are represented by this structure. For example the
string ‘cogito ergo sum’ is represented like this:

CHAR 1 17 il 17|Cogi|to, |ergo| sum

'Cogito, ergo sum.'

E c n r s v v v Wy sl
1
\

The type is character. There are seventeen elements. The rank is one and the
shape seventeen. The value is the seventeen characters in the string held in one
byte per element or four bytes per word.

88

D s i

VECTOR Vol.9 No.4

The number 1.61803 is represented as follows:

1.61803
|
FL - 1 1 0 l.?1803

The type is floating point. There is one element. The rank is zero so there is no
shape and there are two words per element in the value.

Questioner from the audience: What is the reference count?

The reference count is the number of times this object is used. I won’t go into
that. It has to do with the internal workings of the interpreter and is not very
interesting.

The report we saw earlier is represented as follows:

INT 1 24 3 2 3 4 0 1

21 22 23

Type is integer. There are twenty four elements. The rank is three. The shape is 2
3 4 and the value is the integers from 0 to 23 each stored in four bytes.

89

VECTOR Vol.9 No.4

I said before that not only nouns but also verbs, adverbs and so forth are
represented by this structure; so for verbs, adverbs and so on the type would be
verb adverb and so on, but the value would interpreted according to the
following template or structure denoted by the C structure V having these parts:

typedef A(*AF) ();
typedef struct {AF f1,f2;A £,qg,h;

s, e res Conds ., N

¥ monad
f2 dyad
f Ist operator argument

2nd operator argument

h 3rd operator argument
mr monadic rank

ir left rank

rr right rank

id identification (byte)

If a verb has rank R that means it is defined on arrays of rank R or less and the
extension of that verb to arrays of higher rank is the same as for all other
verbs.

Questioner from the audience: What are the first lines on the slide?

Oh that is really for C hackers; it doesn’t really matter very much. The top line is
defining a type called ‘AF’ and that’s a function that returns an array result. I put
it here because I use ‘AF’ in the second line. The second line says that ‘1’ and
“£2’ are of the C type “function’ returning an array result and ‘f’, ‘g’ and ‘h” are
of the type ‘APL array’ and ‘mr’, ‘1r” and ‘rr’ are the C type “integer’ and ‘1d’
is a C type capital c (C). I haven’t shown the definitions of I and C but they are

just integer and character.

VECTOR Vol.9 No.4

To give you a better idea of what all this means: the verb ‘sum of squares’ we
saw earlier would be represented as follows.

T f2 foq modoitidd

onl on2 o e ook dus |
+/&(7&2)

areduce|oprod |.|o|_|_|_1|/
W/

conjug |plus |olo| |olol+

withr domerr|.|. &

expnl expn2 (0|0 oo~

I haven’t shown the rank, shape, reference count, number of elements and so
forth — I chopped it off because the interesting part is what is shown here.

For ‘sum of squares’ the root is composition whose symbol is ampersand (&)
and whose C function is ‘on1’. The dyad is the C function ‘on2” and all the ranks
are infinite. The operative arguments ‘f’ and ‘g’ are ‘sum’ and ‘square’,
themselves represented similarly.

‘sum’ the symbol is slash (/). The monad is the C function ‘areduce’. The dyad is
the C function ‘outerproduct’ and there is only one operative argument, plus

(+)-

For “plus’ the symbol is plus (+). The monad is the C function ‘conjugate’. The
dyad is the C function ‘plus’ and there are no operative arguments because plus
is primitive.

Back to “square’; the symbol is ampersand (8). The monad is the C function
‘withr’. The dyad is the C function ‘domainerror’. The operative arguments are

n

VECTOR Vol.9 No.4

‘power’ and ‘2, themselves represented similarly. ‘2" is a noun whose
representation we’ve seen before. ‘power” has the symbol hat (a). The monad is
the C function “exponentiali’. The dyad is the C function ‘exponential2’ and
there are no operative arguments because power is primitive.

So I think you can see how this can grow on and on to make more and more
complex functions.

Parsing

This parse table is the cornerstone of the interpreter.

typedef struct {I c[4];AF £;I b,e;} PT;

#define EDGE (MARK+ASGN+LPAR)
#define NOTCONJ (NOUN+VERB+ADV)

PT cases[] = {

EDGE, VERB, NOUN, ANY, monad, 1,2,
EDGE+NOTCONJ, VERB, VERB, NOUN, monad, 2,3,
EDGE+NOTCONJ , NOUN, VERB, NOUN, dyad,. 1,3,
EDGE+NOTCONJ , NOUN+VERB, ADV, ANY, adv, A2
EDGE+NOTCONJ , NOUN+VERB, CONJ, NOUN+VERB, conj, 1,3,
EDGE+NOTCONJ , VERB, VERB, VERB, forkv, 1,3,
EDGE, VERB, VERB, ANY, hookv, 1,2,
EDGE, ADV+CONJ, RHS, ADV+CONJ, formo, ‘1,3,
EDGE, ADV+CONJ, ADV+CONJ, ANY, EOoXrmo ;L2
EDGE, CONJ, NOUN+VERB, ANY, curry, 1,2,
EDGE, NOUN+VERB, CONJ, ANY, oy B V8N 7 S8
NAME+NOUN, ASGN, RHS, ANY, is, 0,2,
LPAR, RHS, RPAR, ANY, punch 0L 2

| §

A sentence to be parsed is placed on a queue and as parsing proceeds, words are
moved from the queue onto a stack. After each move the first four words on top
of the stack are compared to these patterns. If they match a pattern then the
action in this column is triggered and that action will be applied to the words
indicated in the last two columns and the result of the application put on the
stack in place of the matching items.

The implementation makes extensive use of macros, defined constants and type
definitions. You have already seen some of them; for example the types A and V,
the defined constants noun, adverb, conjunction and so forth.

92

VECTOR Vol.9 No.4

The advantages of such usage is that it greatly augments the expressive power of
C, it enforces uniformity and increases readability. For example, by ‘an APL
function’ T mean a function that applies to array arguments and returns an array
result. These macros encapsulate that convention. The macros ‘f1” and ‘2’ are
for primitive APL functions and ‘df1’ and ‘df2’ for derived or non-primitive
functions. The argument ‘sel f’ is an array whose monad or dyad is ‘f’.

#tdefine F1(f)

f(w)a w;
#define F2 (f) £ (

a,wai a,w;

A
A
#define DF1(f) A f(w,self)Aa w,self;
#define DF2(f) A f(a,w,self)A a,w,self:

Using such definitions and macros the functions and programs in the
implementation look like this. The monad itemised is defined in one sentence.
Likewise the C implementation is one line. Notice the use of the ‘f1’ macro
which says that this is a monadic function which applies to one array argument
and returns an array result.

Dictionary:

, :y adds a single unit axis to y, making
the shape 1, Sy.

£

Fl(laminl) {R reshape (over (one,
shape (w)) ,w);}

The dyad ‘laminate’ is also specified in one sentence and again its C
implementation is one line. The “f2” macro indicates that this is a dyadic function
which applies to two array arguments and returns an array result.

93

VECTOR Vol.9 No.4

Dictionary:

An atomic argument in x, :y 1is first
reshaped to the shape of the other (or to a
list if the other argument is also atomic); the
results are then itemized and catenated, as in

G Mhaibmr V) «

C:

F2(lamin2) {RZ (a&&w) ;
R over (AR(a)?laminl (a) :a,
AR (w) ?laminl (w) :
AR (a)?w:table(w)) ;}

The conjunction ‘ampersand’ that we saw earlier is implemented as follows. As
indicated previously if one argument is a noun and the other a verb then it does
‘fixing’ or ‘currying’. If both arguments are verbs then it does composition and if
both arguments are nouns then it signals domain error.

The functions ‘on1’, ‘on2” and ‘withr’ that we saw earlier are defined thus.

static DF1l (withl) {DECLFG; R g2(fs,w,gs);}
static DF1l (withr) {DECLFG; R f2(w,gs, fs);}
static CS1l(onl, fl(gl(w,gs),fs))

static CS2(on2, f2(gl(a,gs),gl(w,gs),fs))
F2 (amp) {

RZ (a&&w) ;

switch (CONJCASE (a,w)) {
case NN: ASSERT (0, EVDOMAIN) ;

case NV: R CDERIV(CAMP,withl, 0L, RMAXL,RMAXL,RMAXL) ;

case VN: R CDERIV(CAMP,withr, 0L, RMAXL,RMAXL,RMAXL) ;

case VV: R CDERIV(CAMP,onl, on2,mr(w),mr(w),mr(w));
11}

94

VECTOR

Vol.9 No.4

Statistics

C Fns 793
Lines 4521
Average lines/fn - g
Min 1
Max 81
Median 1
One-liners 435
Lines 4521
+/ Line lengths 143481
Average chars/line Bdxd
Min 1
Max 89
Median 28
One-character lines 293

440 ofthe 793 fns are APL functions

These statistics are derived from the] source code for version 6. As you can see
the implementation consists of a large number of functions which are short,
having short lines and following a well defined uniform interface. These are

characteristics of an APL programming style.

This concludes the prepared part of my talk. Are there any questions?

[Reporter’s note: The question and answer exchanges below are summaries of

what was said.]

Q Why should APLers use J?

A Because it has no special characters, enables functional programming and for
other reasons — why don’t you invite Ken Iverson to come and talk to you
about it?

Q Can all APL functions be translated into J?

A What I called an “APL function” was defined as a function that processes

arrays and gives an array result. This is not necessarily the meaning of APL
function in APL\360. Translation from APL to] has to be done by hand.

VECTOR Vol.9 No.4

> 0

>0 » 0O

Does] have the concept of the workspace?

Yes. It is currently implemented in a workspace interchange form and future
versions may use different representations.

Can you tell us something about J's relationship with its operating
environment?

It provides an interface to host or native files and also can call functions that
follow the C calling convention. The details are to be found in appendix C of
An Implementation of <J. It is called the link-] interface.

] has changed rapidly over the last few years: to what extent was this
implementation style designed to make such change possible?

I had a slide of statistics at Copenhagen over two years ago. The figures were
very similar to these. This programming style has actually evolved out of
desperation because that was the only way I could keep up with Ken Iverson.
Were you an APL programmer before you did C?

Yes; | was an APL programmer for about thirteen years before I did this. I
knew APL from the outside before writing its inside.

Would you have written the C like this without that experience?

Probably not. These statistics are one indication that this is an APL
programming style effected in C.

Are there any efficiency consequences; is this style of C slower than others?
No; no necessarily. Between Copenhagen statistics and these [did an
extensive speed up without affecting the style or the statistics.

Are there any limitations such as a maximum rank?

Yes, there is an artificial limit on rank of 127. There is also a limit on the
number of elements in an array — as it is stored in four bytes there is a limit of
two billion.

What is ‘EDGE’ in the parse table?

‘EDGE’ is ‘mar ker’, left parenthesis or assignment arrow.

Please explain parsing again as I didn’t follow.

Words are moved from the queue to a stack and the top of the stack is
compared to the pattern in the parse table. Suppose we are parsinga =. 1.
The queue will contain a marker ‘{’ followed by a, =. and 1. We move 1 to
the stack. There is no match so we move =. to the stack; still no match. We
move a to the stack. The stack now contains @ =. 1 and this matches line 12
of the parse table because RHS is any of noun, verb, adverb or conjunction, so
we invoke the C function ‘is’ with the arguments indicated in the last two

96

VECTOR Vol.9 No.4

columns; the result is a 1 which replaces thea =. 1 on the stack. We then
proceed from there.

Q So to change the way hook works you would change this parse table?

A Yes. If you take out some lines from this table you get the APL\360 parsing
rules. That’s why hook and fork and so on are proper extensions to the
APL\360 rules: we just took expressions which would have been errors and
assigned meanings to them.

Q What about currying?

A Lets look at the pattern: if you have two adverbs in a row or two conjunctions
in a row or if you have an adverb and a conjunction then that fits the pattern.
An example is “+\” which is “sum’. To define a scan like the APL scan all I need
is ‘/\” — two adverbs in a row and that would be handled by this rule.

Q Could the parse table really be used to parse APL?

A It would have problems with anomalies such as semicolon bracket indexing
and it couldn’t do strands, but otherwise it would work.

Q What about 1 space 2 space 3?

A We consider that part of word formation rather than parsing. That is done
before putting sentences in the queue.

Q How is memory used?

A [malloc each little bit as I go, so how memory is used depends on how
malloc works.

Q What about saving a workspace?

A What [mean by a saved workspace is slightly different from other APLs. I just
put each object in turn into a standard representation.

Q Why does loading a workspace use more memory than the size of the
workspace when on file?

A The standard representation packs objects economically. On loading they are
expanded to a form which is easy to handle — the form you have seen. Also
the process of doing the conversion uses space.

Between] and APL, which do you prefer?

[prefer] because I implemented it.

Is] APL?

Yes — it is obvious that J is enhanced APL thinking.

o » 0 » 0

Which goes faster,] or APLIWIN?

97

VECTOR Voi.9 No.4

>0 » 0 >0 » 0 >

> O

A

The windows code is the same for both and this takes most of the processing. I
believe] is competitive on the rest of the timing.
What are your hopes for J?

[have no ambitions in that regard.

Could someone with an APL background understand your C?

Yes definitely. The source assumes the reader knows both J and C but the
reader who knows C and not] or APL is under a much greater handicap than
an APLer who doesn’t know C.

How do conventional C programmers react to this?
With horror!

Can you describe the workspace environment?

It's perhaps a little misleading to describe the space where objects are held as a
workspace, because all it is is space obtained frommal loc and freed by
‘free’ when no longer used. Again see appendix C of the book.

Do you have things like symbol tables as well?

Yes, the symbol table is just another type of object with the type
‘symboltable’ and it relates the name to the value. Either name or value
could be used when the symbol table is referred to depending on what would
be most convenient.

Can you have multiple symbol tables to avoid ‘symbol table full’ messages?
Yes I do but not for that reason. [use multiple symbol tables to hold localised

variable names.

On the] disk of source code version 6 there is a directory J41 as well as a
directory J6. Why? ;

The book is fully compatible with] version 4.1 but] version 6 is the latest
version.

[Applause]

Announcement: The book An Implementation of] by R K W Hui, published by
Iverson Software Inc, is available from ISI in Canada for $90 plus $20 for air mail
and packing. These are US Dollars not Canadian. I-APL will get it for you for
sixty pounds plus three pounds packing if you order from the enquiry address. It
is not shown on the I-APL price list because sales do not justify the space it

would take.

98

