VECTOR Vol.11 No.2

Chaotic Behaviour
Revisited

by Gérard A. Langlet

What is Chaotic Behaviour?

Chaotic behaviour occurs when one is unable to predict what will happen at some
distance from here or from now. It has long been known (Poincaré, Lorenz with
the butterfly-effect) that a small variation in the initial conditions may lead to
huge differences in the behaviour of dynamical systems, which, in general, are
described by differential equations as a function of time.

Hundreds of books and papers are devoted to chaos which is supposed to appear
even when one iterates very simple nonlinear equations such as the “logistic
equation”, proposed by Verhulst more than 130 years ago in order to model and
explain population ratio (alternate growth and decay) in ecological systems.

If X is a variable which may vary in the interval {0,1}, then Verhulst’s nonlinear
formula:

Xps1 = 4 Xy, (1-X)
will give the next population ratio at step n+1 if one knows the ratio at step n.

Although this formula is completely deterministic (ALL equations are
deterministic), the succession of Xj, Xj;1 ... Xjyp (terms of a series) exhibits a
“positive Lyapunov exponent”, proof of its chaotic behaviour.

When the behaviour is not chaotic, this exponent is simply 0.

It is clear that iterations of linear functions may NEVER lead one to observe any
chaotic behaviour.

VECTOR Vol.11 No.2

Hic jacet Chaos (a non-syllogistic mathematical proof)

?o, let us consider the iterations of one of the most simple linear formulas one can
imagine:

W11=20y, with ® an angle (e.g. expressed in radians).

By no means would the iterations of such a formula lead to chaos.

As an example, if @y is 1 radian, one may immediately predict that wy shall
exactly equal 2N radians.

Then, in order to obtain a variation in the closed interval {0,1} , let us choose
variable X as sin’w and replace the series involving powers of 2 by a series in X.

Any value of X is still predictable, as the squared sine of the corresponding .
For any value of X,=sin’,, the next value will be X,,+1=sin2w,,+1 ie.sin®2w, .

For any value of , then sin?2w, may be written as a function of w,, simply as:
(2 sinw, cosw,)? which is equivalent to: 4 sin?w,, cos’w,, .

Knowing that sin%w, is X,, and that cos’, is 1-X,, any undergraduate student
finds the “logistic” formula:

Xp1= 4 X (1-X,)
which, consequently, MAY NOT be chaotic anymore.

Quod erat demonstrandum.

The True Origin of Chaos for Iterated Applications

Successive iterations of the logistic equation are ALWAYS computed ... with
computers.

In all computers, precision is limited. (On paper, with a slide rule or a calculator,
precision is also limited.)

If any initial value of ® is coded with B bits, every new iteration would require
ONE new bit on the left of the internal representation of the old ®. Doubling w,
simply appends a new 0 to the right of the previous representation of ®,.

So, the internal representation of v, is the same as the one of ®,, with a 1-bit left
shift; one can also say that a 0 on the left of w,, is transferred to the right with a 1-
position circular shift, in order to produce ®,,,;.

83

VECTOR Vol.11 No.2

Then, in order to reach the Nth jteration with NO loss in precision, a record with
B+N bits is necessary. With double-precision floating-point arithmetics, e.g. with
the usual IEEE standard, only 64 bits are available to code:

a) the sign of the constant (1 bit),

b) the exponent (11 bits, hence the maximum value 10°® because 308 is 2'° (i.e.
1024) divided by Log;, 10, then floored — rounded to the inferior integer —,
knowing that one bit is also reserved for the sign of the exponent),

¢) the mantissa in 52 bits.

So, it is possible to predict that if the initial value of o is 1 (radian), then coded in
1 bit, the behaviour will become completely chaotic after the 51% iteration,
although the function may no longer be chaotic according to the preceding
mathematical proof.

The situation becomes worse when one tries to compute the Lyapunov exponent of
any series (which may be either experimental, or obtained by computer iteration).
There is absolutely NO control of the result; even if the Lyapunov formula is
good, the fact that a long series of constants is integrated or averaged in a
computer is able to produce a truncated then wrong result, because the Lyapunov
exponent is obtained as an average of differences, then is itself hypersensitive to
floating-point arithmetic truncations.

One may consider that “proofs of chaotic behaviour”, based on iterated formulas
or numeric integration should not be accepted as scientific results, unless the
authors can prove that their calculations have been performed at least with B+N
bits for the mantissa of the floating-point representation, given B as the number of
necessary bits for the “accurate” binary encoding of the initial value(s), and N as
the number of performed iterations: all results, taken for granted, which do not
respect this condition, would have to be computed again; then, perhaps, some
rapidly-drawn conclusions, namely about the behaviour of physical systems, after
1,000 iterations (and, sometimes, after more than 1,000,000) would have to be
discussed again, if not completely revisited.

VECTOR Vol.11 No.2

Exercises for Tests in APL

A) Write an ECHO function which will iterate, with the maximum available
Rreqsion, e.g. UPP«17 in APL*PLUS, the function X,,;<X, near the limit of
significance of the last digits of a large integer: you enter a large integer from the
keyboard; the program shall display what it has understood; then, you enter
exactly the same number as the one displayed by the computer, and “wait” for
the answer of the computer. Iterate the dialogue until the computer echoes the
same number as the one which was entered. Increment the last digit by 1 and do
the same thing again and again: you will detect alternate zones of chaos (with
strange attractors) and non-chaos (when the computer echoes exactly what you
have t.yped). So you will have the proof that X«X is a chaotic function, with
intermittencies, won’t you?

B) Iterate ®,,12xw, starting from any value for w, e.g. 1 (radian). Form the
rotation matrix: /

[Cos ® sin ©
-sin @ Cos

0) Compute its determinant and display it together with the iteration number, at
each iteration.

1) Take the initial rotation matrix M (e.g. for 1 radian). Iterate M<M+ . -M (this
squares the matrix, then also doubles). Display the computed determinant
together with the iteration number, at each iteration.

Knowing that all rotation matrices should have a determinant that IS 1 and
nothing else, imagine first what you will obtain. Then, and only then, try (f
possible with different implementations on various computers, or with languages
other than APL, or on a programmable calculator, or with Excel, etc...).

Will you have proven that application “1 becomes 1” is chaotic?

Q NO Q YES

C) Write a letter to Mr Feigenbaum (or to Mr Gleick) and expose your chaotic
conclusions ...

