VECTOR Vol.18 No.3

Bach’s Endlessly Rising Canon

by Ray Cannon (ray_cannon@compuserve.com)

Sending MIDI Messages to a Sound-Card with J

This article by Martin Neitzel appeared in Vector Vol.16 No3, fascinated me, so I
downloaded the latest version of | and tried it out. It all worked, but being a long-
sighted APL bigot, (I do not get on well with J, as I can’t tell a “:” from a “;”
without a magnifying glass <grin>) I decided to convert Martin’s code into
Dyalog APL/W. For the remainder of this article, I will assume you have read
Martin’s article.

Sending MIDI Messages to a Sound-Card with Dyalog APL/W

(All the code is available on-line in a Dyalog APL/W version 9 workspace from
the Vector Web site http: \www.vector.org.uk\resource.)

First the WIN32 API calls used need to be “mapped” into ON4 calls. All the MIDI
related calls are in the WINMM.DLL (Windows Multi-Media), which should be
located in the Windows System directory.

'‘gnd'0ONA'I winmmn.C32|midiOutGetNumDevs '
'gdc'ONA'I winmm.C32|ImidiOutGetDevCapsA
U2 >{U2 U2 uv T(',(¥yMAXPNAMELEN),'] U2 U2 U2 U2 Uy) U2"
‘open'(JNA'U winmm.C32|midiOutOpen =U U U U U'
'close'0NA'U winmm.C32|midiOutClose U
'sm'ONA'U winmm.C32|midiOutShortMsg U U®

There, all the hard work is done, now you can write your great OPUS in A flat.

How many MIDI devices are on my PC and what can they do?

To find out the number of Midi devices , use midiOutGetNumDevs, this is a
niladic function and simply returns the total number of Midi devices installed on
your PPC.

To find out the capabilities of each device use midiOutGetDevCapsA. This takes
3 arguments, the device number (origin zero), a pointer to the MIDIOUTCAPS
structure, and the size of this structure. (See MIDIOUTCAPS in appendix 1)

The function MidiCapabilities, does this all for you.

104

VECTOR

Vol.18 No.3

v

pl;gdc;

r«MidiCapabilities;nos;0I0;1ist;gnd;chnls;chnl;gname;dnos;names;rc;ca
noj;name; types; MAXPNAMELEN ;sz;wMid;wPid;vDriverVersion;szPname;wlechno

logy;wVoices;wNotes;wChannelMask;dwSupportwMid;wPid;vDriverVersion;szPname;w
Technology;wVoices;wNotes;wChannelMask;dwSupport

(1]
(2]

a Describe the capabilities of the Midi devices on this machine,
a Returns a 3 element nested array of <nv device number> <vtv of Midi

device names> <nv of Midi device types>

[3] 0ro+o A I hate origin 0 but it make life easier here, just
(4] MAXPNAMELEN«32 a max length of product name (including NULL)
(5] a Define [NA calls
(6] 'gnd"'ONA'I winmm.C32|midiOutGetNumDevs
(71 'gdc!'ONA'I winmm.C32|midiOutGetDevCapsi U2 >{U2 U2 Uw P[', (¥MAXPNAMEL
EN),') U2 U2 U2 U2 Uy } U2'
(8] nFind out how many Midi output devices are connected
(9] nos+gnd
[10] 'This Machine has ',(¥nos),' Midi output devices connected to it. The
y are:’
fa:1:) sz«+/2 2 4 MAXPNAMELEN 2 2 2 2 % a Calculate the size of the MIDIOUT
CAP structure
[12] names+0pc'!
[13] types+t0
{14] dnos+10
{15] chnls+0pc10
{186] A list of synthesizer by type
(17] list«'' 'output port' 'generic iInternal synth' ‘'square wave internal
synth' 'FM internal synth' 'MIDI mapper'
(18] list,«'hardware wavetable synthesizer (I think)' 'software synthesize
r (I think)'
(19] :For no :In tnos a Loop for each device found
[20) [
[21] rc¢ capi+gdc no sz Sz a Read the capabilities
[22] :If re=0 A Check that it worked ok
(23] A Split up MIDIOUTCAP str
[24] wMid wPid vDriverVersion szPname wTlTechnology wVoices wNotes
wChannelMask dwSupport<«capt
[25] name<«(szPname\>0AV)tszPname an Extract the Product name
[26] gname«'""' name,'"" A and put quotes round It
[27] :Select wlechnology A Process info by device type
[28] :Case 1
[29] 'Midi Device:',gname
[30] 'A midi output port which requiores a MIDI instrument
to be connected to it. (Ignored by this WS).'
[31] :Caselist 2 3 4 6 7
[32] 'Midi device:',gname
[33] 'Is a ',(wlechnology>1list),' (type ',(¥wlechnology),
' device).'
[3u4] 'It has ',(¥wVoices),' voices.'
[35) 'Maximum number of simultaneous notes it can play is:',
(¥wNotes), ',
[36] "It support Midi chanel numbers ',
(chnl«((16p2)TwChannelMask)/ 16),"'."
[37] :Select dwSupport
{38] :Case 1
{39] ‘It supports a mono volume control!
{%0] :Case 3

105

VECTOR Vol.18 No.3

(41] 'It supports a Stero volume control'

[u2] :Case &

(%3] ‘It supports patch caching.!

(uy] :Case §

[45] 'It supports monoc volume control and patch caching.'
[us6] :Case 7

(47] ‘It supports Stereo volume and patch caching.'
(us] :End

[u9] A Remember name and type of any synthesizer

[50] names ,+cname

{51] types,«wlechnology

{52] dnos,«no

(53] chnls,+<cchnl

(54] :Case 5

(55] 'Midi device:',gname,' is a "MidiMapper",

used to remap “"non-standard Midi Channels", forget it,'
(s8] :Else
(57] 'Midi device of unknown type found:',gname
(58] :End
[s9] : End
[60] :End
[61] r+dnos names types chnls

To use a Midi Device

Midi devices need to be “opened” (midiOutOpen), “sent messages”
(midiOutShortMsg) and “closed”(midiOutClose).

Opening is easy, just give midiOutOpen the (origin zero) number of the Midi
device you want to use. It will return you a handle to that device. You will need
this handle to send messages to it and most importantly CLOSE the device. I
emphasise this point, as if you do not close it properly, you may not be able to use
it again without closing down Windows. (I will cover sending messages in more
detail in the next section.)

The function Mid i demonstrates all of this.

v Midi;gnd;gdc;sm;cap;no;nos;rc;capi;c;open;handi;hand;close;bin;err;et
xt;names;types;select;channels;dur;data
{1] a Demo of Midi ONA calls
[2]) a Display Midi output devices, and get info about any synthesizers

[31] nos names types channels+~MidiCapabilities

(4] :If O0=pnos

(5] '‘Sorry no synthesizers found on this machine.'

[6] :Else a Set up some cals to the Midi APIs

(71 ‘open'(0NA'U winmm.C32|midiOutOpen =U U U U U°

{e] ‘close'NA'U winmm.C32|midiOutClose U

{9l 'sm'ONA'U winmm.C32|midiQutShortdsg U U'

f10] select«?pnos A Select a synthesizers at random

[11] no+selectonos a Get the internal number of this device
(12] rc handi«open 256 no 0 0 0 A Open this device

106

VECTOR Vol.18 No.3

[13] «If re=0 a If the open worked
[14] data+«BERC select>channels A "Create” some Music to plsy
[15] 'Using Midi device:',(select>names),' to play Canon'

[16] handi Play data A Play the "Music"
{17] bin«close handi A Close this device
{18] :Else n Else the open failed
[19] 'An error occured trying to use ',selectonames

{20] 'err'ONA'U winmm.C32|midiOutGetErrorTextA U =07 U

(21) €+150 a buffer for error message

[22] rc etxt«err rc(cp''lc

[23] etxt

(24] +End

[25) :End

Sending Messages to a MIDI Device

To play a sound, what do we need to tell the device? I have written a function
Play, to play some sound that requires knowing;:

When to action request - from 0 to n (where n is the length of a piece of
string /music).

What request to action “set Instrument” “Start-note” “End-note” “Duration
of note” “Other” and “QUIT”

Which channel (instrument) is it played on (See INSTRUMENTS in appendix 2)
How high a pitch - 1-127 (60=Middle C)
How long a note

How loud a volume (velocity) -0 to 127

I pass this information to Play as a 6-column matrix, 1 row per action.

v handi Play data;show;time;bo;more;now;action;bin;tick;channel;volume;
pitch;length;fix;instr;0I0
(1] A Play sound defined in <data> on midi device with handle <handi>
(2] an datal;1]+«> When to action request
(3] A datal;2]«> What request to action 'I' 'S' 'E' D' 1Q!
Instrument/Start-note/End-note/Duration QUIT

(4] A datal;3]«+> Which channel (instrument) does it apply to

(5] a datal;ul+> How hight a pitch

(6] an datal;5]«+ How long a note

[7] n datal;6]«+ How loud a volume (verlocity)

[8] 0I0+«1

(93] a Magic numbers used in midiOutShortMsg (128 144 160 176 192)
[(10] a 128-143 A stop note on channel 0-15

[11] a 144-159 a start note on channel 0-15

[12] a 160-175 a ? on channel 0-15

[13] =& 176-191 a ? on channel 0-15

107

VECTOR Vol.18 No.3

{1%4] ~a 192-207 A Set up an instrument on channel 0-15
{15] fix+{0I0«0 o 2561w} a Encode data into midiQutShortMsg required form

{16] time+"1 a Initialise starting point

(17] tick«0,01 n Define a default tick

(18] more+1 A Control flag. Is there any more data?

f19] :While more a Loop for next slice of time

f20] time++1 a Increment timer

[21] bo«datal;1)ectime a what to action are due NOW

(22] :If v/bo A if anything to be actioned

(23] now+botdata A select items to actioned now

[24] show+10

[25] now«now('EDISQ'4now(;2];] a Sort into order, end a note
before starting a new one.

[26] :For action :In +now a Loop for each action required

[27] :Select action(2] n Process for this action

[28] :Case 'E! n End of a note requested

[29] channel pitch length volume+action(3 % 5 6]

[30] bin+sm handi(fix 0 volume pitch(128+channel))

[31] :Case 'I! A Set a new instrument up

[32] channel instr<action(3 4]

[33] a'Ch:',(¥channel),'Instr:',¥((2" Instruments)instr)>Instruments

(3u4] bin«sm handi(fix 0 0 instr(192+channel))

(351 :Case 'D! a Duration of “"gap"

{361 tick«~action[3]

(37) :Case '0! rn Other action

(38] channel pitch length volume«action[3 4 5 6]

(39] bin+«sm handi(fix 0 volume pitch(i60+channel})

{(50] :Case 'S! n Start a new note

(u1) channel pitch length volume<«action(3 4 5 6]

(u2] show,+pitch volume

(%3] bin+sm handi(fix 0 volume pitch(it4+channel))

(uy] a Now add an action to data to end this note!

(u5] action[1 2}«(time+length)'E' a End time, END action

(us6] data,[1])«action a Append to list of actions

(47] :Else n Any other request...eg Quit

(48] more+0 A Make sure we stop looping

fug] :EndSelect

[(50] :EndFor

(51] :EndIf

(52] ODL tick a Another slice of time flys by, flap flap.

(53] :EndWhile

What to Send?

Since first hearing Pink Floyd’s “Echoes” from Meddle and then reading about
Bach’s “Endlessly Rising Canon” in Douglas R. Hofstadter’s “Godel, Escher,
Bach: an Eternal Golden Braid”, I have always wanted to “implement” an
endlessly rising sound. So here is my chance.

v r+«BERC channels;[I0;notes;rot;voices;starts;i;vols;last:off;channels;
inst;voice;length;offset;when;note;volume;instruments;dur
{2 A Returns some data to play on supplied <channels»>

108

VECTOR Vol.18 No.3

Bach Endless Rising Canon
(23 a ri;0)+> When to action request - from 0 tc n
(where n is the length cf a plece of string/music).
[3] a rl{;1]«+ What request to action 'I' 'S' 'E' 'D!' 191 Q¢
Instrument/Start-note/End-note/Duration/Other/QUIT

[u] a rl;2)«+ Which channel (instrument) is it played on

[5] a r{;3]«+ How hight a pitch - 1-127 (60=Middle C)

(6] a r{;%]e=> How long a note

(71 a r(;5)«+ How loud a volume (verlocity) - 0 to 127

(8] Oro+«o a I hate origin 0 but it make life easier here, just
(o] channels«gup(channels=9)/channels n» Exclude precussion

(10] dur+0.5 a set a duration for each "tick"

(11] length+12 a number of "tick" units to play note for

(12] ~ Set up u8 different volumes from very soft to very loud

[13] vols«|0.54127x10010x(1+(1+124)%2.4)%11 a Log scale

(14] volsevols,dvols a soft(»0) loud(=127) soft(>0) over 4B steps
(151 o Set up some pitchs - range of notes (Middle C=60),

[16] a one per volume CDEF#¢ Gt A# ¢ d e f# g# a# etc

(17] notes+22++\(pvols)p2

(18] a Play a Jot of notes on different channels at different volumes

[19] r+0pcép0 a prototype data

[20] r,«<0 'D'dur A First set up duration

(241 :For when :In ipnotes

{22] r,+c0,'I',when,1%a Se! a instrument on each channel

(23] :For rot :In 6x18 m 8 veoices 6 notes apart

(24] r,+~c+when'S*{(rot¢channels)(whenl)((roténotes)(whenl)i
((rotévols)(whenl)

(25] :End

(28] :End

(27] last«[/=>""r
(28] r,+clast,'I',0,126 a Set a instrument

[29] r,+clast'D' 0.1 a Set up duration
[30]) r,+~c(lagt+2)'S' ¢ 506 30 127 n Applause
(31] last«uo+[/="r n Make sure to stop it at the end
(32] r,+clast'g’ a Quit
[33] r«t6t’'r
9
What Next

That’s up to you, but I want to know how to set up my own instrument. I would
like to be able to play a dog’s bark on my computer. (Listen to “Seamus” on Pink
Floyd’s Meddle) and of course what I really want to do is produce “Cannon’s
Endlessly Rising Bark”.

109

VECTOR Vol.18 No.3

Appendix 1

MIDIOUTCAPS
The MIDIOUTCAPS structure describes the capabilities of a MIDI output device.

typedef struct |
WORD wMid;
WORD wPid;
MMVERSION vDriverVersion;
CHAR szPname[MAXPNAMELEN];
WORD wTechnology;
WORD wVoices;
WORD wNotes;
WORD wChannelMask;
DWORD dwSupport;

} MIDIOUTCAPS;

wMid
Manufacturer identifier of the device driver for the MIDI output device.
Manufacturer identifiers are defined in Manufacturer and Product Identifiers.

wPid
Product identifier of the MIDI output device.
Product identifiers are defined in Manufacturer and Product Identifiers.

vDriverVersion

Version number of the device driver for the MIDI output device.
The high-order byte is the major version number,
and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

wTechnology

Flags describing the type of the MIDI output device.
It can be one of the following;:
MOD_MIDIPORT =1 ; output port
The device is a MIDI hardware port.
MOD_SYNTH =2 ; generic internal synth
The device is a synthesizer.
MOD_SQSYNTH =3 ; square wave internal synth
The device is a square wave synthesizer.

110

VECTOR Vol.18 No.3

MOD_FMSYNTH =4 ; FM internal synth

The device is an FM synthesizer.
MOD_MAPPER =5 ; MIDI mapper

The device is the Microsoft MIDI mapper.
MOD_WAVETABLE =777 6

The device is a hardware Wavetable synthesizer.
MOD_SWSYNTH =2??7

The device is a software synthesizer.

wVoices

Number of voices supported by an internal synthesizer device.
If the device is a port, this member is not meaningful and is set to 0.

wNotes

Maximum number of simultaneous notes that can be played by an internal
synthesizer device.
If the device is a port, this member is not meaningful and is set to 0.

wChannelMask

Channels that an internal synthesizer device responds to,

where the least significant bit refers to channel 0 and the most
significant bit to channel 15.

Port devices that transmit on all channels set this member to OXFFFE.

dwSupport

Optional functionality supported by the device.
It can be one or more of the following:
MIDICAPS_CACHE = 0004h
Supports patch caching.
MIDICAPS_LRVOLUME = 0002h ; separate left-right volume control
Supports separate left and right volume control.
MIDICAPS_STREAM
Provides direct support for the midiStreamOut function.
MIDICAPS_VOLUME =0001h ;supports volume control
Supports volume control.
If a device supports volume changes,
the MIDICAPS_VOLUME flag will be set for the dwSupport member.
If a device supports separate volum e changes on the left and right channels,
both the MIDICAPS_VOLUME and the MIDICAPS_LRVOLUME flags will be set
for this member.

111

VECTOR Vol.18 No.3

Appendix 2

INSTRUMENTS
v r+«Instruments
[1] A Return the "Standard MIDI Patch Assignments" (eg Instrument list)
(2] A r+—»Vector of 2 element vectors of(<patch no><instrument name»)
[3]
(u] A Infomation from:-

(5] aPlatform SDK: Windows Multimedia
(6] aStandard MIDI Patch Assignments
(7] nThe standard MIDI patch assignments for authoring MIDI files

[8] rare based on the MIDI Manufacturers Association specification,
(9] aFollowing are the standard MIDI patch assignments.
(10]

[11] aPiano

[12] r«c0 'Acoustic grand piano'

[131] r,«<1 'Bright acoustic piano'
[14] r,«c2 'Electric grand piano'
[15] r,«c3 '"Honky-tonk piano'

(161 r,«c4 'Rhodes piano'

{(17)] r,+~<5 'Chorused pianc’

(18] r,+cé 'Harpsichord '

f19] r,+c7 'Clavinet’

{20] ~aChromatic Percussion

(21] r,~c8 'Celesta '

(22] r,+c9 'Glockenspiel !

(23] r,+ci0 'Music box'

[24] r,+c11 'Vibraphcne'

[(25] r,+c12 'Marimba’

[26] r,+c13 'Xylophone '

[271] r,+ciy4 '"Tubular bells'

[28] r,«~c15 'Dulcimer’

(29) aChromatic Percussion

[30] r,+c16 'Hammond organ '

[31] r,«c17 'Percussive organ '

(32] r,«c18 'Rock organ'

(33] r,«e19 'Church organ'

[3u4] r,«c20 'Reed organ'

[35] r,+c21 *Accordion '

(36] r,+c22 ‘'Harmenica '

[37] r,+c23 'Tango accordion !

[38] aGuitar

[39] r,+c24% 'Acoustic guitar (nylon)'
(4ol r,+c25 'Acoustic guitar (steel)'
(u1] r,+~c26 ‘Electric guitar {jazz) '
[uz] r,+«c27 ‘Electric guitar (clean)'
[43] r,+«<28 ‘'Electric guitar (muted)'
(44]) r,«e29 'Overdriven guitar'

[us] r,«c30 'Distortion gquitar'

[ue] r,«c31 'Guitar harmonics '

[(47] ~aBass

{ug) r,+<32 "Acoustic bass !

fug] r,+c33 'Electric bhass (finger)'

112

VECTOR Vol.18 No.3

[501] r,+c34% 'Electric bass (pick)'
(s51) r,+c35 *'Fretless bass '
[52) r,+«<36 'Slap bass 1 !

[53] r,+~<37 'Slap bass 2 '

(54 r,+c38 'Synth bass 1'

(55 r,«c39 'Synth bass 2'

[s6] aStrings

[571] r,+cl0 *Violin'

(58] r,«c41 'Viola °

[s59] r,«cu?2 'Cello (The answer to the ultimate question)'
[60] r,«c43 'Contrabass!'

[61] r,~c44 'Tremolo strings '
(62] r,+cu45 'Pizzicato strings '
[63] r,«cu6 'Orchestral harp '
[6u] r,«<47 'Timpani '

[65] ~aEnsemble

[66] r,«c48 'String ensemble 1'
[(67] r,«~c4g 'String ensemble 2'
[68] r,+<50 'Synth. strings 1 '
[69] r,«c51 'Synth. strings 2 !
{70] r,+<52 'Choir Aahs '

{711 r,«c53 'Voice Oohs!'

(72] r,«~e54% 'Synth voice '

(73] r,+«<55 'Orchestra hit'
{74] aBrass '

{75] r,«<56 'Trumpet'

{761 r,+~<57 'Trombone'

(77) r,«c58 'Tuba’

(78] r,«c59 'Muted trumpet '
{(79] r,+~<60 'French horn !

(80] r,+~<61i 'Brass section '
{B1) r,«c62 'Synth. brass 1’
[82] r,«~c63 'Synth, brass 2'
[83] aReed !

[(84] r,«cé4 'Soprano sax '

(85] r,«<c65 'Alto sax'

[86] r,«<66 'Tenor sax '

[87] r,«<67 'Baritone sax'

[88] r,«<68 '0boe’

(89) r,«c69 'English horn'

[90] r,+<70 ‘'Bassoon ‘'

[91] r,+~c?71 'Clarinet’

(92) ~ePipe Synth '

(93] r,+c72 'Piccolo !

[9u] r,+~c73 'Flute!

[95] r,+c?4 'Recorder '

98] r,+c75 'Pan flute’

(a7] r,+c76 'Bottle blow®

(e8] r,«<77 'Shakuhachi

[99] r,«c?78 'Whistle'

(100) r,+<79 'Ocarina'

(101] nLead Synth'

(102] 1r,«<80 'Lead 1 (square) !
{(103) r,«c8:1 '"Lead 2 (sawtooth)'
f108])] r,«c82 'Lead 3 (calliope lead)’

113

VECTOR

Vol.18 No.3

(105)
[106]
[107]
(108)
[109]
[110]
[111]
(112)
[113]
[114]
[115]
(116
[117]
[118]
(119]
[120]
[121]
[122]
(123)
[124]
[125]
[126]
[(127]

r,+c83 'Lead
r,+c84 'Lead
r,+c85 'Lead
r,+<86 'Lead
r,+c87 'Lead
aPad !

r,+c88 'Pad 1
r,+c89 'Pad 2
r,+c80 'Pad 3
r,+c91 'Pad 4
r,+c92 'Pad 5
r,+c93 'Pad 6
r,+c9y4 'Pad 7

r,+<95 'Pad 8
aSound Effects

- o0 0 F

(chiff lead) !
(charang)'
(voice)!'
(fifths)
(brass + lead)

(new age)’
(warm)'
(polysynth)
(choir) !
(bowed) !
(metallic)!
(halo)'

(sweep) !

r,+c120 ‘'Guitar fret noise ‘!
r,+c121 'Breath noise'
r,+<122 'Seashore!

r,+c123 'Bird tweet!'

r,+ci24 'Telephone ring'
r,+c125 ‘'Helicopter'

r,+c126 ‘'Applause'!

r,+c127 'Gunshot '

114

