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Elliptic Curves and Fact
by Cliff Reiter

Factoring integers has become a topic of intense interest because several modern
security schemes are based upon the unproven, but highly tested assumption that
factoring the product of two sufficiently large primes is implausible. For example,
RSA encryption [1,3,5] depends upon that assumption.

] has a factorization primitive, q:, that is effective on integers of limited size.
Consider the following examples from J501b [2].

q: 10001x
73 137

q: 20104311482x
|nonce error
| q:20104311482

In this note we will consider ] implementations of several factoring schemes.
While our main goal is to implement elliptic curve factorization, we will first
implement other techniques for comparisons and for their auxiliary facilities.

Trial Division

A simple approach to finding a nontrivial factor of a positive integer 7 is to try
dividing 7 by all the primes up to and including +/» . This guarantees that either a
prime factor will be found or that  is a prime. However, this is impractical for n
with many more than a dozen digits. Remarkably, there usually are faster ways to
find nontrivial factors of an integer. Nonetheless, factoring remains a difficult
problem.

It is often convenient to assume that small prime factors have already been
removed from a number that we are trying to factor. Thus, we first give a method,
essentially a limited form of trial division, for finding and removing small prime
factors.
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fac_smpr=: 3 : O
24 fac_smpr y.

p=.p:i.x.

z=,0

whilst. 0<+/peg do.
peg=.p=p *. vy.
z=.z+peg
y.=.y.%*%/peg#p

end.

;z#P);v-

smpr=:>@{ .@fac_smpr

rmsmpr=: >@{:@fac_smpr

The function fac_smpr finds/removes small prime factors. The left argument
specifies the number of primes to consider as factors. The right argument is the
integer to be factored. The function computes the gcd's of the primes with the
right argument. Any prime factors are divided into the right argument and the
process is repeated until no additional prime factors are found. The number of
occurrences of the small primes is maintained in peg. The default left argument is
24 and since there are 24 primes below 100, the default is to find and/or remove
all the primes below 100. The result of fac_smpr is a boxed list: the first entry
gives the small primes and the second gives the remaining factor. The function
smpr (small primes) gives just the small prime list and rmsmpr (remove small
primes) gives the remaining factor.

fac_smpr 10001x
+——t———

1731137]

s ettt &

fac_smpr 10001x43

e ———— o ————— +

|73 73 73]12571353|

domm—m———— Fmmm———— +

smpr 10001x43
73 73 73

rmsmpr 10001xA3
2571353
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This function runs quickly. We see the average time to remove the small primes
from random 25 digit integers is around 0.005 seconds on a 750MHz PC.

randi=: (#.?)@: (#&10x)"0

randi 25
2008895148955473153890348

time=: 6!:2

time 'x=:rmsmpr@fandi 10#25"
0.0487565

55 X
671234250102220323199
2474549129588435104129
48970091249028260523683
2297220239702535644527649
88419525950493421
4305779878041636190577
2248097504771690235770021
64541498213536825761779
8370870055924244454337
209137630199356533034823

The list x above gives the result of computing 10 random 25 digit integers and
removing the small primes from those integers. Notice the range of sizes. We will
use this same list throughout this note.

Pollard p-1 Method

The Pollard p-1 method is based upon the idea that if p is an odd prime that
divides n, then by Fermat's Little Theorem, 2°! =1mod p, and hence p divides
ged(n,27" -1). Of course, bases other than 2 may be used and perhaps a smaller
power will suffice. The Pollard p-1 method looks for factors of # of the form
ged(n,2* ~1) where M may be chosen in various ways; however, it is based upon
the hope that p-1 has only small prime factors and hence divides M.

In particular, we follow the suggestion of [1] and select a bound B and then
compute M as the product of prime powers p¢ where e is the largest power so that
p* <B. All primes less then B are used in the product. One can compute the gcd at
various stages. Standard advice is to compute the gcd's at the end. However, we
will use this technique for relatively small factors and will compute the gcd after
each prime power.
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There is a natural “second stage” that extends this algorithm when p-1 divides
gM for a single, slightly larger, prime q. However, we will use this technique only
to find fairly small primes, so we will be content to implement only the first stage.

fac_p_1=: 3 : 0"0
(d_p_1_B y.) fac_p_1 vy.
c=.2Xx
exp=.y.&|@A
for_k. i. p:a:_1 x. do.

p=.p: k

c=.c exp (pA<.p A. x.)

g=«¥. *. c-1

if. -. ge. 1,y. do. g,1 return. end.
end.

g,_1
)

d_p_1_B=: 10000"_ <. >.@:(A&0.5 )

The left argument of fac_p_1 is B and the right argument is the number to be
factored. The default left argument is taken to be around +/» but not larger than
10,000. The bound is relatively ad hoc but seems to work well enough for the
small primes we seek and keeps the run time of this function short. Of course, that
is at the expense of having the algorithm fail when more time might have led to
success.

The result of fac_p_1 is a list of two integers. The first gives the factor if one was
found. A 1 in the second position indicates that a nontrivial factor was found (in
stage one) while a _1 indicates no nontrivial factors were found.

Next, we apply fac_p_1 to the ten integers, x, that were created in the previous
section.

fac_p_1 x
1

397

1

433
367823
1
978149
839
1087
80621729

P P R e
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It took an average of 0.5 seconds to run fac_p_1 on a 750 MHz PC. We observe
that it failed three times but it usually succeeded. When it was successful, it found
factors of a variety of sizes, but these sizes are relatively small compared to 25
digits.

Pollard rho Method

The Pollard rho method is based upon the idea that if one computes iterates of a
function mod 7, then at some point a duplicate value must be reached. Of course,
the duplicate would usually occur much earlier modulo a prime divisor of #,
hence we can look for factors of the form ged(n, x, - x,). As a practical matter, it is
traditional to test ged(n,x; — x,,) where the sequence x, is generated by

Xy =2

X =X;+1 modn.

The starting value and the function to be iterated can be varied, but we are again
primarily interested in the case when it is effective at finding relatively small
factors.

fac_rho=: 3 : 0"0
(d_rho_maxj y.) fac_rho y.

T X X 13 -
b B T RTINS B [T

nnmNPE =3
° . n n o

3
e O X X -

—Q o

d_rho_maxj=: 10000&<.@<.@(A&(%3))

The left argument gives the maximal number of iterations and the right argument
is the number to be factored. The result is a list: the first entry is the most recently
computed ged and the second entry is the number of iterations that were used.
When the maximum iterations was reached, the ged is most likely trivial, but
otherwise it is a nontrivial factor. As for the p-1 method, we show below the result
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of running fac_rho on the same 10 random integers created in the first section.
Running fac_rho on all ten integers requires about 17 seconds.

fac_rho x
4234213 2330

2717 25
161603867 4748
269 15
367823 512

1 10000

978149 1800
839 18

1087 40

1 10000

We see that fac_rho usually succeeded at finding a nontivial factor. It failed
twice. A careful comparison with the results for fac_p_1 shows that each
successfully factored some integers that the other did not. Typical random
examples show the techniques more usually find the same small factors somewhat
more often than our illustration suggests, but the point that they each may
succeed when the other fails remains a valid one.

Elliptic Curves and Arithmetic

Elliptic curves are often viewed as algebraic equations of the form y* =x*+ax +5.
We usually restrict to nonsingular curves which are those where x’ +ax+5 has no
repeated roots. A somewhat surprising arithmetic can be introduced on the points
on nonsingular elliptic curves. Many books have appeared on elliptic curves in
recent years so there are many sources for further reading about elliptic curves.
Our implementations are primarily motivated by Crandall and Pomerance [1].
That book has a succinct but sophisticated treatment appropriate for
implementers of elliptic curve factorization methods. Silverman and Tate [6] give
considerable detail regarding the mathematics of elliptic curves as well as
providing historical context and different perspectives regarding elliptic curves.
Elliptic curve factorization resources and records may also be found on the web;
for example, see [7].

The curves appearing in Figures 1-3 show some of the variety of forms that appear
in nonsingular elliptic curves. A “typical” line intersects the curve at three points.
The arithmetic on elliptic curves is taken so that those three points sum to zero.
Vertical lines are also taken to include a point at infinity that is the additive
identity. Thus, (x,,y,) and (x,,~y,) are considered opposites. Tangency is counted
as a repeated point. It is straightforward, but requires some algebra, to check that
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the sum of two distinct, non-opposite points (x,,y,), (x,,»,) is given by (x,,y,)
where

Y20
Xy — X

m=

— N
Xy=m —x —x,

vy =—(m(x; —x )+ y,.

_3x’+a

When the points are equal, the only change required is that 5
N

Remarkably, these rules for addition give rise to an “abelian group” structure. In
particular, the addition is associative and commutative. Figures 1-3 show some
examples of intersections that make addition of certain points clear. For example,
Figure 1 corresponds to the elliptic curve y* = x* + 3x and we see that

(0,0) +(1,2) = (3,-6) on that curve. In a similar manner, Figure 2 shows

D) +(11) =(-1,-3) on y* = x* —5x+5.

We will apply the addition rules on integer points modulo n. The quotient
required in computing m corresponds to finding an inverse modulo n. When 7 is
composite it may not be possible to find the inverse, and this failure is what gives
the nontrivial factor. By carrying along a formal denominator, it is possible to
avoid the inversion (which is expensive compared to the other arithmetic
operations). This can be done in more than one way. We follow what is called
modified projective coordinates in [1].

Modified projective coordinates carries three coordinates (x, y,z). A point (x, y,z)

in modified projective coordinates corresponds to a point (iz..y?) in ordinary
: z Z

coordinates. In particular, a point (x, y) on the elliptic curve corresponds to (x,,1).
Moreover, we can take (0,1,0) to be the point at infinity.
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o view! image wh 801 HG1

coef=.0301

Figure 1. An elliptic curve that has a bulge shape and three intersection

i vieviimade whi 801601

| coef=, 5 ;5‘0 1

points.

Figure 2. An elliptic curve that has an extended bulge and a tangent

intersection.
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Figure 3. An elliptic curve that has two components.

The addition of two equal points (doubling) in these coordinates can be
implemented by the following conjunction ecdj. The left conjunction argument
gives the coefficients a, b of the elliptic curve and the right argument gives the
modulus. The right function argument specifies the point that should be doubled.

NB. ELLiptic curve double point,
NB. modified projective coordinates
NB. ab ecdj n Q
ecdj=: 2 : 0O
‘a b'=.m.
'x vy z'=.3{.y.,1
if. 0 e. y,z do. 'x2 y2 z2'=.,0 1 Ox else.
m=.(3xx:x)+axxsx:z
s=.bxxxyy= x:y
X2=.(*:m)+_2xs
y2=.(m*s-x2)+_8xx:yy
z2=,2%yxz
end.
n.|x2,y2,z2
)

Unequal points can be added using the conjunction ecaj. While this is more
complicated than the formula for addition we gave earlier, keep in mind that we
are carrying three coordinates, avoiding division entirely, and keeping the
number of multiplications to a minimum.
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NB. ELLitpic curve add
NB. P ab ecaj n Q
ecaj=: 2 : 0

'a b'=.m.

'x1 y1 z1'=.3{.x.,1
'x2 y2 z2'=3{ .yl
if. z1=0 do. 'x3 y3 z3'=.x2,y2,z22
else.

if. z2=0 do. 'x3 y3 z3'=.x1,y1,z1
else.

ul=.x2xz12=.%x:21
u2=.x1%z22=_.%x:2z2
sl=.y2xz1%xz12
s2=,y1%z22%222
w=.ul-u2
r=.si-s2
if. w=0 do.
'x3 y3 z3'=.m. ecdj n. xi,yl,z1
else.
t=.ul+u2
m=.sl+s2
Xx3=,(*x:r)-txw2=.x:y
y3=.=: (r*x(_2%xx3)+t*w2)-m*xwxw2
23=.z1%z2%w
end. end. end.
n.|x3,y3,z3
)

It is useful to have an efficient utility to compute mP where this denotes adding P
to itself m times. Some sort of efficient approach should be used to avoid a linear
time in m. One can use a variant of successive squaring. We continue following
the algorithms in [1] and use a slightly different “ladder”. It is implemented as the
conjunction ecmj which is defined in the script [4], but not displayed here.

Elliptic Curve Factoring

The basic algorithm for elliptic curve factorization is straightforward and similar
to the Pollard p-1 algorithm. Below is a summary of the algorithm. We assume
that n is a composite integer and that neither 2 nor 3 divide n. The algorithm uses
two bounds B, and B, which will be discussed below.

Elliptic Curve Factoring Algorithm

(Stage 0) Generate a random elliptic curve and a point P on it. Compute the
discriminant, 44’ + 275, of the curve and compute the ged with n. If itis n,
select another curve. If it has a nontrival factor in common with 1, return the
factor as success at Stage 0.
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(Stage 1) For each prime p less than B,, update P by replacing it by an
appropriate multiple: P = p°P, where e is the largest power so that p° < B, .
Check whether the ged of the z coordinate is a nontrivial factor of . If it is,
return that factor as success at Stage 1.

(Stage 2) Now consider the primes g,,g,....,q, that lie between B, and B, . Let
Q = q,P where P was the point resulting from the end of Stage 1. We pre-
compute some multiples of P, say 2P, 4P, ..., 200P. Then we update

Q=0+(q; —q,,)P where the addition is an elliptic curve addition modulo 7.
Repeat this for j=23,...,7. Check whether the gcd of the z coordinate of Q is a
nontrivial factor of n. If it is, return that factor as success at Stage 2.

If all stages fail to find a nontrivial factor, then repeat the stages again, perhaps
with larger B, and B,.

The idea of Stage 1 is quite similar to what we saw in the Pollard p-1 algorithm.
The hope is that for a prime r dividing 7, the order of the elliptic curve modulo r
may be relatively small. The order of the elliptic curve modulo 7 is the number of
distinct points on the curve modulo 7. Any point on the curve multiplied by the
order of the curve gives the identity modulo r, but most likely not modulo 7.
Hence we can most likely find a factor of # if the order of the elliptic curve factors
with the prime powers considered in Stage 1. Thus, we try to find a nontrivial
factor of n by taking the ged of the z-coordinate with . If the order of the elliptic
curve modulo 7 doesn't factor with the primes chosen, we can pick another
random curve and try again. However, we can also go on to Stage 2, which is
what we do.

Notice that in our algorithm for adding points in modified projective coordinates,
the z-coordinate of each argument is a factor of the result (whether the points are
equal or not). Thus, if a nontrivial factor appears in the z-coordinate, it will be
carried along. There is some possibility that it will become a trivial factor, but that
is unlikely compared to getting the nontrivial factor in the first place. Thus, we
need not compute ged's at every step, we can take them at our convenience. We
check the gcd once at the end of Stage 1.

Stage 2 is similar to Stage 1 except the hope is that the order of the elliptic curve
modulo 7 is of the form ¢, p; for a single prime 4, between 5, and 8,. Since

almost all the (g, -¢, )P will be in the precomputed list of the multiples of P, the
cost of trying each ¢, is a single elliptic curve addition. As we noted before, we do

not need to try the gcd at each point, we merely need to “visit” the point and
eventually compute the ged.

This algorithm is implemented in ] in the script [4] and the main function is
fac_ecmj. Its left argument is a list of B, and B, pairs, while the right argument
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is the number to be factored. In our implementation, the left argument controls the
number of elliptic curves that can be tried. The default is to compute 20 3, and B,
pairs where B, ranges geometrically from near In(») to near

exp[ih/ln(\/; YIn(In(vn ))j and B, = B, In(B,) . Different authors give variations upon

NG

the upper bounds, mostly varying the constants somewhat. Of course unless one
knows a great deal about the expected size of the factors, in practice it seems
prudent to try many B, and B, pairs increasing toward a large choice of the
bound.

The result of fac_ecmj is a list of three numbers. The first is the factor found (or
a trivial factor). The second is the level it was found, 0, 1, or 2, or _1 if no

nontrivial factor was found. The third is the index in the list of B, and B, pairs that
succeeded (if it did).

Also, running fac_ecmj sets a global variable, Last_random_ec, that records
the elliptic curve and point on it that was used for the factorization. When a
“hard” number has been factored, experts are often interested in how it was
accomplished. In particular, knowing the elliptic curve and point on it allows the
verification of the technique used to produce the factorization.

The results for the trial points x computed in the earlier section are shown below.

fac_ecmj x
4234213
277
161603867
401617
367823
1969145333
1628419520753
839

1087
80621729

NP, ERE RPN PN
OO0 FNUIO WO F

Last_random_ec
1 1377804045 90635809069775079133736 1119324186 524846382

Notice that all of the numbers were factored. It took 22 seconds to do the ten
factorizations. Notice successes at both levels 1 and 2 appeared. Also notice the
larger factors tended to require more steps which corresponds to larger choices for
B, and B,.

As our last example, we consider the factorization of the following 27 digit integer
that is the product of two primes: one with 13 digits, the other with 15 digits.
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152415787533657061564561727

Since fac_ecmj is probabilistic in the sense that random elliptic curves are used,
timing a single factorization may be misleading. Here we record the result of
fac_ecmj on the above 27 digit integer ten times. We append the seconds used in
the last column.

1234567890133 2 13 136.30
1234567890133 1 10  39.85

1 _1 20 1180.41
1234567890133 1 18 696.14
123456789012419 1 19 989.31
123456789012419 1 18 687.79
123456789012419 1 14 165.10
1234567890133 2 9  33.32
1234567890133 2 16 397.80
123456789012419 2 19 1184.69

Notice that the function failed to find the factorization once. It took between
around 30 seconds and 20 minutes to complete the task in any case. This gives a
sense of the range of effectiveness we may see in our implementation.

Postscript

We have seen that the factorization techniques that we have considered are
effective at factoring random 25 digit numbers. Hard factorizations of this size
(those that involve just two primes) can usually be successfully done with our
elliptic curve implementation. However, this is around where our implementation
begins to struggle. The Quadratic Sieve and Number Field Sieve are more
sophisticated techniques that are better suited for that situation [1], especially
when larger numbers are to be factored. Those algorithms are beyond the scope of
this note. Such factorization problems are not typical for randomly chosen
integers. However, such products are used in RSA coding, so these are important
applications.

In this note we have not organized our functions to completely factor an integer.
We plan to discuss such a function in Part II. One serious impediment to
completing that is the need to know when a number is prime.

It appears implausible to factor the product of two primes with scores or
hundreds of digits with these algorithms, although records continue to be broken
[7]. Nonetheless, we see that the surprising arithmetic defined on elliptic curves
can be effective at finding factors of integers that are implausible by trial division
and other simple techniques.
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