
Functional calculation
1: Numerical ingredients

Neville Holmes, University of Tasmania
Neville.Holmes@utas.edu.au

Introducion
This article is the second in a series (numbered origin-zero Ed.) expounding the
joys of functional calculation. Functional calculation does with operations applied
to functions and numbers what numerical calculation does with functions applied
to numbers. The functional notation used as the vehicle in this series is provided
by a freely available calculation tool called J. This article reviews the numerical
calculation capabilities of J which are the basis for its functional calculation capab-
ilities, andwhichmust be understood before the functional calculation capabilities
proper can be understood. The capabilities described in this articlewill be illustrated
and explained in detail in the next article.

Calculation
Calculation is generally reckoned to be the systematic manipulation of numeric
values. Our schools, and our pocket calculators, are burdened with the idea that
there are four kinds of arithmetic, called addition, subtraction, multiplication and
division. The teaching of these traditional four arithmetic functions has not been
blessed with success recently, and one of the reasons why it has not might be be-
cause there are in factmany arithmetic functions – some simpler than the traditional
four, some more complex.

There are also many kinds of numbers, but this is another richness ignored by
schools and pocket calculators.

This article reviews both the arithmetic functions provided by the functional cal-
culating language J (as introduced in the first article in this series), and the numbers
which are recognised by J. Using these functions, and their numbers, is not in itself
functional calculation, but is part of the basis for it.

Numbers
Calculation changes numbers by systematic alteration or by combination. The ap-
parent result of a calculation depends on up to three aspects of the numbers in-
volved:

• what any starting numbers were keyed in as,

1

Vol.23 N°4VECTOR

• what any numbers were stored as within the calculator, and
• what the result was displayed as.

Of course, it also depends on the functions applied to the numbers.

Number representation
Ideally, a calculator will store all the numbers it has to deal with as well as is pos-
sible. Just how they are stored depends on the underlying electronics, which typ-
ically used a binary representation that is unsuitable for direct use by humans.
Anyone using a calculator should be as unaffected as possible by themethod used
to store numbers, and any decisions about the kind of representation to be used
should be determined by the value to be stored, not by the user.

Although J interpreters shield their users from details of how numbers are stored,
they nevertheless have to take numbers in from the keyboard and put them out
to the display screen. The only practical way of doing this is using the unfortunate
standard ASCII character set, unfortunate because of its poverty, lacking as it does
even the × and ÷ symbols! The following table sums up the provisions of the J
notation for expressing individual numbers.

7 364 529081decimal digits0 1 … 8 9

must be digit to left of point0.7 3.64 52908.1fraction point.

underbar, not hyphen_7 _364 _52908.1negative sign_

scaling basis is ten7e0 _3.6e4 5290e81scale pointe

1r7 3.6r4 5290r_81ratio pointr

real j imaginarylj7 3.6j4 5e90j_81cartesian pointj

magnitude ad/ar angle1ad7 3.6ad4 5e90ad_81degree pointad

a radian is about 57°1ar7 3.6ar4 5e90ar_81radian pointar

1p2 (π2) 2r3p_1 (2/3π)pi pointp

1x2 (e2) 2r3x_1 (2/3e)euler pointx

2b1111 (15) 16bff (255)base pointb

these two notations_ (1r0) __ (_1r0)infinity_

are of special numbers_. (_-_)indeterminacy_.

Furthermore, if an integer has an x suffix then it is stored exactly and exact arith-
metic is used in conjunction with it if possible.

2

Vol.23 N°4VECTOR

All the most commonly needed numbers can be succinctly expressed, as shown
by the examples of the table, but several points need to be explained and emphas-
ised.

• The elements in the list are applied in the sequence given. For example, the
scale point is effective before the ratio point. So keying 1e2r3 in gives 33.3333,
while 1r2e3 gives 0.0005. Also, keying 1.2e3 in by itself will give a display
of 1200 but keying 1e2.3 in will display an error message ill formed number
because the e sees 2.3 as its suffixing component but that component must be
an integer.

• The elements not separated in the table by a horizontal rule are strict alternat-
ives. So keying 1j1p1 in yields 1j3.14159, but keying 1x1p1 in yields ill formed
number.

• The symbol for the negative sign is not the same as the symbol for subtraction.
Negativeness is a property, subtraction is a function, and always the twain
should be distinct. An overbar is often used for the negative sign, but theASCII
character set lacks an overbar so the underbar must be used.

• The elements following the negative sign in the table are letters of the alphabet.
They are, when immediately preceded and followed by numbers of lower
form, arithmetic signs and not function symbols. They are, as is the fraction
point, infixes, and in this the negative sign is an exception, being a prefix.

• Apart from the above, the letter x is used as a suffix to integers to signal that
exact arithmetic is to be used on them if possible. This capability is very useful
but was added late to the notation and is not yet fully and cleanly worked out.

• The last two lines of the table show some special uses of the underscore symbol,
and the symbols given there are individual values, not elements.

• Only the elementary symbols given in the table may be used to compose an
individual number. Parentheses and blanks are not allowedwithin individual
numbers, though they may be used to separate individual numbers.

Any number may be keyed in in a variety of ways, but a number will, unless the
user specifies a particular format, always be shown on the screen in the same way,
however it may have been keyed in or calculated.

Some examples
For the most part, simple numbers like 123 4.5 6e7 and 8.9e10 will give unsur-
prising results, at least for people with the experience that tells them that the e

3

Vol.23 N°4VECTOR

signifies that the number to its left is to be scaled by the power of ten specified by
the number to its right. Indeed, these particular numbers will display exactly as
they are keyed in.

Some simple numbers, like 1e2 and 3e4, will display in a simpler form, in this case
as 100 and 30000 – not as 30,000! Should you key 30,000 in, you will get 30 0

back. Keying 1,234 in to yield 1 234 seems less strange, but even that is not what
it might seem to be, because keying 1+1,234 gives 2 235. The explanation for this
is that the comma is a function symbol in J, here standing for a function usually
called catenate, so 1,234 specifies that the 1 is to be catenated with the 234 to give
the two numbers 1 and 234. So 2+30,000 will give 32 2, but notice (this will be
explained later) that 30,000+2will give 30 2.

Numeric functions
The numeric functions known as scalar functions are applied to one or two numbers
and produce a single number as a result. The primitive functions are those functions
which have a simple symbol for a name. Some of the scalar functions provided by
J as primitive functions are given in the following table.

nordouble+:GCD+.addconjugate+

halve-:not-.subtractnegate-

nandsquare*:LCM*.timessignum*

rootsquare root%:dividereciprocal%

residuemagnitude|

logarithmloge^.powerexp^

(global is)=:(local is)=.equal=

not moredecrement<:lesserfloor<.less than<

not lessincrement>:greaterceiling>.more than>

not equal~:

choicesfactorial!

primep:circularpi timeso.roll?

(left)(same)[

(format)(format)":(do)".(right)(same)]

The functions are given by name, a name which is meant to suggest what the
function does. If there is any doubt about this, experiment with the interpreter can

4

Vol.23 N°4VECTOR

be used to dispel the doubt. Again, some explanation is necessary to clarify the
table.

• The dot (.) and colon (:) are used as character set extenders, and,when suffixed
to a plain function symbol, effectively provide a new function symbol, though
the symbols that differ only in their suffix are usually related in some way.

• A primitive function symbol may stand for two different functions, which is
why there are two columns of names after the function symbol in the table.
The name on the left is for a monadic function, that is, for a function which
only has one argument, a right argument. The name on the right is for a dyadic
function, that is, for a function which has two arguments, one on its left and
one on its right.

• Some functions are restricted in the results they can produce. In particular,
dyadic = < > ~: <: and >: can only produce a 0 or a 1, though these results
are ordinary numbers in the sense that there is no restriction on their use in
further calculations.

• Some functions are restricted in the arguments they will take. For example,
monadic ? and p: take in only non-negative integers.

• The symbols =. and =: do not stand for functions at all. They are called copulas
and are used for naming results. The name to the left of the copula is given to
the value on the right, whatever that might happen to be. These symbols are
sometimes called gets or becomes, and the global version should normally be
used.

• Otherwise, the functions whose names are given in parentheses are not scalar
functions, but are useful in connection with them. The functions that the
brackets [and] stand for are very useful, though their result is always one of
their arguments. The format function converts its right argument into a character
string, optionally under control of its left argument, while the do function can
convert the character string back to a number, though often not the same
number.

• The circular functions have left arguments restricted to the values shown in
the table below, and,where relevant, their right arguments are taken as radians.
Actually, these functions include hyperbolic and pythagorean functions, as
shown in the following table. Note that, in the following table, the left argument
constant is separated from its function symbol by a blank, which is necessary
to avoid the error message caused by an attempt to interpret the o. as part of
a constant, the round character in the o. symbol being a lower case o. This is

5

Vol.23 N°4VECTOR

not the case with the other function symbols introduced so far, except p:, be-
cause they use nonalphabetic characters.

sqrt(1-x2)0 o.

sqrt(1+x2)4 o.tangent3 o.cosine2 o.sine1 o.

sqrt(_1-x2)8 o.tanh7 o.cosh6 o.sinh5 o.

sqrt(_1+x2)_4 o.arctangent_3 o.arccosine_2 o.arcsine_1 o.

sqrt(_1-x2)_8 o.arctanh_7 o.arccosh_6 o.arcsinh_5 o.

The hierarchy of functions
Clearly, J provides many primitive functions, as well as the ability to give a name
to any, by the expression sqrt=:%: for instance. Dealing with these cleanly leads
to a breakwith tradition that provokes a strong rejection from arithmetic tradition-
alists.

The primitive functions are traditionally considered to be arranged in a hierarchy
of strength and direction, and the higher primitive functions are represented by
notational peculiarities which imply a hierarchy. For J, the richness of primitive
functions and the uniformity of expression forced by the ASCII character set and
the linearity of its use,make a hierarchy practically impossible. Thus, 5+%|x stands
for five plus the reciprocal of the magnitude of x, while a+7*b stands for a plus the
product of seven and b.

The absence of a hierarchy of functions leads to expressions having meanings
which, though completely reasonable, are upsettingly untraditional. For example,
a*7+b stands for a times the sum of seven and b, while a-7-b stands for a minus the
subtraction of b from seven. If the traditionalmeanings are required for the arguments
in that sequence, then parentheses must be used in J, as (a-7)-b and (a*7)+b. The
gain is simplicity, the price is a break with tradition.

Summary
This article is like a list of ingredients that can be used for numerical calculation
using the notation provided by J. At their simplest, these ingredients can be put
together in the manner learned in elementary school, because the simplest of the
expressions learned in elementary school, expressions like 1+2 and 7.2-5.75, can
be keyed in to the interpreter to give the result expected in elementary school.

However, the need to expand the number of elementary functions available, coupled
to the restrictions of the ASCII character set, mean that some calculations and their
results will not be quite like the results expected from elementary school. Never-

6

Vol.23 N°4VECTOR

theless the changes are consistent and systematic, and their adoption allows ele-
mentary calculation to be extended in elementary ways, ways which allow simple
use of an interpreter to evaluate expressions.

The next article in this series will explain and illustrate how numerical calculation
is done with the J interpreter, as a preliminary to further treatment of functional
calculation.

Footnote: This essay was written a decade ago to introduce J to classes of honours
students as explained in the introductory essay “Tacit J and I”. No attempt has
beenmade to upgrade the text to incorporate subsequent changes to J, but I believe
that the original design of Jwas exceptionally robust andwill not have causes errors
to crop up in the description above.

7

Vol.23 N°4VECTOR

	Functional calculation
	Introducion
	Calculation
	Numbers
	Number representation
	Some examples

	Numeric functions
	The hierarchy of functions

	Summary

